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Abstract: As one of the most important post-translational modifications (PTMs), phosphorylation
refers to the binding of a phosphate group with amino acid residues like Ser (S), Thr (T) and Tyr
(Y) thus resulting in diverse functions at the molecular level. Abnormal phosphorylation has been
proved to be closely related with human diseases. To our knowledge, no research has been reported
describing specific disease-associated phosphorylation sites prediction which is of great significance
for comprehensive understanding of disease mechanism. In this work, focusing on three types of
leukemia, we aim to develop a reliable leukemia-related phosphorylation site prediction models by
combing deep convolutional neural network (CNN) with transfer-learning. CNN could automatically
discover complex representations of phosphorylation patterns from the raw sequences, and hence it
provides a powerful tool for improvement of leukemia-related phosphorylation site prediction. With
the largest dataset of myelogenous leukemia, the optimal models for S/T/Y phosphorylation sites
give the AUC values of 0.8784, 0.8328 and 0.7716 respectively. When transferred learning on the small
size datasets, the models for T-cell and lymphoid leukemia also give the promising performance by
common sharing the optimal parameters. Compared with other five machine-learning methods, our
CNN models reveal the superior performance. Finally, the leukemia-related pathogenesis analysis
and distribution analysis on phosphorylated proteins along with K-means clustering analysis and
position-specific conversation profiles on the phosphorylation site all indicate the strong practical
feasibility of our easy-to-use CNN models.

Keywords: leukemia; protein phosphorylation site; protein primary sequences; machine-learning;
deep-learning; transfer-learning

1. Introduction

Post-translational modifications (PTMs) of proteins are a pivotal mechanism regulating
cellular functions by the covalent and generally enzymatic modification, which plays vital
roles in regulating various biological processes [1]. Protein phosphorylation is one of the
most important posttranslational modifications in eukaryotes [2]. By covalently attaching
phosphate moieties to Ser (S), Thr (T) or Tyr (Y) residues in a dynamic manner [3,4],
it regulates many cellular processes such as DNA growth, metabolism and cell cycle
control [5,6]. Currently, a number of phosphorylation sites have been accurately verified by
different experimental techniques and related databases have been built, like Database of
dbPSP 2.0 [7], PhosphoPep [8] and Phospho.ELM [9].

Based on the available phosphorylation site data, the machine/deep-learning methods
have been proposed for phosphorylation site prediction. Among them, traditional machine-
learning models were developed by manually extracting effective features to represent
phosphorylation site information, such as Shannon entropy, relative entropy, information
gain, protein disordered property, the average cumulative hydrophobicity, etc. [10–12].
Nowadays convolutional neural network (CNN)-based deep-learning methods have also
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been proposed by just taking raw sequence data as input without manual feature extraction.
For example, Wang et. al. [13] has used a novel two-dimensional attention mechanism to
predict general and kinase-specific phosphorylation sites. Luo et. al. [14] have proposed
a densely connected convolutional neuron network blocks which can capture multiple
representations of sequences to make final phosphorylation prediction by intra block
concatenation layers and inter block concatenation layers; Ahmed et. al. [15] used a stacked
long short-term memory recurrent network which learns the protein representations from
conjoint protein descriptors for predicting phosphorylation sites.

Despite the tremendous potential of the deep-learning, the challenge in developing
deep-learning-based prediction methods is the requirement of large amounts of data [16].
Due to lacking enough experimental data, the reliable deep-learning models cannot be
achieved on such a small size dataset. Nowadays, transfer-learning can be used to solve
this problem. It refers to the strategy of migrating knowledge for a new task from a relative
task that has already been learned. For example, Liu et. al. [17] have proposed a novel
transfer-deep-learning method for predicting ubiquitination sites of multiple species.

It has been confirmed that phosphorylation sites are associated with altered protein
functions [18] and abnormal phosphorylation has now been proved to be closely related
with human diseases [19]. Randall et. al. [20] have shown that the increased phosphory-
lation of TDP-43 leads to a number of neurotoxic effects including reduced liquid liquid
phase separation dynamicity, changes in splicing, cytoplasmic mislocalization and aggrega-
tion, which ultimately contributes to neurotoxicity and neurodegeneration and may cause
amyotrophic lateral sclerosis and frontotemporal lobar degeneration. Zhang et. al. [21]
have declared the phosphorylation of amyloid precursor protein (APP) is one of the keys
for modulating the generation of amyloid-β and phosphorylation abnormalities of APP
would lead to abnormal accumulation of amyloid-β in the central nervous system, which
is a hallmark of Alzheimer’s disease. Brustovetsky [22] has found that collapsin response
mediator protein 2 phosphorylation inhibits the interaction between Drp1 and Miro 2
which are involved in regulating mitochondrial dynamics and leading to Huntington’s
disease. Simon et. al. [23] have reported that phosphorylation at Ser289 in the CaM autoreg-
ulatory do-main by Ribosomal S6 kinases reduces the apoptotic activity of Death-associated
protein kinase I which leads to neurodegenerative diseases such as ischemic stroke and
Alzheimer s disease. So a number of disease-associated phosphorylation sites have been rec-
ognized and databases have been constructed, like Database of qPhos [24], PTMD [25] and
PhosphoSitePlus [26]. So far, few studies are reported focusing on human disease-related
phosphorylation site prediction, except the work by Xu et. al. [27] who have proposed
a combined feature selection method-based SVM that incorporates mRMR filtering pro-
cess and forward feature selection process to identify disease-related phosphorylation
sites. Nowadays, there is no research for specific disease-associated phosphorylation sites
prediction. So, it is urgent to identify such specific disease-associated phosphorylation
sites in large-scale phosphoproteome, which may provide a guide for the comprehensive
understanding of disease mechanism as well as biomedical drug design [28].

As we know, leukemia is a common blood malignant tumor caused by the anomalous
growth of leukocytes and diseased leukemia cells can enter blood to affect the metabolism
of normal cells in the body [29]. Leukemia is a systemic infectious malignant tumor and
the viral expression process is closely related to protein phosphorylation [30,31]. Currently,
leukemia-related phosphorylation site data has been accumulated. In this context, we aim to
develop the reliable prediction model to distinguish the leukemia-related phosphorylation
sites from the non-phosphorylation sites.

Most existing computational methods for phosphorylation site prediction are based
on manual feature extraction. Existing manual feature extraction techniques are directed
at one-sided material information of the phosphorylation site, which cannot adequately
describe the complex biological properties of phosphorylated modification sites, and this
would probably result in incomplete or biased feature representation [32]. Deep learning is
based on end-to-end can automatically discover complex patterns and capture the high-



Int. J. Mol. Sci. 2022, 23, 1741 3 of 16

level abstraction adaptively from the training data, so it is more applicable to variable
natural data than manual extraction and has good generalization ability and robustness,
which can select the best discrimination feature subset for the final prediction model. Deep-
learning as the cutting-edge method allow their computational models to be fed with raw
data and automatically discover the complex representations of protein functions needed
for classification, hence it provides a powerful tool for improvement of protein functions
prediction.

In this work, with only one convolution, pooling and dense layer respectively, an
easy-to-use CNN architecture was developed for predicting leukemia-related phosphory-
lation sites just using the protein primary sequences. Here, the phosphorylation site data
were collected for three leukemia classes, including myelogenous, lymphocytic and T-cell
leukemia. Since myelogenous has the largest dataset and could provide sufficient samples
to achieve a CNN model, myelogenous-related S/T/Y phosphorylation site prediction
models were constructed by our CNN architecture. To evaluate the performance and
prove the advantage of this method, we also used other five machine-learning methods to
construct the prediction models. Through comparisons, our CNN model yields promising
performance, which are superior to the five other models, when all models are based on
sequence information. Finally, the pre-models derived from myelogenous-related datasets
were used to construct prediction models for lymphocytic and T-cell leukemia with the
small size datasets by a deep transfer-learning framework and the good performance on
small datasets proves the strong feasibility of our model.

2. Results and Discussion
2.1. Functional Analysis on the Phosphorylated Proteins

In our three leukemia-related datasets, all phosphorylation sites are from 8011 phos-
phorylated proteins. In order to understand an in-depth knowledge about genes associated
with leukemia, we performed functional pathway enrichment analysis using Metascape
database [33] and 1707 genes were found in all enriched pathways. Functional pathway
enrichment is a statistical analysis performed by analytical tools to mine the databases
for gene function classes that have significant relevance to the biological problem we are
studying. The statistical principle is to test the significance of a functional class in a set of
genes (co-expressed or differentially expressed) by means of hypergeometric distribution,
enrichment analysis and false positive analysis, and to identify the functional classes of
genes that are significantly associated with low false positive rate and targeting. The
heatmap in Figure 1A shows the most significant pathways and Figure 1B,C show the
functional pathway correlation networks constructed based on gene clustering enrichment
and p-value, respectively. Meanwhile, the detailed information of the top 20 enriched terms
are listed in Supplementary Table S1. The results reveal that the pathways of these genes
are mainly related to cellular morphological changes, including organelle fission, cell cycle,
cell cycle phase transition and membrane trafficking, etc. In recent years, many researchers
have focused on the cellular morphological changes in leukemia, indicating that cellular
morphological changes play an important role in serving as biomarkers of leukemia [34,35].
We can also see that most of the genes are clustered on the right side of Figure 1B and
they are all very significant according to their values from Figure 1C, so they are mainly
involved in cellular morphological changes related pathways, indicating that the cellular
morphological changes related pathways are important for leukemia. In addition, actin
filament-based process, Signaling by Rho GTPases and small GTPase mediated signal trans-
duction pathways are also demonstrated to be closely related to leukemia from our analysis
results, since there are over 400 genes are involved in the three pathways respectively.
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Figure 1. Top 20 clusters with their representative enriched terms (one per cluster) of genes which
have leukemia-related phosphorylation sites. (A) Heatmap of p-value for each cluster. (B) The
networks of enriched terms with nodes colored by cluster ID, where nodes sharing the same cluster
ID are typically close to each other. The most statistically significant term within a cluster is chosen
to represent the cluster. (C) The network with nodes colored by p-values, where terms containing
more genes tend to have a more significant p-value. (D) Statistics on the number of different types of
leukemia proteins.

In addition, the distribution of the phosphorylated proteins in different types of
leukemia was also given in Figure 1D. We can see that each type of leukemia commonly has
their own specific proteins and few are the common proteins among them, so individual
functional analysis was also performed on the corresponding proteins of each leukemia
type (Supplementary Figure S1). The detailed information is shown in Supplementary
Table S1. Similarly, few common enriched pathways are observed among them, except
WP3888 (VEGFA-VEGFR2 Signaling Pathway) that is also enriched in Figure 1A, indicating
that it may play an important role in the progression of leukemia. From these results, we
can conclude that since functions of proteins with the different types of leukemia-related
phosphorylation sites are different, it is of more practical significance to construct the
prediction model for each specific type of leukemia.

Finally, we performed K-means clustering analysis on all the phosphorylation sites
of myelogenous leukemia. By using the K-means algorithm, all samples can be divided
into K clusters according to the distances between them. The optimal categorical K value
makes samples within one cluster be the closest connected and those across clusters having
with the largest distances. Here, each phosphorylation peptide with length of 201 was
transformed into a one-hot vector. As shown in Figure 2, the optimal categorical K value
is 3, indicating that there is still data variability within the dataset although they are all
associated with myelogenous leukemia. In addition, clustering analysis on S, T and Y
datasets respectively also given the same observation that each dataset can be clearly
classified into three clusters (Supplementary Figure S2). Because of the obvious variability
between samples, in process of the random division of training and testing sets, in order
to ensure the completeness of the data distribution, 90% of the data in each cluster were
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randomly extracted as training set and 10% of each cluster as the testing set. This random
selection was repeated 100 times to give a more reliable evaluation of model performance.

Figure 2. K-means clustering analysis. (A) Average entropy changes of different categories. (B) The
visualization of the clustered data.

2.2. The Position-Specific Conversation Profiles of the Phosphorylation Peptides

Neighboring residues are not equally important to the functional sites. Some are es-
sential for the proper structure and function of the proteins, whereas others can be readily
replaced [36]. In fact, for a given sequence fragment, the conservation varies from one position
to another and some residues with high conversation might have contribution to leukemia-
related phosphorylation site. So, the small-ranged amino acids around the phosphorylation
sites have been considered as the primary sequence features to represent protein sequence
information for PTMs sites prediction [37]. Thus, it is necessary to analyze the importance of
the neighboring positions around the leukemia-related phosphorylation sites.

The work of Nakariyakul et. al. has indicated that a protein domain is basically
between ten residues [38]. Here, for the position-specific conversation analysis, we set the
length of the phosphorylation segments as 21-nts, so each segment contains the middle
phosphorylation sites and its flanking of 10-nts on both up- and down-stream sides. Based
on the positive and negative samples, amino acids enrichment analysis was performed and
the graphical sequence logo (p < 0.05 by t-test) was generated by Two Sample Logo [39].
Figure 3A–D show residue position-specific conservation differences between positive and
negative sample for all sites, S, T and Y, respectively.

By means of parallel contrast, it obviously shows that distributions of the same residues
have a large enough difference among flanking positions. As described by Ding et al. [40],
same residues may carry different information during evolutionary history and a residue
in the conserved position usually shows stronger functional relevance than one in a non-
conserved position from a biological view. We found a high enrichment of Proline and
Tyrosine in all phosphorylation site data and the obvious deletion in negative samples.
While for Y phosphorylation sites, more glutamic acid, aspartic acid, alanine and tyrosine
exist in positive samples and arginine, lysine and leucine appear more frequently in
negative samples. In addition, by vertical contrast, a significant residue distribution
difference can also be observed between positive and negative samples. Especially for
the positive samples, proline is always more clustered after the phosphorylation sites.
However, there is no significant motif pattern in the negative samples.
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Figure 3. (A–D) The different position-specific distribution of amino acids between leukemia-related
phosphorylation sites and non-phosphorylation sites segments for All, Ser, Thr and Tyr peptides,
respectively. (E) The comparison between the motif learned by the deep CNN model and the known
motif of leukemia-related phosphorylation sites.

One of the distinctive advantages of the deep-learning model is the ability to automat-
ically extract predictive features from inputs during the model training [41]. We explored
features that were learned in our deep CNN by investigating the test sequences that acti-
vated the filters in the convolution layer. When the filter is slid over N-terminal sequence, it
functions as motif detector and becomes activated when certain position matches its prefer-
ence. By the fraction of filters activated at positions, we observed that the majority of filters
were activated when they convolved a continuous region including the positions from 17
to 25 in Y dataset, the positions from 30 to 39 in S dataset and the positions from 11 to 18 in
T dataset. These activation sequences were aligned to obtain the learned basis sequences
represented by the position weight matrix for deep-learning. The results show that the
discovered amino acid motifs revealed by deep CNN yield high-similarity shape to known
motifs for three classes datasets. We used WebLogo tool [42] to generate known amino
acid motif and discovered motif revealed by the CNN model of the Y dataset (Figure 3E).
Though Y dataset exhibits no significant difference between phosphorylation peptides and
non-phosphorylation ones by the position-specific conservation analysis, the similarity
between the two motifs is very high which also further validates the feasibility of the CNN
to automatically extract sequence feature information.

2.3. The Phosphorylation Peptide Length Optimization and Comparisons with Five
Machine-Learning Methods

Because of the spatially folded structures of proteins, the sequentially distant residues
may be in close proximity to the variant site in the spatial structure, which affect the
environmental information of the phosphorylation sites. Here, we used different phospho-
rylation peptide lengths to build prediction model and aimed to find the optimal peptide
length for S/T/Y phosphorylation sites, respectively. In fact, 10 different segments in n-site
units (n = 10, 20, . . . , 100) were utilized. Each fragment peptide contains intermediate
phosphorylation sites and n-site elements on both upstream and downstream sides. The
prediction performance of CNN models based on 10 different peptides lengths are shown
in Figure 4. We found that different lengths of phosphorylation peptides do affect the
performance of the models and the optimal peptide lengths for S, T and Y models are 141,
41 and 121, respectively.
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Figure 4. The performance of the models based on different phosphorylation peptide lengths. (A) The
MCC values of the models on ten phosphorylation peptides lengths. (B) The ACC values of the
models on ten phosphorylation peptides lengths.

In order to demonstrate the superiority of the CNN models, based on the optimal
peptide lengths for S, T and Y, other five machine-learning algorithms were also used to
construct the prediction models, including support vector machine (SVM), naive Bayes (NB),
K-nearest neighbors (KNN), random forest (RF) and eXtreme gradient boosting (XGBoost)
since these algorithms are commonly used in studies of phosphorylation site prediction.
Here, the CNN models can be implemented depending solely on protein primary sequences,
requiring no prior knowledge of the variants on sequences [43]. But machine-learning
methods cannot directly recognize sequences as input, so we used dictionary encoding to
ensure the uniformity of sequence features. Each residue in the phosphorylation peptides
is represented by an ordinal number, in which each of the 20 basic amino acids is assigned
a number from 1 to 20 [44]. Thus, each peptide is represented by a one-letter code and
transformed into an L-dimensional vector, where L is the length of the peptides.

In order to achieve convincing comparisons, the performance of each machine-learning
model was given by the average of 100 random selections of testing sets. The comparison
results of our method with other five methods are visually shown in Figure 5. All detailed
prediction results of the six methods are listed in Supplementary Table S2. We know that
traditional machine learning usually requires tedious feature engineering steps to obtain
accurate prediction results, while CNN is an end-to-end learning that does not require
hand-designed rules after data input, and CNN can learn the rules by optimizing the loss
function to mine the potential features of the data as much as possible. On average, our
model shows the significant improvement for predicting phosphorylation sites for the
current leukemia datasets. We can see that in terms of ACC and MCC, the CNN model
yields the best performance with the average prediction accuracies of 88.89%, 80.87% and
77.39% for S, T and Y, respectively.
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Figure 5. The comparisons between CNN and five machine-learning methods based on protein
sequences. (A) The ACC values of CNN and five machine-learning methods; (B) The MCC values of
CNN and five machine-learning methods.

2.4. Construction of the Final Predict Models

Cross-validation test can reduce the contingency caused by the single division of
dataset and improve generalization ability. Based on the optimal peptide lengths, the final
phosphorylation site prediction models were constructed for S, T and Y respectively. Based
on the whole dataset,10-fold cross validation was used to achieve the optimal parameters
of CNN models, as shown in Table 1.

Table 1. The optimal parameters of CNN models by 10-fold cross validation.

Phosphorylation Length Kernel_size Filters Hidden_dims Epochs

Ser 141 9 50 200 100
Tyr 121 9 100 50 80
Thr 41 7 200 100 40

Table 2 shows the prediction results of the three final CNN models by 10-fold cross-
validation. The proposed models still yield promising performance with ACC of 88.89%,
80.87% and 77.39% for S, T and Y models. In addition, we drew the learning curves
and ROC curves of the final models, as shown in Figure 6. Through the loss curves of
Figure 6 (S, T and Y) in Figure 6 on the left column, we can see that the model is reliable
and does not exhibit obvious over-fitting. It can be also observed that the loss no longer
decreases and the model tends to converge. Moreover, the AUC values are 0.8784, 0.8328
and 0.7716 respectively for S, T and Y models in Figure 6 on the right column, which
means a satisfactory performance by the final model. In addition, it should be noted that
S model with the largest dataset yields the best performance, so for model-constructing,
more samples tend to give a better prediction.

Table 2. The average prediction results of final CNN model by 10-fold cross-validation.

Phosphorylation SE SP ACC AUC MCC

Ser 0.8461 0.9318 0.8889 0.8862 0.7779
Tyr 0.6552 0.8927 0.7739 0.7674 0.5527
Thr 0.7695 0.8479 0.8087 0.8075 0.6195
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Figure 6. The learning curve and ROC curve of final diagnosis models. (S, T and Y) on the left column
show the learning curves of the final model of S, T and Y datasets respectively; (S, T and Y) on the
right column show the ROC curves of the final model of S, T and Y datasets respectively.

Finally, the specificity of the final models was further tested. Since amount of remaining
negative samples are not included in the final prediction model, they can be used as the
independent negatives. The number of independent negative samples for S, T and Y are
17,207, 25,340 and 18,149, respectively and our models give the prediction accuracy of 0.8905,
0.8009 and 0.8484, respectively, which indicates that about 10–20% of them are predicted as
the phosphorylation sites. However, it is reasonable that the potential phosphorylated sites
from the current negatives would be probably discovered in the future.

2.5. Transfer-Learning on Two Other Small Size Datasets

Currently, very limited phosphorylation sites for T-cell and lymphocytic leukemia
are available, so the model and the prediction parameters cannot be fully trained and
optimized based on such small size datasets. Based on the large S, T and Y datasets of
myelogenous, we have achieved three reliable CNN models, as shown in Table 2. Therefore,
by common sharing the optimal parameters shown in Table 1, the prediction models were
also constructed for T-cell and lymphocytic leukemia, respectively. Except the smallest
datasets of T and Y sites of T-cell leukemia that were validated by leave-one-out testing,
other models were validated by 10-fold cross validation. The average prediction results are
presented in Table 3. We can see that all the six models yield the promising results. Among
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them, five models achieve the high SE of over 90%, indicating that for different leukemia
classes, the transfer-learning based CNN could be an effective strategy for leukemia-related
phosphorylation site prediction.

Table 3. Prediction results of transfer-learning applied to T-cell leukemia data and Lymphocytic
leukemia data. Validation of some data sets using the leave-one-out (Loo) method due to the volume
of data.

Class SE SP ACC MCC

T-cell
Ser 0.8857 0.9737 0.9305 0.8637
Tyr 0.9762 0.9524 0.9643 0.9288
Thr 1.0000 0.8800 0.9400 0.8864

Lymphocytic
Ser 0.9210 0.9508 0.9359 0.8719
Tyr 0.7801 0.9003 0.8289 0.6572
Thr 1.0000 0.9919 0.9960 0.9920

3. Materials and Methods
3.1. Datasets

Protein phosphorylation data for Homo sapiens were collected from PhosphositePlus [26].
PhosphositePlus is an open, dynamic, continuously curated and highly interactive systems
biology resource for studying experimentally observed PTMs in the regulation of biological
processes. From PhosphositePlus, we initially used multiple keywords of “Homo sapiens”,
“phosphorylation” and “leukemia” to extract experimentally identified phosphorylation
sites. In this way, 30,819 phosphorylation sites were achieved from 8011 proteins, including
27,406 myelogenous leukemia phosphorylation sites, 465 T-cell leukemia phosphorylation
sites and 2944 lymphocytic leukemia phosphorylation sites, respectively.

Protein sequence information are from The UCSC Genome Browser Database [45].
Reports have shown that N-terminal residues appear to provide the targeting information
for protein functional expression. Some effectors, e. g. PopD in Pseudomonas aeruginosa [46],
only depends on the first ~50 residues to be secreted or trans-located and the translocation
signals in some Yops are located in the first 50–100 residues [47]. Due to the spatially folded
structure of proteins makes it possible for distant residues in the protein sequences to affect
the environmental information of the variant site. Therefore, protein functional expression
may require about 100 residues around the functional sites, so we selected peptides of 201-
length with sequence which phosphorylation sites in the middle surrounded by flanking
100 residues on each side. For terminal amino acid site, where the number of flanking
amino acid is less than 100, appropriate number of dummy residue ‘X’ was padded to
complete the peptide. The convolutional feature map of the same size can be obtained after
inputting the complementary equal-length data, which can then be input into the fully
connected layer for further processing of the identified spread-out vectors to achieve the
purpose of integrating information.

CD-HIT stands for “cluster database at high identity with tolerance”. The program
takes a fasta format sequence database as input and produces a set of ’non-redundant’
representative sequences as output. Since redundant sequences would lead to overfitting,
we used cd-hit [48] to remove sequence redundancy. Entering the fasta format sequence
files with identity threshold of 0.7, the redundant and similar sequences are removed by the
method of sequence comparison and clustering and finally the non-redundant sequence
files are obtained. For three leukemia classes, the details about the phosphorylation site
data can be seen in Table 4.
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Table 4. Data Statistics.

Classes Myelogenous T-Cell Leukemia Lymphocytic

Sites Proteins Sites Proteins Sites Proteins
Ser 16,067 5520 385 275 645 349
Tyr 7518 3837 52 42s 2002 1206
Thr 3821 2393 28 27 297 216

Total 27,406 8005 465 314 2944 1548

For negative samples, we extracted the S, T and Y residues data that were not ex-
perimentally confirmed from the 8011 proteins that contain experimentally determined
phosphorylation sites. After removing redundancy with the peptide length of 201, the
number of negative samples is much larger than that of the positive ones, so the equivalent
number of negative samples were randomly extracted.

3.2. Convolutional Neural Network and Transfer-Learning

Like traditional neural network architecture, CNN transmits information from the
input to the output layer by layer [49]. CNN is a multi-layer perceptron that is composed
of convolution layers, rectification layers, pooling layers and fully connected layers. Con-
volution layers are used to extract different features of input by using back-propagation
algorithm and the rectification layers make the output of the convolution layer become
nonlinear mapping. Then pooling layers divide the features into multiple regions and
take the maximum or average value to obtain new features at small scales for preventing
overfitting. Finally, fully connected layers combine local features into global features and
calculate scores. By using back-propagation algorithm, convolution layers in CNNs achieve
self-learning and directly extracts the features from the sequence information, which skips
steps of feature extraction from the sequence objects, and feature selection for determining
effective features.

Transfer-learning means the ability of a system to recognize and apply knowledge
and skills learned in previous domains/tasks to novel domains/tasks, which is one of the
major types in machine-learning. In general terms, transfer-learning is commonly used to
find similarities between existing knowledge and new knowledge, and then use existing
knowledge to learn the new knowledge [50]. Transfer- learning can be classified according
to the learning method as instance-based migration, feature-based migration and shared
parameter-based migration. There are various subtypes of leukemia depending on the
cell type, but they are all malignant clones of hematopoietic stem cells that affect normal
physiological mechanisms. Here, we adopted shared parameter-based transfer-learning
by using a deep learning pre-model trained on myelogenous leukemia phosphorylation
site dataset which have sufficient samples, so as to train T-cell and lymphocytic leukemia-
related phosphorylation site prediction models

Our pre-model of CNN architecture is shown in Figure 7. The input is the raw sequence
peptides. The number of filters in the convolutional layer is determined by the optimization
results of models. After convolution layer, the rectified linear units are used to output the
filter scanning results that are higher than the thresholds. Max pooling is applied in the
pooling layer to reduce variance and increase translational invariance by computing the
maximum value of a feature over a region. All the pooled results are merged into one vector,
input into the fully connected layer and batch the vector. To avoid overfitting, a dropout
layer is employed behind the fully connected layer. Finally, sigmoid function is used to
predict the probability of phosphorylation sites in the output layer. Here we used S dataset
as an example to illustrate how CNN architecture works. The network accepts features of
proteins of 141 amino acids as input. The first convolutional layer performs 50 convolutions
with 20 × 9 filter on the dictionary encoding matrix, producing 50 feature maps of size
1 × 133. The second pooling layer performs 1 × 2 spatial pooling of each feature map using
the max value, producing 50 feature maps of size 1 × 66. All the pooling results are joined
together into one vector by flattening. The hidden features in this vector are fully connected
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to a hidden layer, which are fully connected to 2 output nodes to predict the probability
of leukemia-related phosphorylation site and non-leukemia-related phosphorylation site.
The output node uses SoftMax function as activation function, whereas all the nodes in the
other layers use rectified linear function as activation function.

Figure 7. The architecture of deep convolutional neural network for leukemia-related phosphoryla-
tion sites prediction.

After determining the pre-model, the parameter settings are shared with the small
sample dataset and all layers (including convolutional layers) retrained on the small sample
datasets. The new model is fine-tuned by validation method to fit the T-cell leukemia-
related and lymphocytic leukemia-related phosphorylation data. In this work, we aim to
use the simple model to avoid manual feature extraction, the overfitting problem caused
by complex models and improve the suitability of deep- learning models for small sample
datasets.

3.3. Traditional Machine-Learning Methods

Five traditional machine-learning methods were used to compare with our new CNN
model, including RF, XGB, NB, KNN and SVM. SVM, proposed by Vapnik [51], is con-
sidered as one of the most accurate tools available. The basic idea of SVM is to find a
hyperplane which separates different groups of feature vectors with a maximum margin.
SVM chooses kernel trick which casts the data into a higher dimensional space where the
data can be linearly separable. NB is a statistical classification method, which is a class of
algorithms that uses knowledge of probability statistics for classification [52]. The core idea
of KNN is to calculate the distance between the samples in the test set and all the samples
in the training set according to the classification of the samples in the training set, and select
the results of the first K test samples that are closest to the training samples according to the
set K value, and the category in which most of the training samples are in the result is the
category of this test sample [53]. RF is operated by constructing multitudes of decision trees
at training time and outputting the mode of classes of individual trees [54]. The method
unites bagging idea and the random selection of features in order to establish a collection
of decision trees with controlled variation [55]. XGBoost is an integrated learning method
with CART-based classifiers [56]. Unlike random forests that assign the same voting weight
to each decision tree, the generation of the next decision tree in the XGBoost algorithm
is correlated with the training and prediction of the previous decision tree (by assigning
higher learning weights to samples with lower accuracy in the previous round of decision
tree training to improve the model accuracy).

3.4. Model Validation and Evaluation

Four effective performance metrics including sensitivity (SE), specificity (SP), accuracy
(ACC) and Matthew’s correlation coefficient (MCC) were used for performance assessment.
SE, SP, and ACC indicate the predictive success rates on positive, negative, and overall
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samples, respectively. MCC accounts for true and false positives and negatives and is
usually considered a balanced measure that can be used even if the classes are of very
different sizes. These metrics are defined as follows:

SE = TP/(TP + FN) (1)

SP = TN/(TN + FP) (2)

ACC = (TP + TN)/(TP + FP + FN + TN) (3)

MCC =
TP × TN − FP × FN√

(TP + FN) × (TP + FP) × (TN + FP) × (TN + FN)
(4)

where TP, FP, TN and FN are true positive, false positive, true negative and false negative,
respectively. In addition, receiver operating characteristic (ROC) curve was also employed
to assess the performance of prediction models. A ROC curve is a plot of true-positive
rate (SE) versus false-positive rate (1-SP). A classifier can get a true-positive rate and a
false-positive rate point pair based on its performance on the test sample, and this point
pair can be mapped to a point on the ROC plane. The ROC curve is an intuitive way to
indicate the performance of a classifier, and the area under the curve (AUC) is used to
achieve a value to mark the performance of a classifier. AUC ranges from 0 to 1. Typically,
larger AUC indicates better performance of the model, AUC values of 0.5 represents a
random classifier.

4. Conclusions

Studies have indicated that many diseases are closely related with abnormal phos-
phorylation. Therefore, the large-scale identification of phosphorylation sites has potential
applications in disease treatment and drug design. But existing wet-lab technologies
for targeting phosphorylation sites are costly and time consuming. Thus, computational
algorithms can efficiently accelerate the annotation of unknown phosphorylation sites.
Numerous machine learning-based methods have been implemented for phosphorylation
sites prediction. However, no method focuses on specific disease-associated phosphory-
lation sites prediction. We know that disease pathogenesis is specific, so we analyzed
three leukemia subtypes to achieve the effective computational predictions of leukemia-
related phosphorylation sites, so as to provide reference information for predicting potential
phosphorylation sites and leukemia treatments.

When using machine-learning methods to solve prediction problems from biological
sequences, we usually face challenges in selecting appropriate machine-learning algorithms,
extracting effective features and carrying out reasonable optimization. Especially feature
extraction is a key step that mainly determines the prediction performance. As a cutting-
edge machine-learning method, deep learning has the ability to automatically discover
complex representations of phosphorylation patterns from the raw sequences, and hence
it provides a powerful tool for improvement of leukemia-related phosphorylation site
prediction.

In this paper, a new transfer-learning-based deep CNN was proposed for predicting
leukemia-related phosphorylation sites from protein primary sequences. Focusing on three
types of leukemia, we firstly analyzed the gene pathways of the phosphorylated proteins
with leukemia-related phosphorylation sites, revealing that the pathways of these genes
are mainly related to cellular morphological changes, especially WP3888 (VEGFA-VEGFR2
Signaling Pathway) may play an important role in the progression of leukemia. The
distribution analysis on the phosphorylated proteins in three different types of leukemia
shows that there are few sharing proteins between them, so it is of practical significance
to construct the prediction model for each specific type of leukemia. K-means clustering
analysis on all the phosphorylation sites of myelogenous leukemia reveals the obvious
variability between samples, so in process of the random division of training and testing
sets, samples in all clusters should be partly extracted to ensure the completeness of the
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data distribution. Meanwhile, the position-specific conservation difference analysis was
performed between positive and negative sample for all, S, T and Y sites respectively and
the amino acid motifs revealed by CNN have a very high-similarity shape to the known
motifs which validates the feasibility of the CNN to automatically extract sequence feature
information.

Based on the largest S/T/Y datasets of myelogenous-related phosphorylation sites,
the optimal peptide lengths for S, T and Y models were achieved and they are 141, 41 and
121, respectively. By comparing with other five machine-learning methods, CNN yields
the best performance on 100 times testing. By 10-fold cross validation, the final models
for S/T/Y phosphorylation sites were achieved and give the AUC values of 0.8784, 0.8328
and 0.7716 for S, T and Y, respectively. Finally, the optimal parameter of the final S/T/Y
myelogenous-related models were transferred to construct the prediction models for the
small datasets of lymphocytic and T-cell. The satisfactory prediction results prove that the
transfer-learning based CNN is an effective strategy for leukemia-related phosphorylation
site prediction.

We expect that with the accumulation of newly discovered leukemia-related phospho-
rylation sites data, the models constructed in this work can be further verified and will be a
useful supplementary tool for identifying leukemia-related phosphorylation sites.
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