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Abstract: Adhesion and colonization of host cells by pathogenic bacteria depend on protein–protein
interactions (PPIs). These interactions are interesting from the pharmacological point of view since
new molecules that inhibit host-pathogen PPIs would act as new antimicrobials. Most of these
interactions are discovered using high-throughput methods that may display a high false positive
rate. The absence of curation of these databases can make the available data unreliable. To address
this issue, a comprehensive filtering process was developed to obtain a reliable list of domains and
motifs that participate in PPIs between bacteria and human cells. From a structural point of view,
our analysis revealed that human proteins involved in the interactions are rich in alpha helix and
disordered regions and poorer in beta structure. Disordered regions in human proteins harbor short
sequence motifs that are specifically recognized by certain domains in pathogenic proteins. The
most relevant domain–domain interactions were validated by AlphaFold, showing that a proper
analysis of host-pathogen PPI databases can reveal structural conserved patterns. Domain–motif
interactions, on the contrary, were more difficult to validate, since unstructured regions were involved,
where AlphaFold could not make a good prediction. Moreover, these interactions are also likely
accommodated by post-translational modifications, especially phosphorylation, which can potentially
occur in 25–50% of host proteins. Hence, while common structural patterns are involved in host–
pathogen PPIs and can be retrieved from available databases, more information is required to properly
infer the full interactome. By resolving these issues, and in combination with new prediction tools like
Alphafold, new classes of antimicrobials could be discovered from a more detailed understanding of
these interactions.

Keywords: pathogen; host; protein interaction; domain; motif; Alphafold

1. Introduction

Protein–protein interactions (PPIs) play a fundamental role in most biological pro-
cesses. Infectious diseases are no exception, as pathogens rely on PPIs to attach to and
infect host cells [1–3]. In fact, the fitness defect resulting from the deletion of a gene in the
pathogen depends on the number of interactions that the corresponding protein can exert
with the host [4]. Hence, the analysis of central proteins in the host–pathogen interactome is
a promising strategy to identify new targets for antibiotic drug design [5–8]. In this context,
several databases have compiled experimental evidence of host–pathogen PPIs, involving
viruses, bacteria, and fungi [9–13]. Most of these interactions involve pathogenic proteins
with human targets. However, such databases also contain many spurious interactions,
due to the high false positive rate from high-throughput assays [14–16]. This is a critical
issue, as almost all PPI prediction algorithms are trained on experimentally validated data.

Even more important, is a proper understanding of the conserved structural patterns
in host–pathogen PPIs. A deeper study of these interactions, i.e., the prediction of the three-
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dimensional structures of the interacting proteins, will allow us to characterize pathogenesis
at the molecular level and identify the most promising pharmacological targets.

Protein domains are regions that can fold, function, and evolve independently and are
used as building blocks that can be combined to build proteins with different functions. Var-
ious databases such as iPfam [17], 3did [18], or the Database of Protein Domain Interactions
(DOMINE) [19] contain information on protein domains and domain interactions, mostly
extracted from experimental evidence such as structures deposited in the Protein Data
Bank (PDB) [20]. Since most proteins contain multiple domains, the interaction between
two proteins likely involves the contact of two or more domains. In fact, PPIs are thought
to be primarily based on domain interactions [21], but there are thousands of possible
combinations and not all of them are present in known PPIs. Hence, studying domain
associations is an interesting approach to gain insight into the structural details behind
protein interactions.

Although domains are important in characterizing PPIs, many of the interactions occur
between domains and unstructured, more discrete elements, known as motifs. Motifs are
short (typically 3–10 residues) conserved and regulatory protein components that provide
low-affinity interaction interfaces, and are usually found in intrinsically disordered regions
(IDRs) [22]. These components are often specialized for protein-binding functions and
have a central role in cell signaling and protein localization [23]. Due to their short length,
motifs are often degenerate, making motif prediction unreliable in most cases. Only a few
classes of motifs have been defined thanks to experimental evidence. These motifs are
included in databases such as Eukaryotic Linear Mofif (ELM) Database [24], which contains
hundreds of annotated motifs stored as regular expressions (RegExp) to help researchers
predict biologically relevant motifs. Such motifs interact with protein domains to mediate
key cellular processes, including phosphorylation, glycosylation, and ubiquitination.

Here, a new filtering pipeline was created to screen PPIs between host and pathogenic
bacteria (hereafter host-pathogen PPIs) by considering enriched protein domains and
motifs to identify central interactions for pathogenesis. The refined list of domain–domain
and domain–motif interactions enriched in host–pathogen PPIs shows that the number
of statistically relevant interactions in these datasets is limited, suggesting that more data
is required to define the host–pathogen interactome. Notwithstanding, several structural
patterns can be obtained from current databases that may help to pave the way for the
development of new antimicrobials.

2. Results and Discussion

Our goal was to retrieve the relevant structural information from host–pathogen PPI
databases, minimizing noise interference. The Pathogen-Host Interaction Search Tool
(PHISTO) database currently represents the most comprehensive repository of human–
bacterial interactions [10]. For this reason, the domains and motifs present in the PHISTO
database were retrieved and analyzed for relevant structural elements and to understand
how these elements interact with each other.

To find domains and motifs involved in host–pathogen PPIs, 9.333 PPIs between
bacteria and human proteins were retrieved from the PHISTO database, 9.027 of which
were unique interactions. These interactions are formed by 2.716 bacterial proteins and
3.737 human proteins. Here, InterProScan [25] was used to identify domains from the
protein sequences. Among these interactions, 2.539 unique domains were identified in
human proteins and 1.898 in pathogen proteins. Then, the EBI-Alphafold database [26]
of protein structures was used to identify disordered regions in human proteins, and the
RegEx definition of motifs in the ELM database [24] was used to detect motifs. Intrinsically
disordered regions (IDRs) were identified in 2.907 out of 3.519 human proteins and detected
ELM motifs in 2.860 of these proteins. These results were used to build a pipeline and detect
enriched domains, motifs, domain–domain interactions, and domain–motif interactions
(Figure 1). In the following sections, enriched instances in the PHISTO database were used
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to investigate their relevance to the infection process. Additional details are provided in
the Methods section.
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Figure 1. Workflow followed to retrieve HP-PPIs from the PHISTO database considering enriched
motifs, domains, domain–domain and domain–motif associations, and to analyze the interface regions.

2.1. Enriched Domains in Host–Pathogen PPIs

A total of 48 host and 69 pathogen domains (Supplementary Materials) were found
to be enriched in the PHISTO database, being the plectin repeat domain (IPR001101)
the most enriched one, with an observed frequency 21.69 times higher than expected
(Figure 2A). The rest of the overrepresented human domains were observed from 2.49 to
4.77 times their expected frequencies. Plectin has a central role in the cell cytoskeleton and
is involved in crosslinking of intermediate filaments [27]. It provides linkage between the
keratin filaments inside the cell and the laminins in the extracellular matrix. Cytoskeleton
remodeling is a central process in bacterial infections that allows internalization and
dissemination of bacteria. For example, in Acinetobacter baumanii, several virulence factors
(lipoproteins, OmpA, and Lon protease) were found to interact with cytoskeleton proteins,
including plectin [28]. Enriched Gene Ontology (GO) terms for human proteins include
cell adhesion and glycosylation, both relevant to pathogen adherence to the cell matrix
(Figure 2A). Regarding the pathogen domains, a similar pattern was observed (Figure 2B).
Two domains were highly enriched: IPR025875, a leucine-rich repeat, and IPR019931, the
LPXTG cell wall anchor domain. Other domains showed enrichment frequencies from 3 to
7 times higher than expected. Leucine-rich repeats are found in bacterial surface proteins
and are associated with PPIs, such as internalins in Listeria monocytogenes, used to invade
mammalian cells via cadherins transmembrane proteins [29]. LPXTG cell wall anchor
domains are surface proteins commonly found in Gram-positive bacteria, including pilus,
fimbria, and adhesins [30]. A GO enrichment analysis of the domains retrieved shows
relevant functions related to bacterial infection, such as cell wall biogenesis and siderophore
biosynthesis (Figure 2B).
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interacting proteins. 

Figure 2. Analysis of enriched domains in host-pathogen PPIs. (A) Bar plot representation of the 10 most
enriched domains for human proteins (left). The tridimensional structure of the most enriched human
domain, IPR001101, is displayed. Representative GO enriched terms for host domains are displayed on
the right. (B) Bar plot representation of the 10 most enriched observed domains for bacterial proteins
(left). The tridimensional structure of the two most enriched bacterial domains, IPR025875 and IPR019931,
are also displayed. Representative GO enriched terms for bacterial domains are displayed on the right.
In all cases, the GO term frequency is displayed on the x-axis and the GO term on the y-axis. Colors
represent adjusted p-values for each GO term as calculated by dcGO [31].

Additionally, the human proteins involved in host–pathogen PPIs were inspected for
specific structural and physicochemical properties. For this, protein sequences were inspected
with Clever Machine [32], an algorithm used to discriminate between two sets of proteins
using physicochemical properties encoded in their sequences. The human proteins involved
in host–pathogen PPIs were compared with five random sets of human proteins with the same
sample size and similar size distribution (Figure 3A). The results show that human proteins
involved in host–pathogen PPIs are specifically enriched in disordered regions and rich in
alpha helix, while they are depleted in beta-sheet and aggregation-prone regions. The results
suggest that human proteins targeted by pathogens have singular structural features. The
results obtained are not biased for the propensity scales used, as different scales give similar
results (Figure 3B). These proteins are also depleted in membrane proteins and enriched in
nucleic acid-binding proteins, which could suggest an enrichment in specific functions, e.g.,
transcription factors or ribonucleoprotein interacting proteins.

2.2. Domain–Domain Associations in Host–Pathogen PPIs

As many PPIs are driven by domain interactions, certain domain associations might
be privileged in host–pathogen PPIs. To do this, the frequency of all occurring domain–
domain (DD) associations were calculated and compared with the expected frequency if
associations would occur at random. The 10 most enriched DD associations are depicted
in Figure 4A. Most of the observed 149 enriched domain associations occur in one or two
different interactions while 21 of them were counted in three or more different interactions.
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A network of all DD associations is displayed in Figure 5B, with the 21 most frequent
interactions highlighted and listed in Table 1 and Supplementary Materials.

2.3. Domain–Motif Associations in Host–Pathogen PPIs

Many processes in the cell, such as phosphorylation or ubiquitination, are mediated
by transient PPIs that occur via domain–motif (DM) interactions. As human proteins
involved in host–pathogen PPIs contain large, disordered regions, these proteins were
further scanned for enriched motifs. Among the human proteins involved in host–pathogen
PPIs, 29 enriched motifs were found (Figure 5A). The ratio between observed and expected
frequencies (fobs/fexp) of the enriched motifs were less marked than domains. The most
enriched motifs were the WDR5-binding motif (ELM000364) and the COP1 E3 ligase-
binding degron motif, involved in histone methylation and ubiquitination, respectively.

A total of 75 enriched domain–motif (DM) associations were found in the database.
(Figure 5B, Supplementary Materials). Among the most overrepresented combinations
(Figure 6) were the ClpR domain (IPR004176), an LRR-containing E3 ligase (IPR032674),
and a PurM-like domain. The Clp domain is related to the bacterial Clp/Hsp100 family of
chaperones and has a major role in biofilm formation and virulence, facilitating the initial
attachment of bacteria to surfaces [33]. Additionally, LRR-containing ligases are secreted
by type III effectors [34]. Finally, PurM domains are related to dehydratase enzymes,
with some evidence linked to virulence [35]. The network representation of the motifs
and domains (Figure 5C) shows that most of the connections involve only a few motifs,
meaning that each motif can interact with several domains.

Table 1. InterPro identifiers and short descriptions of the host and pathogenic enriched domains,
depicted in Figure 5B.

Network Identifier
(Host)

InterPro Identifier
(Host) Description Network Identifier

(Pathogen)
InterPro Identifier

(Pathogen) Description

A IPR001715
Calponin

homology domain
1 IPR014016 UvrD-like helicase, ATP-binding domain
2 IPR014017 UvrD-like DNA helicase, C-terminal

B IPR000504 RNA recognition
motif domain

3 IPR003343 Bacterial Ig-like domain, group 2
4 IPR032781 ABC-transporter extension domain
5 IPR003344 Big-1 domain

6 IPR002314 Aminoacyl-tRNA synthetase, class II
(G/P/S/T)

7 IPR018392 LysM domain

C IPR003961 Fibronectin type III 8 IPR019931 LPXTG cell wall anchor domain

D IPR001245 S-T/Y-protein
kinase 9 IPR010918 PurM-like, C-terminal domain

E IPR000626 Ubiquitin-like
domain 10 IPR029487 Novel E3 ligase domain

F IPR001781 Zinc finger,
LIM-type 11 IPR006680 Amidohydrolase-related

G IPR001007 VWFC domain
12 IPR001036 Acriflavin resistance protein
13 IPR007642 RNA polymerase Rpb2, domain 2

H IPR001680 WD40 repeat

14 IPR004161 Translation elongation factor EFTu-like, domain
2

15 IPR005475 Transketolase-like, pyrimidine-binding domain
16 IPR033248 Transketolase, C-terminal
17 IPR005474 Transketolase, N-terminal
18 IPR000795 Translational (tr)-type GTP-binding domain

I IPR001881
EGF-like

calcium-binding
domain

12 IPR001036 Acriflavin resistance protein

J IPR000157
Toll/interleukin-1
receptor homology

(TIR) domain

19 IPR001029 Flagellin, N-terminal domain
20 IPR002423 Chaperonin Cpn60/GroEL/TCP-1 family
21 IPR001702 Porin, Gram-negative type

K IPR000488 Death domain 19 IPR001029 Flagellin, N-terminal domain
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Figure 3. Physicochemical and structural properties of human proteins participating in host–pathogen
interactions. (A) Boxplot representation of major properties for human proteins in PPIs compared to
five groups of human proteins selected by random picking from the human proteome. (B) Overall
representation of all scales used in CleverMachine for evaluating features in proteins. For a list of all
properties evaluated, see [32]. Statistical comparisons were made using the Mann-Whitney U-test.
**** p ≤ 0.0001.

Motifs are susceptible to modulation by post-translational modifications, which can
notably modify the interactions. Hence, we investigated whether the motifs present in
DM associations could be modified. We used the MusiteDeep [36] tool that uses deep
learning to predict post-translational modifications in proteins. As expected, the motifs can
be heavily modified (Figure 6), particularly motifs ELME000136 (Group IV WW substrates),
ELME000155 (SH3-binding motif), and ELME000159 (MAPK phosphorylation site). These
motifs are also susceptible to O-linked glycosylation, particularly ELME000155.

2.4. Structural Analysis of DD and DM Associations

From the 21 enriched DD and 75 DM interactions, representative complexes were
modeled using AlphaFold Multimer [37,38]. We restricted the cases where the total length
of the proteins of the interaction was lower than 1.500 residues. Proteins with low confi-
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dence regions (pLDDT score < 0.5) above 10% were filtered out. Using these constraints,
15 representative DD and 27 DM complexes were predicted. From 15 DD complexes, 5 of
them had pTM scores above 0.5: fusA-E9KL35 (pTM score = 0.75), fusA-RACK1 (pTM score
= 0.65), sspH2-UBA52 (pTM score = 0.62), ipaH9.8-UBA52 (pTM score = 0.58), tktA-RACK1
(pTM score = 0.57). In all cases, the associated domains were found in close proximity
according to Alphafold predictions, suggesting that our pipeline correctly identifies DD
associations with high confidence (Figure 7).Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 6 of 16 
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Figure 4. Analysis of domain–domain associations. (A) Bar graph representation of the 10 most
enriched DD associations. (B) Network representation of the DD associations in the PHISTO dataset.
Interactions highlighted in dark gray represent the enriched DD associations present in at least three
interactions. Host proteins are identified by letters and bacterial proteins by numbers. More details
on these proteins can be found in Table 1.
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Figure 5. Analysis of enriched motifs and domain–motif associations. (A) Bar plot representation
of the 10 most enriched motifs and (B) domain-motif combinations. (C) Network representation of
domain–motif associations. Domains are colored in blue and motifs in green.
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Figure 6. Post-translational modifications in enriched motifs. The sequences were inspected using
MusiteDeep [36] and modifications were reported as the percentage of proteins containing a given
modification for each motif.

The validation of DM interactions was more challenging. As motifs are located in
disordered regions, our threshold for protein structure quality (less than 10% of residues
with pLDDT score < 0.5) removed more than 75% of the total entries. From the 27 PPIs
containing a DM association, the only accurate models correspond to yopM-ABHD17A
(pTM score = 0.62), mtaD-HADHA (pTM score = 0.61), yopM-IGHG1 (pTM score = 0.56),
and tuf-ENKD1 (pTM score = 0.55). In all cases, the motifs were located in highly flexible
regions and not always in close proximity to the domain (Figure 8). Only yopM-IGHG1 had
the domain and motif in close contact, probably because the motif in IGHG1 was included
in a loop with restricted mobility. Hence, the presence of disordered regions is a clear
limitation in predicting interactions by Alphafold Multimer. Despite not being in contact
with the structures predicted, the high flexibility would still allow transient interactions to
happen. Moreover, post-translational modifications can also have a role here, making the
prediction of MD interactions even more challenging.

2.5. Virulence Factors with Ubiquitin–Protein Ligase Activity as a Case Example

We decided to analyze in more detail the complexes between IpaH and sspH2 with
ubiquitin UBA52. These interactions involve the association of the ubiquitin domain in
UBA52 with the catalytic domain of ubiquitin–protein ligase E3, both in IpaH and sspH2.
The structure of IpaH and sspH2 is similar, with a ubiquitin–protein ligase domain and
several leucine-rich repeats except for the additional domain at the N-terminus of sspH2.
The ubiquitin ligase activity of these proteins is most likely not restricted to UBA52. In fact,
the interaction between IpaH and UBC is also described in PHISTO and, when inspected
with Alphafold, both proteins can potentially interact with other forms of ubiquitin, such
as polyubiquitin B.

To analyze the degree of conservation of the interacting regions, we use Consurf [39].
The analysis shows that the interface regions of both domains are more conserved than the
rest of the protein (Figure 9A). This suggests that the interaction was correctly predicted
since the interfaces of the complexes are usually more conserved than the rest of the
surface [40]. The interacting residues can be located in three main regions, including
an electrostatic axis, that contributes the most to the energy binding, and a polar and
hydrophobic groove that modulates binding (Figure 9B). Indeed, the interfaces detected
in human-binding partners correspond to interfaces predicted in other human–human
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interactions already described. These results suggest that the interactions detected by
our pipelines are probably real and correspond to some kind of interface mimicry by
pathogens [41].
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3. Materials and Methods
3.1. Databases

Host–pathogen PPIs were retrieved from the PHISTO database (accessed 11 Febru-
ary 2022) [10] by accessing the web platform, using the “Browser” option and selecting
“Bacteria” as the pathogen type and “All” on the family field, and finally, downloading the
table containing the 9.333 HP-PPIs from which 9.027 represent unique interactions. The
sequences of all the pathogen and human proteins were retrieved in Uniprot using the
Uniprot ID mapper tool. The human proteome, as well as the proteomes of Yersinia pestis
(UP000000815), Bacillus anthracis (UP000000594), and Francisella tularensis (UP000001174),
were downloaded from Uniprot Proteomes in FASTA format.

3.2. Domain and Motif Scanning

InterProScan v5.56 [25] was run locally to locate protein domains for all the pathogen
and human proteins. InterProScan implements the domain prediction from multiple
analyses, including PANTHER, Pfam, and SUPERFAMILY. A simple bash script (inter-
pro_to_pfam.sh) was used to iterate through all the FASTA files and select only the Pfam
records, including the InterProScan identifier, the region where the domain is located
(positions of the first and last residue), and a short description of the protein domain.

The list of ELM classes was downloaded in TSV format from the ELM database (ac-
cessed 21 February 2022) [24]. This list contains the ELM accessions and the regular expres-
sions’ patterns for each class. As the motifs are usually found in IDRs, the prediction of these
regions will define the motif search space. Alphafold pLDDT score was used as a disorder
predictor [42]. The per-residue surface accessibility scores for all the human proteins based
on the Alphafold structure predictions were retrieved from previous calculations by Bálint
Mészáros and Norman Davey (https://github.com/normandavey/ProcessedAlphafold,
accessed on 21 February 2022). A cut-off value higher than 0.55 was used to define whether
a residue belongs to an IDR. A Python script (host_motifs.py) was built to select the dis-
ordered regions for each human protein given the per-residue surface accessibility scores,
picking regions with a minimum length of 5 residues. The IDR regions for every human
protein were stored in separate files. The same script was used to fetch all the motifs con-
tained in IDRs for each human protein. The script searches for ELM patterns in disordered
regions, as previously identified, and retrieves the positions of the matches.

3.3. Domain–Domain (DD) and Domain–Motif (DM) Interactions

DD and DM combinations were obtained by a brute force approach using Python
(clean_phisto.py). The idea behind this approach was to iterate through every single PPI
contained in the PHISTO database and generate all the possible domain–motif and domain–
domain combinations. Then, all these possible combinations were processed to filter out
the non-significant interactions by statistical analysis.

3.4. Domain and Motif Enrichment Analysis

To find which observed motifs, domains, DD, and DM combinations were enriched in
the PHISTO database, their relative frequencies (observed frequencies) were calculated and
compared to the relative frequencies that would result from random sampling (expected
frequencies). All statistical calculations were performed in R. The observed frequencies
of all the commented elements were computed by iterating through all the output files
containing the motif/domain and counting how many times each element was observed in
the PHISTO database with respect to the total number of elements. The results of this step
were stored in text files containing the number of times a particular element appeared, the
identifiers, and the relative frequencies.

To calculate the expected frequencies for human domains and motifs, 3.737 proteins
from the human proteome were randomly picked to count how many times each domain
or motif was observed with respect to the total number of elements. This step was repeated
1000 times using bootstrapping to get the expected frequency. For pathogen proteins, a
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single proteome would not be representative of the database, so a mixed proteome was
created. Since 94% of the bacterial proteins registered in the PHISTO database belong
to three bacterial species (44% Y. pestis, 33% B. anthracis, and 17% F. tularensis), in each
bootstrap iteration, a random sampling of these proteomes, with identical percentages, was
used to simulate as much as possible the conditions of the PHISTO database.

To compute the expected frequencies for domain–domain and domain–motif com-
binations, random combinations between the human proteome and the mixed proteome
were used. Again, the expected frequency was calculated as the average frequency of 1.000
bootstrapping iterations.

Observed and expected frequencies were compared using the one-way Wilcoxon test.
The output files containing the p-values from the Wilcoxon test comparison along with the
effect size values were processed using a Python script (select_enriched.py) to select those
elements whose p-values were below the significance level (α = 0.05) and whose effect sizes
were above 0.5. The ratio between the observed frequency and the expected frequency
(fobs/fexp) was computed for all the elements to classify them as enriched (fobs/fexp > 1) or
depleted (fobs/fexp < 1). Only the enriched elements were further analyzed.

3.5. Gene Ontology Analysis

Gene Ontology (GO) Biological Process terms for the enriched human and pathogenic
domains, as well as from the enriched DD combinations, were obtained using the Pfam
identifiers in dcGO [31] (https://supfam.mrc-lmb.cam.ac.uk/SUPERFAMILY/cgi-bin/
dcenrichment.cgi, accessed on 29 June 2022). The GO terms were later processed in RE-
VIGO [43], a web server that summarizes lists of GO terms and finds the most representative
terms relying on semantic similarities, generating a visual representation of non-redundant
GO terms (http://revigo.irb.hr).

3.6. Structural and Conservation Analysis of Selected PPIs

The enriched DD and DM interactions were further explored using Alphafold Mul-
timer [37,38]. Protein interactions containing enriched DD and DM interactions were
retrieved and the structure was obtained. There were several limitations in this approach
that precluded obtaining all interactions. The first one was the degree of disorder of
the human protein. The structure of most human proteins was highly unfolded or con-
tained a high percentage of very low confidence regions. Proteins showing a percentage
of very low confidence regions (<50 pLDDT score) above 10% were discarded (263 out of
349 selected human proteins were discarded). The bacterial counterparts of the interac-
tions successfully predicted by AlphaFold were analyzed using the ConSurf server [39]
(https://consurf.tau.ac.il, all parameters set by default).

4. Conclusions

In this study, we have demonstrated the usefulness of using statistical tools to detect
structural associations in PPIs databases that may contain many false positives. Using these
tools, we were able to generate a list of domain–domain and domain–motif associations
with a high degree of confidence. This information may be useful to validate or predict
new bacterial proteins involved in infection, as shown in the case of virulence factors
associated with ubiquitin–protein ligase activity. Through sequence alignment on the
identified motif, possible virulence factors can be detected in other species, such as Yersinia
pestis or Edwardiella ictaluri (Figure 9C). The presence of similar domains allows us to
suggest the interaction between these proteins and human ubiquitin. This information,
combined with Alphafold’s predictability, opens up a wide range of possibilities. In this
case, the structure predicted for the potential virulence factors of Y. pestis and E. ictaluri
have a high degree of similarity with the sspH2 protein, which increases the reliability of
these predictions (Figure 9D). However, the main limitation in the study of host–pathogen
PPIs still relies on the scarce amount of high-quality information available. At present,
we can only identify the most common structural patterns that arise from this limited
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information. As more data becomes available, we will be able to better define the subtleties
in the host–pathogen interactome.

Alphafold allows us to also evaluate if an interaction could be accurate. In our case,
all the interactions predicted by Alphafold with a high degree of confidence confirmed
that the identified domain–domain associations were consistent with the prediction. It is
important to note here that there are limitations to this approach. The presence of important
unstructured regions in human proteins involved in host–pathogen PPIs makes the predictions
less confident. The high degree of flexibility of these structures means that these interactions
can be, in many cases, transient. Unless they are part of loops connecting defined secondary
structures, with limited flexibility, the prediction will almost certainly be poor.

The increase in the ability to predict new host–pathogen PPIs at the structural level opens
the door to the in silico design of new drugs that inhibit these interactions. Considering that
infections caused by resistant bacteria are a major public health problem, these new molecules
could be a formidable contribution to the arsenal of already available antimicrobials.
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