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Abstract: Rare diseases (RDs) concern a broad range of disorders and can result from various origins.
For a long time, the scientific community was unaware of RDs. Impressive progress has already
been made for certain RDs; however, due to the lack of sufficient knowledge, many patients are not
diagnosed. Nowadays, the advances in high-throughput sequencing technologies such as whole
genome sequencing, single-cell and others, have boosted the understanding of RDs. To extract
biological meaning using the data generated by these methods, different analysis techniques have
been proposed, including machine learning algorithms. These methods have recently proven to
be valuable in the medical field. Among such approaches, unsupervised learning methods via
neural networks including autoencoders (AEs) or variational autoencoders (VAEs) have shown
promising performances with applications on various type of data and in different contexts, from
cancer to healthy patient tissues. In this review, we discuss how AEs and VAEs have been used
in biomedical settings. Specifically, we discuss their current applications and the improvements
achieved in diagnostic and survival of patients. We focus on the applications in the field of RDs, and
we discuss how the employment of AEs and VAEs would enhance RD understanding and diagnosis.

Keywords: rare diseases; autoencoders; artificial intelligence; personalized medicine

1. Introduction

Genome regulation encompasses all facets of gene expression, from biochemical
modifications of DNA to the physical arrangement of chromosomes and the activity of
transcription mechanisms. Recently, several techniques have been developed to interrogate
these complex processes in multiple dimensions (DNA, RNA, proteins, lipids, metabolites
. . . ), known as “omics”. While these approaches can reveal physio-pathological mech-
anisms in the sample, the joint use of several omics on the same sample is key in the
understanding of the associated phenotype [1].

The limited number of samples that can be collected are usually noisy, incompletely
annotated, sparse, and high-dimensional (many variables), making it very challenging to
develop integrative computational approaches with regard to this type of data. Nowa-
days, several machine learning approaches have been proposed to analyze multi-omics
datasets [2]. Specifically, unsupervised approaches learn representations by identifying
patterns in the data and extracting meaningful knowledge, while overcoming data com-
plexities. Among such approaches, unsupervised learning methods via neural networks
such as autoencoders (AEs) or variational autoencoders [3,4] (VAEs) have shown promising
performances [5], with applications on various types of data, such as single-cell data [6],
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multi-omics data [7], and metagenomics data [8] and in different contexts, such as cancer [9],
bacterial infection [10] or in healthy patient tissues [11]. An AE learns a compressed repre-
sentation (embedding) of the input data, passing the information through layers smaller
than the previous one. The latent space will end up with a bottleneck layer composed of the
most informative features of the original input data, and then will be used to reconstruct
data in the most similar way. Through this process of compression, the algorithm will
capture a better representation of the data structure (i.e., intrinsic relationships between
the data variables), and therefore will allow for more accurate downstream analyses [12].
In this review, we will discuss about their usage in the field of rare diseases (RDs) and
beyond, with a focus on why their implementation in such a context would be suitable in
the near future.

1.1. RDs and Their Diagnosis

RDs are any disease that affects a small percentage of the population. In Europe, they
affect less than 1 in 2000 citizens. There are more than 7000 RDs worldwide. Although
individually rare, collectively, RDs are estimated to affect 350 million people globally. Most
rare diseases are genetic and are present throughout a person’s entire life, even if symptoms
do not immediately appear. RDs are characterized by a wide diversity of symptoms, which
can vary from patient to patient and can also appear to be similar to those of common
diseases. These factors imply that RDs can often be misdiagnosed. According to the Global
Genes organization, 8 out of 10 RDs are caused by a faulty gene, and approximately 75%
affect children, yet it takes an average of 4.8 years to arrive at an accurate diagnosis. This is
part of the reason for 30% of children with RDs not living to see their fifth birthday. There
are numerous challenges and issues that need to be addressed, ranging from technical to
theoretical aspects, such as the small number of patients, often children, the heterogeneity
of the disease, and the limited amount of national/international data resources [13–15].

The development of new technologies, such as genomic analysis by means of next
generation sequencing (NGS) and other omics technologies, has boosted the molecular
understanding and diagnosis of RDs [16–24].

Despite a significant leap in the diagnostics of rare genetic diseases in recent years,
more than half of patients with a suspected RD remain without a definite diagnosis [25].
Patients with RD who are not diagnosed or diagnosed late may experience a delay in the
start of a specific treatment, which, in turn, could have irreversible consequences for their
health, may prevent informed reproductive choice and could cause great stress for patients
and their families.

1.2. Omics and Multi-Omics Approaches for RD Diagnosis

The development of high-throughput technologies in the past decade allowed us to
generate a large amount of different data type, each of them representing different levels
of information ranging from DNA level to protein level, including data such as genome,
proteome, transcriptome, epigenome, metabolome [26,27]. All of these multi-omics data
attempt to capture the biological machinery occurring in the living being, providing a
high level of information. However, each technology individually cannot depict the entire
biological complexity of most human diseases. The combination of multiple data types can
compensate for missing or unreliable information in any single data type, and multiple
sources of different biological measurements could point to the same results and low down
the number of false positive [28].

The current challenge is to integrate these data together in order to decipher new levels
of information that could be key in RD diagnosis, by identifying the causal mechanisms of
those diseases. AEs and VAEs are very promising technologies to integrate and analyze
data from different sources (e.g., multi-omics, patient registries, . . . ) that can be used to
overcome further challenges, such as low diagnostic rates, a reduced number of patients,
and geographical dispersion.
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2. Artificial Intelligence Methods for Biology

For several years, the various techniques of machine learning and deep learning have
been widely used in image and visual recognition problems. The models developed so
far can be classified into three popular categories, which are supervised, unsupervised
and semi-supervised learning. For supervised methods, algorithms are fed with “labeled”
data during a training step to infer a function which then will classify data or predict
outcomes [29]. The purpose of unsupervised learning is to identify structures and features
from a training dataset without the use of labeled data [30]. Most known unsupervised
methods concern clustering algorithms such as hierarchical clustering or k-means cluster-
ing and dimensionality reduction methods such as principal component analysis (PCA),
t-distributed stochastic neighbor embedding (t-SNE) [31] and uniform manifold approxima-
tion and projection (UMAP) [32]. Among unsupervised methods, artificial neural networks
(ANN), particularly AEs and VAEs, have emerged as very promising methods to work with
various biological problems and to integrate diverse types of data. Finally, semi-supervised
learning is a learning problem that involves a small number of labeled examples and a
large number of unlabeled examples. Learning problems of this type are challenging, as
neither supervised nor unsupervised learning algorithms are able to make effective use of
the mixtures of labeled and unlabeled data. As such, specialized semi-supervised learning
algorithms are required. Although very promising, semi-supervised learning methods
have mainly been applied for medical image analysis [33], which is out of the scope of the
present review.

Basis of the AE Algorithm and Its Variant

AEs are composed of two main parts, which consist of an encoder and a decoder
(Figure 1A). The encoder maps the highly dimensional input data into a latent variable
consisting of one or multiple hidden layers of lower dimension. This bottleneck layer forces
a compressed representation of the input data. The second part consists of the decoder,
which attempts to reconstruct the input data from the embedding. The dimensionality
reduction followed by the reconstruction of the input forces the model to only retain
features with high variability, setting aside features with less variability. Autoencoders
are often associated with the denoising procedure, because unimportant variations are
automatically left out [34]. This loss is modeled through a loss function that considers the
distance between compressed data and reconstructed data. The most commonly employed
loss functions are mean squared error and Kullback–Leibler divergence.

Several variants of AEs have been proposed since they were first introduced. These
variants mainly aim to address shortcomings, such as improved generalization, disentan-
glement, and modification to sequence input models. Some significant examples include
the denoising autoencoder (DAE) [35] (Figure 1B), the sparse autoencoder (SAE) [36,37]
(Figure 1C), and more recently the VAE [3,4] (Figure 1D). Each of these different generative
models have their own specificity. The DAE takes as its input corrupted data for which
some values have been randomly turned to zero. Usually, 50% of input nodes are set to
zero; however, a lower percentage, around 30%, has been proposed [38]. This kind of
AE has mainly been applied to images [35]. The SAE allows one to obtain a bottleneck
layer without reducing the number of nodes in the hidden layers [36,37]. The loss function
is defined using a sparsity penalty. This sparsity penalty can be defined by using the
Kullback–Leibler divergence, which is a standard measure of the difference between two
functions [36,37]. VAEs are probabilistic generative models, considering specific assump-
tions about the distribution of hidden layer features. They learn the true distribution
of input features from latent variable distribution using the Bayesian approach and use
stochastic inference to approximate a latent space defined by a mean “µ” and a standard
deviation “σ” (Figure 1D). This property enables the possibility to compute probability
distributions and thus generate new data [3,4]. The main difference between classical AE
and VAE resides in the latent space which is continuous for the latter. These algorithms
are scalable to large datasets and can deal with intractable posterior distributions by fit-
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ting an approximate inference or recognition model, using a reparametrized variational
lower bound estimator. They have been broadly tested and used for data compression or
dimensionality reduction [11,39–44]. Their adaptability and potential to handle non-linear
behavior have made them particularly well suited to work with complex data [7,9,45–48].
A recent benchmark proposed VAEs as the best-performing methods to detect cancer
subtypes compared with other type of AE [7].

Figure 1. Different types of autoencoder. (A)—The classical autoencoder (AE) is composed of two main parts. First the
encoder, annotated as “e”, encodes the input data through a latent space “Z” by reducing the data dimensionality. The
latent space corresponds to a vectorial space with a bottleneck constraint in order to force the algorithm to keep only the
most variable features. The second part corresponds to the decoder, annotated as “d”, that reconstructs the input data using
the features encoded in the latent space. (B)—Denoising autoencoders (DAEs) are a category of AE where the input data are
corrupted by setting nodes to a value of 0 (indicated in white). (C)—The sparse autoencoder (SAE) uses a penalty function.
By penalizing the use of certain nodes (grey), these nodes are inactivated (white). Thus, the network is forced to learn
features without reducing the number of nodes. (D)–The peculiarity of a variational autoencoder (VAE) is that the algorithm
learns a distribution from the latent space “Z”. This distribution is defined by a mean “µ” and a standard deviation “σ”.

3. AE Applications in Biological and Medical Contexts beyond RD

The first applications of AE on biological data date from 2016. Tan et al. [49] developed
ADAGE, a DAE (Figure 1B) to study microbe–host interactions. They showed that ADAGE
is able to identify biological patterns and to extract meaningful features. By comparing their
method with PCA and independent component analysis, they demonstrated that ADAGE
was better at regrouping replicate samples and the biological features extracted by ADAGE
were not clearly captured by other methods. They then improved it by constructing
ensemble ADAGE [50] (eADAGE) by combining many individual ADAGE models into
a single model. For each eADAGE model, they combined 100 models with identical
parameters but distinct random seeds. Wang et al. [51] re-used the ADAGE package [49] to
create a DAE model and used it on transcriptomic data from patients with lung cancer. They
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identified a signature composed of 35 genes and concluded by proposing this signature
as a novel diagnostic and prognostic biomarker for human lung adenocarcinoma. Chen
et al. [52] used a SAE (Figure 1C) to study the transcriptomic machinery of yeast. This
algorithm identified transcription factors with a fundamental role in yeast machinery by
studying microarray gene expression. Furthermore, they found that SAE hidden layers
correspond to common biological processes.

One example of the very first application of AE in the medical field is DeepPatient [53].
Taking advantage of electronic health records, Miotto et al. [53] developed a DAE-based
method to improve clinical prediction for severe diabetes, schizophrenia and several
cancers.

Finally, VAEs (Figure 1D) have been used in different biological contexts with different
purposes, applied on different data type including proteomics, bulk RNA-seq and/or
single-cell RNA-seq (scRNA-seq) and more. The origin of the data can vary, coming from
healthy or diseased patients. Applications of AEs or VAEs on these data have been shown
to improve downstream analysis and results, mainly for the identification of cell subtype,
drug response prediction or multi-omics data integration.

Hereafter, we discuss some of the major applications of AE and its variants, in the
biomedical field with an eye toward the advances in data analysis and developed algo-
rithms (Supplementary Table S1, Figure 2).

3.1. AE Applications in Single Cell

Single-cell RNA sequencing (scRNA-seq) enables measurements of gene expression at
the cell level and thus each of these cells will have its own transcriptome [54]. scRNA-seq
allows to get a whole new level of information with more precision by comparison with
bulk RNA-seq, where the sequencing results from a mixed cell population [55]. One of the
main issues related to scRNA-seq data is the experimental noise that accompanies their
generation. Indeed, at the single cell level, there is more variability in gene expression
compared to an average cell population. Moreover, the low number of RNA transcripts
available in single cell experiments will increase the rate of technical dropout events. This
will provoke the scRNA-seq data to be highly sparse by including excessive zero counts that
will cause the data to be zero-inflated, ending up with capturing only a small fraction of
each cell transcriptome [56,57]. Recent research demonstrated the importance of correcting
technical variation and showed improvement in downstream analysis [56–58]. One way to
deal with this problem is to clean the data using a denoising algorithm [59]. Different works
suggested several methods by using either a classical AE [34] or a VAE [6,11,39,40,60–62].
One solution is to go through an a priori modeling process. With VASC [39], the authors
proposed to explicitly model the dropout events, which will help to find the non-linear
hierarchical features representation of the original data. Using this approach, the authors
asserted that VASC provided better dimension reduction and variational inference (scVI),
both used a zero inflated negative binomial (ZINB) to model scRNA-seq noise. The ZINB
allows one to take into account the RNA-seq count distribution, the overdispersion and the
sparsity of the data by modeling the noise distribution in highly sparse count data. This
causes the tool to learn gene-specific parameters such as the mean, dispersion and dropout
probability and showed improvement in differential expression analysis, increasement in
protein and RNA co-expression, enabling the discovery of subtle cellular phenotypes and
increasing the correlation structure of key regulators [63].
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Figure 2. Autoencoders for personalized medicine approaches. (A)—Input omics data that can be
of different types, such as omics, genomics, transcriptomics, proteomics, or clinal patient records.
(B)—An AE-like algorithm is fed by input data as a single data type (single-omic) or multi data
(multi-omics). (C)—Most common applications of these algorithms in the biomedical field and their
achievements in terms of data analysis. Green dotted line groups AE applications on single-omic
data, whereas blue dotted lines on multi-omics data. (D)—The results of the previous steps will
enable improving patient diagnosis and treatment by providing powerful bioinformatics tools to
physicians.
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In addition to their denoising purpose, used for correcting the batch effect or dropout
events, AEs can also be applied to single cell data for other tasks. For example, scGen [6]
enables the prediction of events caused by an external perturbation due, for instance, to
drugs or infection. Based on the association of a VAE and vector arithmetic, it models
perturbation and infection response of cells across different cell types, studies and species.
It works by learning cell-type and species-specific responses from features that distinguish
responding from non-responding genes and cells. To demonstrate the performance of their
tool, they applied it to the human Peripheral Blood Mononuclear Cells (PBMC) dataset [64]
stimulated with interferon (IFN-β), showing good prediction on gene expression for stimu-
lated CD4-T. They also evaluated scGen on data from Haber et al.’s [65] study, consisting
of two datasets of intestinal epithelial cells impacted by Salmonella or Heligmosomoides
polygyrus infection.

Another example of the use of VAE in single cell data is scVAE [11] and SCA [66],
which are employed for classification/clustering tasks. scVAE uses different types of VAE
with either a Gaussian or a Gaussian-mixture latent variable prior. It is able to obtain a
higher Rand index, an index measuring the similarity between different clusters, showing
better performances than Seurat [67], the state-of-the-art analysis tool for single cell data.
On the other hand, SCA uses a SAE and showed good results for clustering single cell
data, highlighting functional features. For example, the authors were able to identify genes
highly involved in monocytes functionalities.

Semi-Supervised Generative Autoencoder (SISUA) [68] is a semi-supervised model
based on the association of a VAE and CITE-seq (Cellular Indexing of Transcriptome and
Epitopes by Sequencing) data. CITE-seq is a technique allowing researchers to obtain
information from surface proteins. Because of the low amount of dropout in CITE-seq [69]
data, the authors took advantage of this property to improve SC clustering results and
notably obtained better separation between CD8 and CD4 proteins.

Recent technological advances have enabled simultaneous acquisitions of multiple
omics data at the resolution of a single-cell, thus producing “multimodal” single-cell data.
The first developed methods based on VAE for multi-omics analysis at single cell level were
scMVAE [70] and totalVI [71]. These models have some limitations, including extensive pre-
processing of data for training and latent variable interpretation difficulties. To overcome
these limitations, Minoura et al. proposed scMM, a novel statistical framework for single-
cell multi-omics analysis specialized in interpretable joint representation inference and
predictions across modalities [72].

3.2. AE Applications in Cancer

Another application of AE on biological data concerns cancer data analyses. Sev-
eral tools have been proposed with different strategies and different aims. Indeed, these
methods focus either on drug response prediction [48,73,74] or on subtype cancer classifi-
cation/stratification [7,47,51,73,75].

3.2.1. Drug Response Prediction

DeepDR [74] combines a network approach with AE. It is composed of three networks:
i) a mutation encoder, ii) an expression encoder and iii) a drug response predictor network.
The researchers showed that their tool performed better in drug response prediction com-
pared to linear regression and SVM. The application of DeepDR revealed novel resistance
mechanisms and drug targets. With the same aim, DeepProfile [73] and Dr.VAE [48] employ
a VAE configuration. While DeepProfile uses a pre-trained VAE combined with a separately
trained linear model to predict drug response, Dr.VAE is a semi-supervised method that
learns a latent embedding of the gene expression used to feed a logistic regression classifier.
The training data result from the combination of all the microarray datasets of the GEO
database [76] for acute myeloid leukemia. Most of these methods outperformed currently
used methods such as linear regression, SVM, PCA, k-means clustering [77].
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3.2.2. Cancer Classification and Stratification

Cancer classification and stratification are fundamental to adapting the treatment
depending on the cancer subtype and/or the prognostic, since cancer stage is closely
related to cancer survival [78]. To address these tasks, different tools have been proposed.
Tybalt et al. [75] proposed a VAE-based method learning features recapitulating tissues
specific patterns. By training it on the cancer genome atlas (TCGA) dataset [79], the authors
were able to identify different features such as patient sex, allowing classification, to
compare melanoma tumors to other cancer type and to identify high-grade serous ovarian
cancer (HGSC) subtypes. The stacked sparse auto-encoder (SSAE) is a semi-supervised
deep learning strategy for cancer prediction using RNA-seq data [80]. This approach
outperformed other methods for all three cancer data sets tested in various metrics.

Zhang et al. [47] proposed multi-omics data integration with an AE associated with K-
means clustering to stratify high-risk neuroblastoma. They showed that their AE algorithm
outperforms other non-AE methods such as iCluster [81] and PCA. Another method for
multi-omics integration for cancer classification is OmiEmbed [82]. It combines the basic
structure of VAE with a classifier to perform task-oriented feature extraction and multi-class
classification. It yielded better performances than methods using only one type of omics
data. With the same aim, Hira et al. [83] proposed the Maximum Mean Discrepancy VAE
(MMD-VAE), which outperformed multi-omics analysis of ovarian cancer data.

To improve genomic functional characterization, Chen et al. [84] developed a gene
superset autoencoder (GSAE), a multi-layer autoencoder model with the incorporation of a
priori defined gene sets. They introduced the concept of the gene superset, an unbiased
combination of gene sets, with weights trained by the AE, where each node in the latent
layer is termed a superset, with the goal of determining the functional or clinical relevance
of the learned gene supersets from the model.

Franco et al. [7] benchmarked four types of AE algorithms, including classic AE,
DAE, SAE and VAE, to identify subtypes of cancer among glioblastoma multiforme, colon
adenocarcinoma, kidney renal clear cell carcinoma and breast invasive carcinoma. They
showed that even though AE performances varied depending on the dataset used, classical
AE and VAE showed the best results, performing better than standard techniques for
dimensionality reduction such as PCA, kernel PCA, and sparse PCA.

3.3. VAEs Structure for Data Integration

One application of VAE concerns multi-data integration [8,9,85], which is currently a
challenge of high interest in computational biology. Several methods and configurations
already exist [86], but without any clear consensus of the best one to use. Simidjievski
et al. [9] proposed four different architectures for data integration using VAE structures:
Variational Autoencoder with Concatenated Inputs (CNC-VAE), X-shaped Variational
Autoencoder (X-VAE), Mixed-Modal Variational Autoencoder (MM-VAE) and Hierarchical
Variational Autoencoder (H-VAE). By comparing the performances of these different meth-
ods, they showed that the H-VAE and X-VAE outperformed the other configurations, with
a more stable behavior for the first one. The authors also suggested that data integration
performances rely on data types, with some types being more amenable.

The study of Nissen et al. [8] proposed VAMB, a VAE to integrate two distinct data
types. The first type is the sequence abundance defined by the individual number of reads
mapped to each sequence. The second is the k-mer distribution, which corresponds to the
number of substrings of length k contained in a sequence. By using these two types of
data, they outperformed existing state-of-the-art tools. Another tool for data integration is
deepDR [85], a network-based approach for studying drug repositioning where the authors
integrated 10 different networks, including drug–disease, drug–side-effect, drug–target
and drug–drug networks. By converting topological structure of each network into vector
representation by using a random walk with restart algorithm, the authors were able to
construct a positive point-wise mutual information (PPMI) matrix then fed to multimodal
deep autoencoder (MDA) to concatenate all the different network. They extracted the
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low-dimensional features from the middle layer of the MDA and then used it in a collective
VAE (cVAE) to predict potential associations between drugs and diseases. By comparing
their methods with baseline methods including random forest, kernelized Bayesian matrix
factorization, support vector machine, random walk restart, they obtained better results.

One remarkable example of multi-omics data integration with AE is Multiview Factor-
ization AutoEncoder (MAE) [87]. It combines multi-view learning, matrix factorization and
AE with biological knowledge to integrate multi-omics data such as gene expression, DNA
methylation and miRNA expression. The important contribution of this work is the intro-
duction of external domain knowledge such as biological interaction networks to improve
model generalizability and reduce the risk of overfitting. Another example of multi-omics
integration through AE is Multiple Similarity Network Embedding (MSNE) [88]. MSNE
integrates the multi-omics information by embedding the neighbor relations of samples
defined by the random walk on multiple similarity networks. MSNE achieved outstanding
performances for cancer subtyping compared to five other non-AE-based multi-omics
integrative methods.

3.4. AE Applications in RDs

The development of omics technologies significantly improved the diagnosis of RDs.
However, their success rate for detecting the responsible gene is far from complete. To
fill this gap, the employment of RNA sequencing has been proposed as a complementary
assay [89–93]. However, classical statistical methods have limited applications in the con-
text of RD [94]. Consequently, there is an urgent need to develop novel computational
approaches to resolve diagnostic deadlock and improve our knowledge of RD [1]. Brecht-
mann et al. developed OUTRIDER [95], an algorithm that uses an AE to model read-count
expectations according to the gene covariation resulting from technical, environmental, or
common genetic variations. The tool takes advantage of the generative model algorithm
which reconstructing the RNA-seq data by fitting a negative binomial distribution and then
computing a p-value and a Z-score. They used the Genotype Tissues Expression (GTEx)
database [96], in which they injected simulated outliers in order to assess the sensitivity and
the specificity of their tool. Additionally, the authors used data from Kremer et al.’s [89]
study, consisting of individuals affected by rare mitochondrial disorders, with the goal to
retrieve the aberrant gene expression manually identified and experimentally validated in
the original publication.

Aberrant splicing is a major cause of rare disease. It is estimated that splicing mu-
tations are responsible for 15–60% of human disease mutations [97–99]. By proposing
FRASER [100], Mertes et al. responded to the lack of statistical significance assessments
for splicing events in the field of RD. Their tool is based on a DAE and takes advantages
of a beta binomial distribution, which takes overdispersion into account, and therefore is
more suited for splicing events. To evaluate their tool, the authors used the same strategy
employed for OUTRIDER. They injected splicing outliers in the GTEx and Kremer et al.
datasets, and then computed a two-sided p-value along with a Z-score. To correct for mul-
tiple testing genome-wide, they used the FDR. FRASER showed better results compared
to other methods, allowing them to identify several alternative splicing events including
intron retention.

Although only few applications of AE and VAE has been developed in the context of
RD, they have proven to be effective and have improved the diagnosis of RD. Thus, we
foresee a rise of the employment of these technique in the field of RD.

4. Discussion and Conclusions: Open Challenges and Future Directions

With the recent advances in omics data production, we are able to perform various
analyses. Omics enable us to enlarge the scope of biological data employed, enriching anal-
ysis and results. This progress has reduced the number of patients in diagnostic impasse,
but it is still not enough. Multi-omics approaches are very promising for improving diag-
nostic performances, but several problems remain to be solved. Data analysis methods for



Int. J. Mol. Sci. 2021, 22, 10891 10 of 14

multi-omics are generally developed for cancer research, where large numbers of samples
are available, which is not the case for RD. Therefore, there is a need to develop multi-omics
approaches applicable to small cohorts. In this review, we comprehensively collected the
basic but essential concepts and methods of AE, together with its recent applications in
diverse biomedical studies (Figure 2). We have showed that the use of machine learning
methods such as AE or VAE algorithms can improve analysis and results. However, few
methods have been applied yet to RD. The identification of pathogenic events through
measurement of aberrant gene expression levels is a very promising approach. With their
tool based on an AE algorithm, Brechtmann et al. [95] successfully identified pathogenic
genes candidates; however, the use of negative binomial distribution to model RNA-seq
data limits the employability of the tool. To date, no methods have been proposed for
multi-omics analysis in the field of RD. One of the challenges is the limited number of
samples for RD with respect to other pathologies. The limited number of patients is not the
only difficulty in applying existing algorithms for multi-omics integration to RD. These dis-
eases are rare and heterogeneous, and the causative gene(s) are usually unique or “private”
for each patient (or family). They require a methodology that identifies unique signatures,
making it difficult to apply most of the multi-omics methods available because they are
more suitable for identifying common signatures. AE proved to be useful in multi-omics
data integration and could open the way to better-performing methods, especially in RD;
however, they have some weaknesses [101]. They are highly sensitive to parameter tuning.
It has been pointed out how the performances of each method could vary upon those hy-
perparameters. In their review, Hu and Green [101] proposed relying on independent third
parties to benchmark and assess the different methods and tools. Extensive benchmarks
are needed to learn more about AE and VAE performances in RD.

Despite the fact that the implementation of AE and VAE algorithms in RD is still
in its infancy, it has opened the door to a more faithful understanding of the complex
aspects of RD physiology, pathology, and treatment. Although much remains to be learned
and developed, we believe that this review has captured the essence of this field and will
enhance the use of AE in RD and inspire future breakthroughs in both the understanding
and diagnosis of RD.
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95. Brechtmann, F.; Mertes, C.; Matusevičiūtė, A.; Yépez, V.A.; Avsec, Ž.; Herzog, M.; Bader, D.M.; Prokisch, H.; Gagneur, J.
OUTRIDER: A Statistical Method for Detecting Aberrantly Expressed Genes in RNA Sequencing Data. Am. J. Hum. Genet. 2018,
103, 907–917. [CrossRef] [PubMed]

96. The GTEx Consortium; Ardlie, K.G.; DeLuca, D.S.; Segre, A.V.; Sullivan, T.J.; Young, T.R.; Gelfand, E.T.; Trowbridge, C.A.; Maller,
J.B.; Tukiainen, T.; et al. The Genotype-Tissue Expression (GTEx) pilot analysis: Multitissue gene regulation in humans. Science
2015, 348, 648–660. [CrossRef]

97. Wang, G.-S.; Cooper, T.A. Splicing in disease: Disruption of the splicing code and the decoding machinery. Nat. Rev. Genet. 2007,
8, 749–761. [CrossRef] [PubMed]

98. Park, E.; Pan, Z.; Zhang, Z.; Lin, L.; Xing, Y. The Expanding Landscape of Alternative Splicing Variation in Human Populations.
Am. J. Hum. Genet. 2018, 102, 11–26. [CrossRef] [PubMed]

99. Taylor, K.; Sobczak, K. Intrinsic Regulatory Role of RNA Structural Arrangement in Alternative Splicing Control. Int. J. Mol. Sci.
2020, 21, 5161. [CrossRef] [PubMed]

100. Mertes, C.; Scheller, I.F.; Yépez, V.A.; Çelik, M.H.; Liang, Y.; Kremer, L.S.; Gusic, M.; Prokisch, H.; Gagneur, J. Detection of aberrant
splicing events in RNA-seq data using FRASER. Nat. Commun. 2021, 12, 1–13. [CrossRef] [PubMed]

101. Hu, Q.; Greene, C.S. Parameter tuning is a key part of dimensionality reduction via deep variational autoencoders for single cell
RNA transcriptomics. Pac. Symp. Biocomput. 2019, 24, 362–373. [CrossRef]

http://doi.org/10.1038/ncomms15824
http://doi.org/10.1126/scitranslmed.aal5209
http://doi.org/10.1038/s41591-019-0457-8
http://doi.org/10.1016/j.ajhg.2019.01.012
http://www.ncbi.nlm.nih.gov/pubmed/30827497
http://doi.org/10.1038/s41436-019-0672-1
http://www.ncbi.nlm.nih.gov/pubmed/31607746
http://doi.org/10.3389/fmolb.2021.647277
http://doi.org/10.1016/j.ajhg.2018.10.025
http://www.ncbi.nlm.nih.gov/pubmed/30503520
http://doi.org/10.1126/science.1262110
http://doi.org/10.1038/nrg2164
http://www.ncbi.nlm.nih.gov/pubmed/17726481
http://doi.org/10.1016/j.ajhg.2017.11.002
http://www.ncbi.nlm.nih.gov/pubmed/29304370
http://doi.org/10.3390/ijms21145161
http://www.ncbi.nlm.nih.gov/pubmed/32708277
http://doi.org/10.1038/s41467-020-20573-7
http://www.ncbi.nlm.nih.gov/pubmed/33483494
http://doi.org/10.1142/9789813279827_0033

	Introduction 
	RDs and Their Diagnosis 
	Omics and Multi-Omics Approaches for RD Diagnosis 

	Artificial Intelligence Methods for Biology 
	AE Applications in Biological and Medical Contexts beyond RD 
	AE Applications in Single Cell 
	AE Applications in Cancer 
	Drug Response Prediction 
	Cancer Classification and Stratification 

	VAEs Structure for Data Integration 
	AE Applications in RDs 

	Discussion and Conclusions: Open Challenges and Future Directions 
	References

