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Abstract: Small RNAs (sRNAs) are essential regulators in the adaptation of bacteria to environmen-
tal changes and act by binding targeted mRNAs through base complementarity. Approximately
550 distinct families of sRNAs have been identified since their initial characterization in the 1980s,
accelerated by the emergence of RNA-sequencing. Small RNAs are found in a wide range of bacterial
phyla, but they are more prominent in highly researched model organisms compared to the rest of
the sequenced bacteria. Indeed, Escherichia coli and Salmonella enterica contain the highest number
of sRNAs, with 98 and 118, respectively, with Enterobacteriaceae encoding 145 distinct sRNAs, while
other bacteria families have only seven sRNAs on average. Although the past years brought major
advances in research on sRNAs, we have perhaps only scratched the surface, even more so consider-
ing RNA annotations trail behind gene annotations. A distinctive trend can be observed for genes,
whereby their number increases with genome size, but this is not observable for RNAs, although they
would be expected to follow the same trend. In this perspective, we aimed at establishing a more
accurate representation of the occurrence of sRNAs in bacteria, emphasizing the potential for novel
sRNA discoveries.

Keywords: small RNAs; non-coding RNA; genetic regulation

1. Introduction

Small RNAs (sRNAs) are important post-transcriptional regulators involved in many
cellular mechanisms such as biofilm formation, adaptation to environmental changes and
virulence [1]. They modulate gene expression by base-pairing with their target mRNA
either with perfect (cis-acting) or partial (trans-acting) complementarity. Cis-acting sRNAs
(better known as antisense RNAs; asRNAs) are encoded in the opposing strand of their
target mRNAs, whereas trans-acting sRNAs are in a different locus. The latter tend to target
multiple mRNAs and often rely on the help of chaperone proteins such as Hfq or ProQ
in Gram-negative bacteria [2]. Here, we focused on trans-acting sRNAs, though a similar
analysis dedicated to asRNAs is available in the Supplementary Material (Supplementary
Material Table S1–S3 and Figure S1).

The effects of sRNA binding to its mRNA target are manifold. Small RNAs are between
50 and 300 nucleotides, and they have an impact on the translation of their target mRNA,
more often via downregulation of protein synthesis than upregulation [3]. The binding of
an sRNA to its target can prevent the ribosome from reaching the ribosome binding site
(RBS) either by directly obstructing its access or by promoting a structural change that leads
to its sequestration, therefore preventing translation from occurring [4,5]. Inversely, this
binding could result in changes in the secondary structure of an mRNA, releasing an RBS
that would otherwise be sequestered [6]. An sRNA-Hfq complex can also promote RNA
degradation by the recruitment of ribonuclease E (RNAse E) [7]. Small RNA binding can
also lead to ribosome stalling, which can reveal downstream RNAse E sites and promote
target mRNA degradation [8]. All this to say, sRNAs’ modes of action are diverse and rely
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on regulatory mechanisms that affect mRNA stability, degradation, or accessibility to the
ribosome and RNA-binding proteins.

In Gram-negative bacteria, sRNAs regulation is often facilitated by chaperone pro-
teins Hfq and ProQ. Homologs of the protein Hfq are found in approximately 50% of all
sequenced bacteria [9], whereas ProQ is specific to Gram-negative microorganisms [10].
We hypothesized that sRNAs could be found in all Gram-negative bacteria encoding for
either chaperone proteins. Even if it is present in Gram-positive bacteria, Hfq does not
seem to operate in the same manner as in Gram-negative bacteria [10]. The identification of
RNA-binding proteins in Gram-positive bacteria with a similar impact on gene regulation
as Hfq and ProQ is an important missing factor in paving the way to novel sRNA discovery.
It was suggested that the protein CsrA could fulfill this function in Gram-positive bacteria,
but research is lacking. In fact, it was only demonstrated that CsrA could promote the
interaction between the sRNA SR1 and its target in B. subtilis [11].

The first characterized sRNA, MicF, was described approximately 40 years ago. Ini-
tially identified as a “repressor RNA”, MicF is an sRNA that regulates an important outer
membrane protein in Escherichia coli, OmpF [12–14]. Since this first breakthrough, numerous
sRNAs have been identified; the rate of these discoveries has increased since the advent of
next-generation sequencing, which permitted RNA-sequencing. However, their discovery
mainly focused on model organisms such as Escherichia and Salmonella species, overlook-
ing other bacteria that also have the potential to encode numerous sRNAs. We wanted
to estimate whether we are far from the true number of sRNAs by getting an overview
outside these common models. By demonstrating the biases toward model organisms and
pathogens, we hope to pique the interest of other non-coding RNA enthusiasts and pave
the way for new sRNAs discoveries.

2. Prevalence of sRNAs in Bacteria

Information about sRNAs annotated in bacterial genomes compiled for this article
was procured from RiboGap [15] (queries are available in Supplementary Material, Table
S4). This database facilitates the inspection of non-coding regions in prokaryotes. The
compilation of annotated sRNAs in RiboGap comes from Rfam, a database compiling
sequences from structural RNA families [16], and is limited to available annotations. How-
ever, additional sRNAs are predicted within RiboGap compared to Rfam since homology
searches were executed on all prokaryotic genomes available in NCBI [17] from covariance
models of the entire sRNA collection in Rfam.

Rfam allowed us to examine the prevalence of sRNAs in a wide range of bacteria,
but other organism-specific databases exist. To name a few, sRNAMap is a web-based
application for Gram-negative bacteria only [18], whereas sRNAdb [19] is specific to
Gram-positive bacteria. RegulonDB [20] and Ecocyc [21] compile sRNAs from E. coli,
while published data on sRNAs in Staphylococci with a focus on Staphylococcus aureus are
gathered in the SRD database [22]. BSRD also contains a repertoire of small bacterial RNA,
but most of its data are homologs found in Rfam [23]. We, therefore, chose to work with
Rfam to obtain a sense of the extent of sRNAs in bacteria, but it is worth mentioning that
other databases are available when the research is more focused on a particular organism,
although this is generally limited to model organisms. This article also focuses on sRNAs
with an E-value lower than 0.0005, to remove any sRNAs with poor homology prediction.

Since the characterization of the first sRNA in the 1980s, numerous sRNAs have been
discovered in a wide range of bacterial phyla, including 549 distinct sRNA families listed
in Rfam. Proteobacteria and Terrabacteria groups encode the highest number of distinct
sRNAs (Table 1).

Bacteria from the phylum Proteobacteria and the Terrabacteria phylum group both
encode many distinct sRNAs (345 and 210, respectively). It comes as no surprise that
the Terrabacteria super-phylum group stands out from others in terms of the number of
annotated sRNAs since it encompasses approximately two-thirds of all identified species,
including all Gram-positive bacteria and most spore-producing bacteria [24]. It also in-
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cludes human pathogens such as Clostridium, Staphylococcus and food and waterborne
pathogens such as Listeria and Campylobacter [24]. Proteobacteria is a well-studied phylum
since it is predominant in the human gut microbiome and often associated with multiple
intestinal and extraintestinal diseases [25] and includes many human pathogens, such as
those from the genera Bordetella, Brucella, Burkholderia, Francisella, Helicobacter, Neisseria,
Rickettsia, Salmonella and Yersinia [25], which would explain incentives to study them.

Table 1. Number of distinct annotated sRNAs in different phylum.

Phylum Group sRNAs

Acidobacteria 4
Aquificae 1

Calditrichaeota 1
Dictyoglomi 1
FCB group 1 16
Fusobacteria 2
Nitrospirae 3

PVC group 2 8
Proteobacteria 345
Spirochaetes 6
Synergistetes 1

Terrabacteria group 210
Thermodesulfobacteria 1

Thermotogae 1
1 FCB group stands for Fibrobacteres, Chlorobi, and Bacteroidetes, whereas 2 PVC group represents Plancto-
mycetes, Verrucomicrobia, and Chlamydiae.

Most species have a relatively small number of distinct sRNAs annotated within
their genome (Supplementary Material Figure S2A), whereas those with the highest sRNA
occurrences are within the phylum Proteobacteria and Terrabacteria group (Table 1). If we
disregard those overrepresented phyla, the remaining bacteria have an average of only
1 to 2 sRNAs encoded in their genome (Supplementary Material Figure S2A). From that
list, most are non-pathogenic and are not considered model organisms. However, there
are a few exceptions, including those responsible for the sexually transmitted infections
(STI), chlamydia and syphilis (Chlamydia trachomatis [26] and Treponema pallidum [27], re-
spectively), a bacteria associated with dog bite infections (Capnocytophaga sp. [28]) as well
as plant (Liberibacter sp. [29]), poultry (Riemerella sp. [30]) and fish (Tenacibaculum sp. [31])
pathogens. This list also includes model organisms in specific fields of research, such as
Chlorobaculum sp., which is used to study sulfur metabolism and photosynthesis [32], as
well as Porphyromonas sp., used to study the interaction of anaerobic bacteria with host
cells [33]. Despite their relevance as pathogens and in fundamental research, the presence
of sRNAs has not been examined in these species. A genome-wide transcriptomic study
was realized in Chlamydia trachomatis, identifying 43 candidate sRNAs [34], but only one
is referenced within the Rfam database, IhtA [35]. It would be interesting to dedicate
future sRNA studies to these bacteria since they have a very small number of annotated
sRNAs. Conversely, numerous bacterial strains from the major Gram-negative phylum
Proteobacteria encode for large numbers of sRNAs (Figure 1).

Figure 1 represents the potential to discover novel sRNAs, where the underwater
portion of the iceberg depicts the sRNAs that remain to be found if all strains contain
similar quantities of sRNAs as the most well-studied bacteria. Given chaperone proteins
ProQ and Hfq are highly conserved in Gram-negative bacteria [36,37], we feel comfortable
making this extrapolation since the occurrence of either or both chaperone proteins in
the genome of bacteria could be a good indication of the presence of sRNAs. We also
represented the potential for sRNA discovery in bacteria from other phyla (Supplementary
Material Figure S2). However, given the chaperone protein ProQ is absent in Gram-positive
bacteria [37], this extrapolation is less reliable. Despite the fact that an Hfq homolog is
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present in Gram-positive bacteria, it does not seem to act as a matchmaker for sRNAs and
their targets, which is its most prominent role in Gram-negative bacteria [1].
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2.1. Species Encoding for sRNAs

The model organisms Salmonella enterica and Escherichia coli contain the most distinct
sRNAs annotated in their genome, with 118 and 98, respectively, if you consider all strains
for each species (Figure 2).

For Proteobacteria, it is hardly surprising that Escherichia coli is at the top of the
list since it is the microbiologist’s bacteria of choice in the laboratory due to its ease of
handling and the availability of associated tools. It is the most studied and best-understood
bacteria [38], and much of our fundamental understanding of biology has come from
this model organism, including the genetic code [39] and the characterization of the first
sRNA [12–14]. As a very close parent of E. coli, Salmonella enterica is expected to contain
similar sRNAs, although many other species-specific sRNAs were found, presumably
due to extensive research on host-pathogen interactions, which made use of this model
organism. Salmonella sp. are attractive model organisms because they can target a wide
range of hosts with multiple evasion strategies giving an idea of major tactics adopted by
other pathogens [40]. For example, the sRNA IsrJ in Salmonella sp. was demonstrated to
encourage the invasion of epithelial cells, and knockout strains for this sRNA lead to less
invasive mutants [41]. For Proteobacteria, all the bacteria from the figure belong to the
family Enterobacteriaceae, which encodes for 145 distinct sRNAs compared to an average of
seven for all other bacterial families.

In the case of bacteria from the Terrabacteria group, human pathogens Staphylococcus
and Listeria have the highest number of distinct annotated sRNAs [42,43]. As for Strep-
tococcus sp., some of its species are considered part of the normal human microbiome,
but others, such as Streptococcus pneumonia, are responsible for most cases of pneumonia
worldwide [44]. The model organism Bacillus subtilis also has a high number of annotated
sRNAs, perhaps because it is a common Gram-positive bacteria to investigate biofilm
formation [45], among other processes. As we can observe, the species with the most
annotated sRNAs are those associated with high research intensity, either because they are
a threat to human health or due to their attractiveness as model organisms (Table 2). By
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digging past this bacterium all-star list, we hypothesized that multiple novel sRNAs are left
to be discovered. By focusing on less standard organisms, we could potentially extend the
role of sRNAs to unexpected new functions. Moreover, sRNAs discovered in understudied
bacteria could be the missing puzzle piece to solve an incomplete regulatory mechanism in
a model organism.
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instances where only the genus of the bacteria was noted. It can be observed that in (A), all species
are from the same family, Enterobacteriaceae. In (B), species from different orders are emphasized by
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Table 2. Description of genus encoding for the most distinct sRNAs.

Genus Nb of Distinct sRNAs 1 Description Ref

Proteobacteria

Salmonella 119 Model organism to study host-pathogen interactions [40]

Escherichia 99 Most well-understood bacteria [38]

Citrobacter 88 Third most common urinary pathogen [46]

Shigella 85 Causative pathogen of shigellosis [47]

Enterobacter 78 Responsible for nosocomial infections [48]

Klebsiella 74 Nosocomial pathogen, model organism to study drug resistance [49]

Terrabacteria group

Streptococcus 55 Responsible for most cases of pneumonia worldwide [44]

Staphylococcus 46 Most prevalent cause of infection in hospitalized patient [42]

Listeria 35 Foodborne human pathogens causing central nervous system
infections [43]

Bacillus 26 Most-studied Gram-positive bacteria, model organisms for cellular
development [45]

Enterococcus 25 Principal cause of the healthcare-associated death worldwide [48,50]
1 The number represents the quantity of distinct annotated sRNAs in all bacterial strains within this genus. Only
sRNAs with a E-value lower than 0.0005 were considered.
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2.2. Most Abundant Small RNAs

We were then interested to know which sRNAs were the most present throughout all
bacterial genomes. If an sRNA was annotated multiple times within the same strain, we
counted all individual instances (Figure 3).
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than 0.0005 were taken into consideration.

From the top lists of sRNAs, most were discovered in human pathogenic bacteria
(Ysr197 [51,52], 5_ureB_sRNA [53], Ysr224 [52,54], Ysr141 [55], isrK [41,56], BASRCI153 [57],
BASRCI408 [57] and STnc100 [56]), in causative agent of plant infection (sX9 [58]) or in para-
sitic microbes (WsnRNA-46 [59]). The latter was found in Wolbachia sp., the most prevailing
vertically transmitted endosymbiont around the world, impacting more than 40% of arthro-
pods [59]. The remaining were found in the model organism E. coli (GlmZ_SraJ [54,60–62],
t44 [63], GlmY_tke1 [54,60–62], RyhB [64–70], CsrB [54,71–77], OmrA-B [64,78–80] and
CsrC [64,81]) or by computational homology searches (Flavo-1 [82], Bacillaceae-1 [82] and
P26 [83]) (Table 3).

In other words, not only are we missing numerous sRNA instances in various bacteria,
as underscored by Figure 1, but the diversity of sRNA families is also expected to be much
greater. Indeed, most sRNAs are unique to limited taxonomic groups, which means that
each exploratory sRNA study in an underrepresented taxon will likely lead to the discovery
of novel sRNA families. Then, by homology searches, they could be related to other bacteria
of interest and further deepen our knowledge of gene regulation mediated by sRNAs.
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Table 3. Description of top 20 most prevalent sRNAs in bacteria.

sRNA Description Rfam ID sRNA Expression Discovered in Ref

Ysr197 Yersinia sRNA 197 RF02849 Expressed in exponential phase Yersinia
pseudotuberculosis [52]

5_ureB_sRNA - RF02514 Downregulate expression of
operon ureAB Helicobacter pylori [84]

sX9 Xanthomonas sRNA
sX9 RF02228 -

Xanthomonas
campestris pv.

vesicatoria (Xcv)
[58]

Ysr224 Yersinia sRNA 224 RF02770 Temperature-responsive Yersinia
pseudotuberculosis [52,54]

Ysr141 Yersinia sRNA 141 RF02675

Influence the expression of
Yop-Ysc type III secretion

system (T3SS) (critical system
for virulence)

Yersinia pestis [55]

isrK isrK Hfq binding
RNA RF01394 Stationary phase, low oxygen,

low magnesium
Salmonella

typhimurium [41,56]

Flavo-1 - RF01705 - Bacteroidetes [82]

BASRCI153 Brucella sRNA CI153 RF02604 Putative target: BAB1_1361 Brucella abortus [57]

GlmZ_SraJ GlmZ RNA activator
of glmS mRNA RF00083 activator of glmS mRNA Escherichia coli [54,60–62]

t44 - RF00127 - Escherichia coli [63]

GlmY_tke1 GlmZ RNA activator
of glmS mRNA RF00128 activator of glmS mRNA Escherichia coli [54,60–62]

BASRCI408 Brucella sRNA CI408 RF02599 Putative target: BAB1_2002 Brucella abortus [57]

RyhB - RF00057

Iron metabolism [67], regulates
siderophore production and
virulence [69], persistence

regulation [70]

Escherichia coli [64–70]

STnc100 Gammaproteobacterial
sRNA STnc100 RF02076 - Salmonella sp. [56]

CsrB CsrB/RsmB RNA
family RF00018 Binds the CrsA protein Escherichia coli [54,71–77]

Bacillaceae-1 - RF01690 - Bacteroidetes [82]

OmrA-B - RF00079 Target several genes encoding
outer membrane proteins Escherichia coli [64,78–80]

CsrC - RF00084 Binds the CrsA protein Escherichia coli [64,81]

Ysr276 Yersinia sRNA 276 RF02850 - Yersinia
pseudotuberculosis [52]

WsnRNA46 Wolbachia sRNA 46 RF02625 Expressed in cells infected by
parasitic microbe Wolbachia Wolbachia sp. [59]

P26 Pseudomonas sRNA
P26 RF00630 - Pseudomonas

aeruginosa [83]

3. Biases towards Model Organisms and Pathogens

In order to demonstrate that research intensity is biased toward model organisms,
pathogens, and closely related species, we looked at the number of annotated genes and
RNAs in bacteria (Figure 4).
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Figure 4. Number of annotated genes and RNAs in bacteria. Data required for the creation of this
graph were taken from RiboGap [15]. (A) The number of annotated genes is graphed according
to the genome size, which comprises all chromosomes and plasmids of each individual strain if
applicable. (B) The number of annotated RNAs is graphed according to the “fragment size”, which
considers chromosomes and plasmids separately for each individual strain. RNAs are not limited
only to sRNAs but also include CRISPR RNAs, antisense RNAs, sRNAs, long non-coding RNAs
(lncRNAs), rRNAs, ribozymes, tRNAs and cis-regulatory elements. Species from Terrabacteria group
and Proteobacteria that were found to have the most annotated sRNAs (Figure 2) are represented by
black and blue dots, respectively; all other strains are shown in gray.

Information about genome size and the number of annotated genes and RNA comes
from RiboGap [15], which extracts data from the NCBI FTP site [17]. For gene annotations,
sizes are based on complete genomes, which include all plasmids and chromosomes of a
given strain if applicable. However, RNAs are compiled per “DNA fragment” (chromosome
or plasmid) since it is not accessible per genome within the RiboGap database. The size
of each fragment was taken from all available Genbank files from the NCBI FTP site [17].
Results were limited by the available annotations. For example, some strains did not have
annotated genes in NCBI and were removed from Figure 4. Moreover, some entries were
mislabeled as complete genomes but were, in fact, WGS (Whole Genome Shotguns) projects
with incomplete genomes, leading to a miscalculation in the number of genes (values
doubled up). These erroneous data were removed from Figure 4 (shown for transparency
purposes in Supplementary Material Figure S3).
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Expectedly, the number of annotated genes increases proportionally with the genome
size, with on average one gene per kb and a relative standard deviation (RSD) of 7%
(Figure 4A). The top species with the most annotated sRNAs (Figure 2) from Proteobacteria
and Terrabacteria groups (blue and black dot, respectively, Figure 4A) tend to have slightly
higher numbers of genes for a given genome length. We also graphed the number of
annotated RNAs compared to the fragment size, which highlights the disparity in the
annotation of RNA versus protein-coding genes. There is, on average, one annotated RNA
every 25 kb with a relative standard deviation of 47%, emphasizing how spread out the
values are from the average number, ranging from ~1/10 kb to ~1/100 kb (Figure 4B).
Information about RNA families comes from RiboGap [15] and is derived from Rfam
(except for terminators, which can be found in RiboGap but were not included in these
results). In principle, we should expect a similar trend for RNAs (Figure 4B) as for genes
(Figure 4A), i.e., the number of annotated RNAs should increase proportionally with
fragment size. However, it is clearly not the case here, emphasizing how RNA annotations
trail behind gene annotations.

Annotations are dependent on the research intensity associated with each strain: the
fact that some RNAs are not annotated does not mean that they are not present, but simply
that they have yet to be identified. When we emphasize the species with the most annotated
sRNAs in their genome (black and blue dots, Figure 4B), they also tend to be those that
have the highest number of RNAs in general for a given fragment length. Therefore, their
large number of annotated sRNAs likely results from high research intensity. We recreated
Figure 4, this time emphasizing bacteria labeled as human pathogens in RiboGap [15]
(Supplementary Material Figure S4). Even if there are large incentives to study human
pathogenic bacteria, only a handful of model organisms were well characterized. There is
still room for novel RNAs discovery even among numerous pathogens, as suggested by
the fact that the number of annotated RNAs does not necessarily increase as expected with
fragment size.

4. Conclusions and Perspectives

Small RNAs are important for gene regulation and modulation of responses to environ-
mental changes. They are found in numerous bacterial phyla, especially Proteobacteria and
Terrabacteria groups. However, we underestimate their prevalence because of the focus
on model organisms and pathogens. Genera encoding for the highest number of sRNAs
are human pathogens (Salmonella, Escherichia, Citrobacter, Shigella, Enterobacter, Klebsiella,
Streptococcus, Staphylococcus and Listeria, amongst others) or model organisms (Bacillus,
Escherichia, Salmonella and others). Only a small fraction of all bacteria encode for numerous
sRNAs, but it would be surprising that others would not have the same variety of regula-
tory RNAs, especially if they encode for the RNA chaperone proteins Hfq and/or ProQ.
Moreover, the diversity of sRNAs is anticipated to be much greater since most sRNAs are
unique to limited taxonomic groups. For instance, the species that encode the most distinct
sRNAs within the phylum Proteobacteria are all from the same family, Enterobacteriaceae.

Expectedly, species associated with high research intensity are also those with the
largest number of annotated genes (relative to genome size) and even more so of RNAs,
but what was less obvious before is how much RNA annotations fall behind gene annota-
tions. By increasing RNA studies of infrequently studied bacteria, we could improve our
capacity to annotate sRNAs and our knowledge of the extent of RNA families in bacteria,
including sRNAs.

Even if there is still much to learn on sRNAs in major experimental models, our goal
was to highlight the potential to discover novel sRNAs by stressing that current findings
are focused on model organisms and pathogens. It was also an opportunity to take stock of
the extent of our knowledge. Although there are fewer incentives to study bacteria that
are neither models nor pathogens nor of direct industrial interest, new sRNA discoveries
could deepen our comprehension of genetic regulation and perhaps lead to new and
fascinating mechanisms. Furthermore, beyond the E. coli and B. subtilis models, there are
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numerous organisms that provide important models for specific biological processes. A few
examples include Methylorubrum extorquens for the metabolism of 1-carbon compounds [85],
Myxococcus xanthus for bacterial social behavior [86], Azotobacter vinelandii for nitrogen
fixation [87] or Mycoplasma genitalium for minimal organisms [88]. RNA-seq and sRNA
discovery methodologies permitted transcriptome-wide evaluation of potential sRNAs,
even if further experimental validation requires a significant amount of work. Small RNAs
should still be in the spotlight of research in relation to non-coding RNA-mediated genetic
regulation because we have just scratched the surface of their full potential and likely have
an underappreciation of the true complexity of the regulation of gene expression by sRNAs
in bacteria.
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