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Abstract: To reveal the mechanism of salinity stress alleviation by arbuscular mycorrhizal fungi
(AMF), we investigated the growth parameter, soluble sugar, soluble protein, and protein abundance
pattern of E. angustifolia seedlings that were cultured under salinity stress (300 mmol/L NaCl) and
inoculated by Rhizophagus irregularis (RI). Furthermore, a label-free quantitative proteomics approach
was used to reveal the stress-responsive proteins in the leaves of E. angustifolia. The result indicates
that the abundance of 75 proteins in the leaves was significantly influenced when E. angustifolia
was inoculated with AMF, which were mainly involved in the metabolism, signal transduction, and
reactive oxygen species (ROS) scavenging. Furthermore, we identified chorismate mutase, elongation
factor mitochondrial, peptidyl-prolyl cis-trans isomerase, calcium-dependent kinase, glutathione
S-transferase, glutathione peroxidase, NADH dehydrogenase, alkaline neutral invertase, peroxidase,
and other proteins closely related to the salt tolerance process. The proteomic results indicated
that E. angustifolia seedlings inoculated with AMF increased the secondary metabolism level of
phenylpropane metabolism, enhanced the signal transduction of Ca2+ and ROS scavenging ability,
promoted the biosynthesis of protein, accelerated the protein folding, and inhibited the degradation
of protein under salt stress. Moreover, AMF enhanced the synthesis of ATP and provided sufficient
energy for plant cell activity. This study implied that symbiosis of halophytes and AMF has potential
as an application for the improvement of saline-alkali soils.
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1. Introduction

Salt stress is one of the most important abiotic stresses and limiting factors for plant growth
and agricultural production. It is a major abiotic stress in the world. Land salinization causes many
ecological and environmental problems, such as soil erosion, land desertification, forest and grassland
degradation, and biodiversity reduction [1]. At present, along with the increase in soil salinization
and secondary salinization, it is estimated that 30% of the arable land in the world will disappear
in the next 25 years, and 50% by the middle of the 21st century [2,3]. Hence, the question of how to
treat saline alkali soil has attracted widespread attention around the world. In recent years, it was
demonstrated that using biological means to treat soil salinization is highly efficient, and environmental
and sustainable, thus providing a new breakthrough method for saline alkali land treatment.

E. angustifolia, a member of the family, Elaeagaceae, is a deciduous tree that is widespread in the
vast desert and semidesert in the Northwest of China. A few varieties of the species, E. angustifolia,
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can survive in the Gobi, such as the desert and saline, and is called the “treasure tree” locally. It is
important to further improve the salt tolerance of E. angustifolia using biotechnology under saline-alkali
conditions. Arbuscular mycorrhizal fungi (AMF) exist widely in soil and form a mutualism system
with most higher plants [4,5]. Plants are subjected to salt stress in the presence of a high salinity in the
soil, which reduces the absorption and transport of water, inhibits the metabolic process, and affects
nutrient absorption and the cell infiltration balance, resulting in the fragmentation of the horny layer
of plants and leakage of the cell membrane. This leads to plant growth retardation. AMF can adapt
to the saline soil habitat and survive in a heavy salt environment, indicating that AMF is adaptable
to saline soil [6]. Previous studies have shown that symbiosis between AMF and plants under salt
stress can promote plant growth and improve plant salt tolerance [7,8]. Therefore, the symbiosis of
halophytes with AMF has great potential for the improvement of salt resistance and restoration of
saline-alkali land, which has been a major research field globally.

Previous studies on the application of proteomics technology revealed the salt tolerance of plant
leaves [9–15]. However, the response mechanism of mycorrhizal plants to salt stress needs to be further
revealed. In this study, the symbiosis of AMF Rhizophagus irregularis (RI) and the salt-tolerant plant,
E. angustifolia, was used as a breakthrough point. The stress-responsive proteomics in the leaves of
E. angustifolia were detected under salt stress conditions. These results will provide more information
for the understanding of the function of AMF in the improvement of plant salt tolerance.

2. Results

2.1. Growth of E. angustifolia under Salt Stress and Colonization of AMF in the Plant Roots

As shown in Figure 1A, both mycorrhizal and non-mycorrhizal seedlings grew well in the
treatments lacking salt, but the mycorrhizal seedlings’ leaves grew stronger than the non-mycorrhizal
seedlings; some leaves of the mycorrhizal and non-mycorrhizal seedlings were yellow during salt
stress, however, the number of withered leaves of the mycorrhizal plants was significantly less than
that of the non-mycorrhizal plants.
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Figure 1. Growth of E. angustifolia inoculated AMF (arbuscular mycorrhizal fungi) under salt stress and
a representative image of AMF colonization. Note: (A) represents the growth contrast in mycorrhizal
and non-mycorrhizal E. angustifolia after salt stress. (B) represents a photomicrograph of the structural
colonization of AMF in the root of R. irregularis. AM, mycorrhizal; CK, non-mycorrhizal; 0 mmol/L,
without salt stress; 300 mmol/L, during salt stress; AR: Arbuscule; V: Vesicles. Scar bar: 20 µm.

The typical AMF morphological structure was detected in inoculated E. angustifolia roots,
including vesicles and arbuscules (Figure 1B). The maximum AMF colonization percentage of the root
reached more than 90% at approximately 100 at approximately 30 days after inoculation. The maximum
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AM colonization percentage of the root reached more than 90% at approximately 30 days after salt
stress. At the same time, no colonization was found in the non-inoculated seedlings. This result shows
that E. angustifolia and R. irregularis established a vigorous symbiosis.

2.2. Effects of RI and CK on Height, Diameter, and Roots of E. angustifolia under Salt Stress

Salt stress decreased the height, diameter, length, and area, but mycorrhizal seedlings had a
greater height, diameter, length, and area than non-mycorrhizal seedlings during salt stress (Table 1).
During the 300 mmol/L NaCl treatment, the height, diameter, length, and area of the mycorrhizal
seedlings increased by 9.1%, 20.8%, 17.4%, and 35.5%, respectively, compared with those of the non-
mycorrhizal seedlings. AMF inoculation significantly enhanced the growth parameter of E. angustifolia
seedlings in the presence of 300 mmol/L NaCl.

Table 1. Effects of RI and CK on the height, diameter, and roots of E. angustifolia under salt stress.

Level of
Salinity/(mmol/L)

Different
Treatment Height/(cm) Diameter/(mm) Length/(cm) Area/(cm2)

0
CK 45.50 ± 0.24c 5.65 ± 0.17b 985.73 ± 27.80b 146.04 ± 5.98c
RI 49.07 ± 0.54a 6.54 ± 0.20a 1256.7 ± 22.52a 213.07 ± 13.04a

Significance ** ** ** **

300
CK 39.57 ± 0.26f 3.99 ± 0.14e 763.64 ± 23.34e 93.68 ± 6.27e

RI 43.17 ± 0.21de 4.82 ± 0.11d 896.56 ±
42.36bcd 126.96 ± 8.03cd

Significance ** ** * **

RI, mycorrhizal; CK, non-mycorrhizal; 0 mmol/L, without salt stress; 300 mmol/L, during salt stress. Data are
means ± SD (standard deviation) of six replicates. The same letter within each column shows no significant
differences among treatments (p < 0.05). Levels of significance: * p < 0.05, ** p < 0.01.

2.3. Effects of RI and CK on the Soluble Sugar Content, Soluble Protein Content in the Leaves of E. angustifolia
under Salt Stress

As shown in Figure 2A, salinity stress caused a significant decline in the leaf soluble protein
content of mycorrhizal and non-mycorrhizal seedlings, while mycorrhizal seedlings had a higher leaf
soluble protein content than non-mycorrhizal seedlings during salt stress treatments. As shown in
Figure 2B, AMF inoculation significantly promoted the leaf soluble sugar content in the treatments
lacking salt. The soluble sugar content in the leaves of mycorrhizal and non-mycorrhizal seedlings
increased, but mycorrhizal seedlings had a higher leaf soluble sugar content than that of the
non-mycorrhizal seedlings during salt stress.

2.4. Effect of RI on Protein Abundance under Salt Stress

In the CK, AM-NaCl, AM, and AM-NaCl groups, a total of 25,082 peptides and 4349 proteins
were identified in the E. angustifolia seedlings. The number of proteins identified in the three replicates
of each treatment group is shown in Figure 3. Quantifiable proteins were identified in at least two
of the three replicates for further analysis. The significance of the differential proteins’ abundances
was filtered by the ratio > ±2 and p value < 0.05. The numbers of the differentially abundant proteins
between treatments (NaCl vs CK, AM vs CK, AM + NaCl vs AM, and AM + NaCl vs NaCl) are shown
in Table 2.
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non-mycorrhizal; 0 mmol/L, without salt stress; 300 mmol/L, during salt stress. Columns represent 
the means for three replicates (n = 3). Error bars show the standard error. Columns with different 
letters indicate significant differences between the treatments at p < 0.05. 
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number of proteins identified in the three replicates of CK group; (B) the number of proteins 
identified in the three replicates of NaCl group; (C) the number of proteins identified in the three 
replicates of AM group; (D) the number of proteins identified in the three replicates of AM + NaCl 
group. 

Table 2. Differentially expressed proteins between treatments. 

Treatments Number of Differential Proteins 
NaCl vs CK variation analysis 402 a + 335 b 
AM vs CK variation analysis 35 a + 152 b 

AM + NaCl vs AM variation analysis 166 a + 226 b 
AM + NaCl vs NaCl variation analysis 62 a + 189 b 

a: The number of proteins was the satisfied condition (ratio > ±2 and p value < 0.05); b: The number of 
proteins was only detected at CK or treatments (NaCl, AM, AM + NaCl). 

Figure 2. Effects of RI and CK on the soluble sugar content and soluble protein content in the leaves
of E. angustifolia under salt stress. Note: (A) soluble protein, (B) soluble sugar. RI, mycorrhizal; CK,
non-mycorrhizal; 0 mmol/L, without salt stress; 300 mmol/L, during salt stress. Columns represent
the means for three replicates (n = 3). Error bars show the standard error. Columns with different
letters indicate significant differences between the treatments at p < 0.05.
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Figure 3. Statistics of the number of proteins identified in each treatment group. Note: (A) the number
of proteins identified in the three replicates of CK group; (B) the number of proteins identified in the
three replicates of NaCl group; (C) the number of proteins identified in the three replicates of AM
group; (D) the number of proteins identified in the three replicates of AM + NaCl group.

Table 2. Differentially expressed proteins between treatments.

Treatments Number of Differential Proteins

NaCl vs CK variation analysis 402 a + 335 b
AM vs CK variation analysis 35 a + 152 b

AM + NaCl vs AM variation analysis 166 a + 226 b
AM + NaCl vs NaCl variation analysis 62 a + 189 b

a: The number of proteins was the satisfied condition (ratio > ±2 and p value < 0.05); b: The number of proteins was
only detected at CK or treatments (NaCl, AM, AM + NaCl).
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2.5. Functional Classification of Proteins

2.5.1. Salt Tolerance-Related Proteins Induced by Symbiosis

As shown in Table 2, a total of 187 differentially expressed proteins were identified in the AM
vs the CK group. The 186 proteins were compared with the AM + NaCl vs the AM group; a total of
112 were found in the AM + NaCl vs the AM group. Among the 112 proteins, four proteins were
highly abundant, 25 were newly expressed proteins under salt stress, and 14 proteins were identified
as symbiotic salt tolerance related proteins after referring to many academic documents, as shown in
Table A1. These 14 proteins are beneficial to the maintenance of AMF-E. angustifolia symbiosis and
improved the salt tolerance of the plant under salt stress.

2.5.2. Functional Classification of Salt Tolerance-Related Proteins Induced by Symbiosis

Blast2GO (Version 3.3.5) was used to annotate the biological functions of the targeted proteins.
These proteins were divided into seven groups (Figure 4), including metabolism, signal transduction,
redox, transport, cytoskeleton, protein synthesis, protein folding, and degradation (Table A1). Among
them, the proportion of metabolic and protein folding related proteins were the largest, which was
22%. The second category was related to redox, transport, and cytoskeleton, which was 14%. The third
category included signal transduction-related and protein synthesis proteins.
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2.5.3. Salt-Induced Mycorrhizal Protein

As shown in Figure 5, after a comparison of differentially expressed proteins between NaCl vs CK
and AM + NaCl vs AM groups by VENNY 2.1 (http://bioinfogp.cnb.csic.es/tools/venny/index.html),
121 out of 392 proteins in the AM + NaCl vs AM group were identical with those in the NaCl vs
CK group. It is suggested that these 121 proteins are salt-tolerant related proteins of E. angustifolia
under salt stress, and are not caused by mycorrhizal. However, 271 proteins not in the NaCl vs CK
group were considered to be salt-induced mycorrhizal proteins. The mycorrhizal proteins produced
by AMF-E. angustifolia symbiosis to adapt to salt stress under salt stimulation. Thus, the salt tolerance
of plants can be improved.
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2.5.4. Functional Classification of Salt-Induced Mycorrhizal Protein

A total of 57 out of 271 proteins were previously reported to be key proteins for the salt response,
as shown in Table A2. These were divided into 10 groups by Blast 2 GO analysis (Figure 6). In these
functional groups, the first class (23%) are proteins related to metabolism. There are nine (accounting
for 14%) different expressed proteins in the signal transduction pathway, which is the second class.
Meanwhile, the other 10 functional groups are also involved in protein redox, protein synthesis,
photosynthesis, energy, transport, the cytoskeleton, and stress response related proteins.
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3. Discussion

AMF and salt affected the obvious physical appearance of E. angustifolia leaf, and both have a
clear interaction. For this reason, we think that AMF has a great influence on salt habitats and that,
moreover, salt stress is also a factor in this influence. On the one hand, compared with the AM vs
CK group and the AM + NaCl vs AM group, the salt-tolerant proteins caused by the symbiosis could
be identified; on the other hand, by comparing the differentially abundant proteins of the NaCl vs
CK group and the AM + NaCl vs AM group, the protein for the symbiosis response caused by salt
treatment could be identified. Therefore, these two ways were selected to discuss how symbiosis
responds to salt stress at the protein level (Figure 7).



Int. J. Mol. Sci. 2019, 20, 788 7 of 24
Int. J. Mol. Sci. 2019, 20 7 

 

 
Figure 7. Biological functional classification of differential proteins. 

3.1. Proteins Related to Metabolism 

Metabolism, consisting of basic physiological processes, maintains a series of activities of a 
living organism. This research shows the most important factor in the leaves of the E. angustifolia 
after salt stress was the abundance of secondary metabolism-related proteins. In secondary 
metabolism, especially the metabolism of the protein, phenylpropane and flavonoids increased 
significantly under salt stress. 

Studies have shown that secondary metabolites of plants change during the symbiosis of 
mycorrhizal fungi and plants [16]. These secondary metabolites play an important role in the 
symbiotic relationship between plants and mycorrhizal fungi [17]. For example, the content of 
lignin and soluble phenol in the tomato was increased by inoculation with Arbuscular mycorrhizal 
fungi. Flavonoids can promote spore germination and mycelium growth and increase the content of 
flavonoids after mycorrhizal formation [18,19]. In this study, there were two pathways involved in 
metabolism-related proteins, as shown in Figure 8. 

1. In this study, we found a chorismate mutase (CM), which catalyzes the conversion of 
branched acid to prebenzoic acid. Prebenzoic acid can produce phenolic compounds through 
the phenylpropane metabolic pathway, including phenylalanine (Phe), tyrosine (Tyr), 
anthocyanin, and tannin [20,21]. Phenylpropane metabolism is indirectly generated by the 
shikimic acid pathway. This pathway might play an important role in plant stress defense. We 
found three proteins that relate to the phenylalanine metabolic pathways, including shikimate 
O-hydroxycinnamoyltransferase, cinnamyl alcohol dehydrogenase, and caffeoyl-CoA 
O-methyltransferase. Flavonoids are synthesized by the condensation of phenylpropane 
derivatives with malonate monoacyl coenzyme A. In addition, shikimic acid 
O-hydroxyacinnamate transferase and caffeoyl coenzyme A-O-methyltransferase were also 
involved. 

2. In this study, we found that the phosphoribosyltransferase (APT) was up-regulated, which 
was the first key enzyme in the tryptophan production reaction of o-aminobenzoic acid. 
Phosphorylribosyltransferase activity of o-aminobenzoic acid was enhanced, which 
accelerated the synthesis of tryptophan in plants under salt stress. It is well known that 
tryptophan is a precursor of auxin (indole acetic acid) as well as protein synthesis in plants. 
Auxin response was also identified in the leaves of E. angustifolia. We deduced that these two 
pathways synthesize auxin to maintain the growth and metabolism of mycorrhizal plants 
under salt stress. 

Figure 7. Biological functional classification of differential proteins.

3.1. Proteins Related to Metabolism

Metabolism, consisting of basic physiological processes, maintains a series of activities of a living
organism. This research shows the most important factor in the leaves of the E. angustifolia after
salt stress was the abundance of secondary metabolism-related proteins. In secondary metabolism,
especially the metabolism of the protein, phenylpropane and flavonoids increased significantly under
salt stress.

Studies have shown that secondary metabolites of plants change during the symbiosis of
mycorrhizal fungi and plants [16]. These secondary metabolites play an important role in the symbiotic
relationship between plants and mycorrhizal fungi [17]. For example, the content of lignin and soluble
phenol in the tomato was increased by inoculation with Arbuscular mycorrhizal fungi. Flavonoids
can promote spore germination and mycelium growth and increase the content of flavonoids after
mycorrhizal formation [18,19]. In this study, there were two pathways involved in metabolism-related
proteins, as shown in Figure 8.

1. In this study, we found a chorismate mutase (CM), which catalyzes the conversion of
branched acid to prebenzoic acid. Prebenzoic acid can produce phenolic compounds
through the phenylpropane metabolic pathway, including phenylalanine (Phe), tyrosine
(Tyr), anthocyanin, and tannin [20,21]. Phenylpropane metabolism is indirectly generated
by the shikimic acid pathway. This pathway might play an important role in plant stress
defense. We found three proteins that relate to the phenylalanine metabolic pathways,
including shikimate O-hydroxycinnamoyltransferase, cinnamyl alcohol dehydrogenase, and
caffeoyl-CoA O-methyltransferase. Flavonoids are synthesized by the condensation of
phenylpropane derivatives with malonate monoacyl coenzyme A. In addition, shikimic
acid O-hydroxyacinnamate transferase and caffeoyl coenzyme A-O-methyltransferase were
also involved.

2. In this study, we found that the phosphoribosyltransferase (APT) was up-regulated, which
was the first key enzyme in the tryptophan production reaction of o-aminobenzoic acid.
Phosphorylribosyltransferase activity of o-aminobenzoic acid was enhanced, which accelerated
the synthesis of tryptophan in plants under salt stress. It is well known that tryptophan is a
precursor of auxin (indole acetic acid) as well as protein synthesis in plants. Auxin response was
also identified in the leaves of E. angustifolia. We deduced that these two pathways synthesize
auxin to maintain the growth and metabolism of mycorrhizal plants under salt stress.
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Alkaline neutral invertase is involved in the decomposition of sucrose into glucose and fructose
and plays an important role in plant growth and development. The study showed that NaCl and
PEG (Polyethylene glycol) stress increased the differential expression of sugar cane SoNIN1 in the root
and leaf [22], and the alkaline neutral transformation enzyme was involved in the stress response.
This study found that after inoculation of AMF to the E. angustifolia leaf in the treatment of salt stress,
alkaline neutral invertase increased its expression, thereby improving the soluble sugar content of the
E. angustifolia leaf, and providing more sugar for plant metabolism.

3.2. Protein Synthesis, Folding, and Degradation Related Proteins

Protein synthesis plays an important role in plant growth under abiotic stress. We found two
proteins (ubiquitin-60S ribosomal L4 and 60S acidic ribosomal P1) were up-regulated in the mycorrhizal
plant. Similar ribosomal proteins were also found in studies [23]. One study showed that mitochondrial
elongation factors can extend peptide chains more [24], and this was also found to be up-regulated in
this study. These proteins related to protein synthesis increase the tolerance of the mycorrhizal plant to
salt stress by increasing the expression level.

Proteins can lose their biological functions due to denaturation under adverse conditions. Correct
folding and degradation of proteins are key to the maintenance of normal cell functions. Molecular
chaperones and folding enzymes play an important role in the maintenance of the natural conformation
of proteins, which can help them fold correctly [23,25]. In this study, we found that four folding
enzymes, peptide-based prolyl cis-trans isomerases, and four molecular chaperones were up-regulated
under salt stress, including peptidyl-prolyl cis-trans isomerase FKBP12, FKBP-type peptidyl-prolyl
cis-trans isomerase 5 isoform 1, peptidyl-prolyl cis-trans isomerase CYP18-1, peptidyl-prolyl cis-trans
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isomerase FKBP62, prefoldin subunit 1, prefoldin subunit 2, heat shock 70 kDa partial, and small heat
shock protein 17.3 kDa. Therefore, the up-regulation of these four peptidyl prolyl cis-trans isomerases
and four molecular chaperones completes the correct folding of proteins and helps the mycorrhizal
E. angustifolia resist salt stress.

E3 ubiquitin ligase (UPL3) and ubiquitin-like 1-activating enzyme (E1 B) increased their expression
under salt stress. Studies have shown that E3 ubiquitin protein ligase, ubiquitin activation enzyme
E1, and ubiquitin ligase all catalyze ubiquitin to their target proteins. Moreover, the specificity of the
ubiquitin pathway is controlled by E3, which is pertinent because it can provide the greatest response
to environmental stress by regulating the transcription factor of the downstream stress response [26].

3.3. Signal Transduction-Related Proteins

Plants exposed to an adverse environment for a long time will produce a complex system of signal
sensing and transduction. It is particularly important to understand how mycorrhizal plants perceive
and transmit this stress signal, as well as method of improving the plant salt tolerance under salt stress.

In this study, a series of proteins related to signal transduction were screened out, including G
protein, phospholipase C, plasma membrane Ca2+ transporter ATPase (PMCA), calcium-dependent
protein kinase (CDPKs), calmodulin (CaM), and calcium binding (CML), and were up-regulated.
They communicated with each other, thus completing the process of perceiving and transmitting
stress signals.

G protein, also known as signal-converting protein or coupling protein, can specifically bind
and recognize signals on the cell membrane, and produce intracellular signals with the medial
membrane effector enzyme (phospholipase C), which plays a role in signal transduction. After
transmembrane conversion, extracellular signals are further transmitted and expanded through Ca2+

(second messenger) signals, which eventually lead to a series of physiological and biochemical reactions
in cells. Ca2+ participates in metabolic pathways that are mainly dependent on changes in the Ca2+

concentration [27], and this process is achieved by the various calcium transport systems distributed
in the cell organelles and cell membranes [28]. The changes in the Ca2+ concentration in the various
processes in this study depended on the plasma membrane Ca2+ transporter, ATPase (PMCA), which
is the main Ca2+ transporter, transporting Ca2+ to the extracellular space at the cost of hydrolyzing an
ATP molecule. Studies have shown that the calcium-dependent protein kinase (CDPKs), calmodulin,
calmodulin, and the calcium phosphatase B protein, are involved in cell signal transduction and
responses to specific stimuli [29,30]. In this study, the Ca2+ concentrations maintained a steady
state in the cell wall, mitochondria, endoplasmic reticulum, and vacuole, while the concentration
in the cytoplasm was low. After salt stimulation, the Ca2+ concentration in the cytoplasm increased
significantly. On the one hand, Ca2+ directly binds to the calmodulin or the calmodulin, transfers the
received signal to the protein kinase and stimulates its activity, or the activity of calcium depends on
the protein kinases (CDPKs), which are directly stimulated by the Ca2+ signal, and directly participate
in and cause subsequent physiological responses through these two processes. These two processes
directly participate in and cause subsequent physiological responses.

3.4. ROS Scavenging-Related Proteins

Active oxygen species (ROS) are usually accumulated in plants under salt stress [31], which can
be used as signal molecules to activate the plant stress defense system [32]. However, all ROS are
very harmful to organisms at high concentrations, leading to cell membrane peroxidation, destruction
of enzyme activity, and eventually leading to cell inactivation. Therefore, the removal of ROS can
resist salt damage and improve the salt tolerance of plants. In this study, thioredoxin (TRX) and
glutathione (GRX) were involved in ROS scavenging as redox enzymes. In these plants, based on the
TRX redox system that runs in various kinds of organelles, including the cytoplasm, mitochondria,
and chloroplasts [33–36], it was shown that TRX plays a key role in plant redox regulation. At present,
many GRXs have been identified in different plants. For example, over-expression of the tomato
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SLGRX1 gene can enhance the plant’s resistance to oxidative stress, drought resistance, and salt
pollution in Arabidopsis. In contrast, silencing this gene leads to an increased insensitivity to stress
in the tomato [37]. Meanwhile, the gene silencing increases the membrane lipid peroxide level and
the accumulation of ROS and suppresses the activity of antioxidant enzymes under high-temperature
stress. This suggests that GRXs are involved in the regulation of the redox status and the response to
high-temperature stress.

In our study, three glutathione s-transferase (GST) and two glutathione peroxidase (GPX) were
found. Studies have reported that to prevent ROS damage, the amount of glutathione transferase
(GST) in plants will increase, which can catalyze the removal of ROS in plants [38]. Glutathione
peroxidase (GPX) is a sulfur-containing peroxidase, which can remove hydrogen peroxide, organic
hydroperoxides, and lipid peroxides from the organism, and block further damage of ROS to the
organism [39,40]. It has been shown that chloroplast glutathione transferase plays a very important
role in the resistance of low concentrations in Stargrass seedlings [41]. When plants are exposed to
high salt stress, the expression activity of GPX will be enhanced and the tolerance of plants to salt
stress will be enhanced [42–44]. In addition, excessive expression of GST/GPX in transgenic tobacco
under salt stress conditions for seed germination and seedling growth were improved more than for
the control group, suggesting that GST/GPX increases the ROS removal in plants, protects plants from
oxidative damage, and maintains the growth of plants [45,46]. These results suggest that the GST/GPX
system is a key factor in the improvement of the salt tolerance of plants through its ROS scavenging
ability under salt stress. Peroxidase (POD) is one of the key enzymes in plants under stress conditions
in the enzymatic defense system. It cooperates with superoxide dismutase and catalase to remove
excess ROS to improve plant resistance.

“Arbuscular Mycorrhizal Symbiosis Modulates Antioxidant Response and Ion Distribution in
Salt-Stressed Elaeagnus angustifolia Seedlings”- Changes of SOD, CAT, POD, and APX activities in the
leaves of E. angustifolia inoculated with AMF and those of non-inoculated E. angustifolia under 0 and
300 salt concentrations were analyzed [47].

As shown in Figure 9, mycorrhizal seedlings had a higher leaf SOD (superoxide dismutase), CAT
(Catalase), POD (Peroxidase), and APX (ascorbate peroxidase) activity than that of the non-mycorrhizal
seedlings during salt stress. The mycorrhization of the plants led to increased levels of leaf antioxidant
defense systems during stress conditions. The results obtained at the protein level are consistent with
the results of the apparent physiological indicators in this study. Therefore, we can conclude that
TRX/GRX, GST/GPX, and POD are up-regulated in mycorrhizal plants under salt stress, which results
in a significant increase of SOD, CAT, POD, and APX activities in plant leaves, thus improving the salt
tolerance of mycorrhizal plants.

3.5. Energy-Related Protein

Mitochondria are the main site of oxidative phosphorylation and the synthesis of adenosine
triphosphate (ATP) in cells, and they provide energy for cell activity. NADH dehydrogenase,
cytochrome C oxidase, iron sulfur protein NADH dehydrogenase, and ATP synthase up-regulation
were found in this study as complex compounds I, IV, and V participated in the mitochondrial electron
transport. The mitochondrial electron transport chain is also called the respiratory chain, and the
cells transfer electrons obtained from the oxidation of macromolecules via I, II, III, and IV complexes
and the energy produced by the electron transfer maintains the proton gradient of the mitochondrial
inner membrane, which is utilized by complex V (ATP synthase) to catalyze the formation of ATP.
In this study, proteins involved in providing cellular energy were up-regulated to provide energy for
mycorrhizal plants to resist salt stress.
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Figure 9. Effects of AMF inoculation on the superoxide dismutase (SOD) (A), catalase (CAT) (B),
peroxidase (POD) (C), and ascorbate peroxidase (APX) (D) activities in the leaves during different salt
conditions. M, mycorrhizal; NM, non-mycorrhizal; 0 mmol/L, without salt stress; 300 mmol/L, during
salt stress. Columns represent the means for three plants (n = 3). Error bars show the standard error.
Columns with different letters indicate significant differences between treatments at p < 0.05. Note:
cited from “Arbuscular Mycorrhizal Symbiosis Modulates Antioxidant Response and Ion Distribution
in Salt-Stressed Elaeagnus angustifolia Seedlings” [47].

3.6. Photosynthesis-Related Proteins

AMF and plant symbiosis can promote plant growth by increasing the photosynthesis of plants
under salt stress, thereby increasing the ability of plants to resist the salt stress [48–53]. In this
study, a photosystem II D1 precursor processing PSB27 was found to have upregulated expression.
Photosystem II D1 protein is the core protein of photosystem II, which is synthesized in light and is
injured by light or other adverse factors. Repairing D1 protein damage repairs PS II, maintaining its
dynamic balance through continuous turnover [54,55]. In addition, the reactive center proteins, D1
and D2, are the binding sites of the auxiliary factors for all redox activities, which are necessary for
PSII electron transport [54,56]. Thus, the photosystem II D1 protein plays an important role in the
maintenance of the stability of the PSII reaction center. The previously mentioned thioredoxin (TRX),
which is electronically reduced by the ferredoxin/thioredoxin system (Fd/TRX) in the chloroplasts
of plants, is involved in the electron transport of plant photosynthesis. Guo [57] and other studies
found that GRXs gene-silenced plants resulted in a significant decrease in ETR of photosystem II, and a
significant increase in NPQ in varying degrees. Meanwhile, GRXs gene silencing results in a significant
decrease in the maximum quantum efficiency (Fv/Fm) and the actual electronic yield (Φ PSII) under
high temperature stress. This is consistent with the results of the chlorophyll fluorescence parameters
in the early stage of this experiment [58], in which Fv/Fm, PSII, NPQ, and ETR in the leaves of
E. angustifolia inoculated with AMF were higher than those of non-mycorrhizal plants under salt stress.
In this study, TRX and GRX were up-regulated at the protein level, and Fv/Fm, PSII, NPQ, and ETR of
mycorrhizal plants were significantly increased at the apparent level, thus alleviating the damage of
salt stress to plants.
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3.7. Network Interaction Predictions Based on Differential Expression

The protein–protein interaction information of the studied proteins was retrieved from the IntAct
molecular interaction database (http://www.ebi.ac.uk/intact/) by their gene symbols or STRING
software (http://string-db.org/). These interactions included the direct physical proteins and the
indirect proteins correlated with indirect functions as shown in Figure 10. The results showed that
ubiquitin-60S ribosomal was the most correlated protein, directly or indirectly, with connections to
proteins, such as 60S acidic ribosomal, elongation factor mitochondrial, ubiquitin-activating enzyme E1,
and E3 ubiquitin-ligase. Additionally, most of the target proteins were associated with ubiquitin-60S
ribosomal and were in the protein synthesis, folding, and degradation pathway. Thus, this pathway
might play an important role in stress tolerance. Ubiquitin-60S ribosomal interacts with various
peroxidases, thereby participating in E. angustifolia protein synthesis, folding, and degradation
biosynthetic processes, and modulates stress responses. These findings showed that the salt stress
response is a multi-factor process involving many protein interactions.

The hypothesized mechanism of the improved salt tolerance of the mycorrhizal plant was revealed
from the proteome.
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In the current study, based on proteomic data analysis, it is suggested that AMF can improve the
salt tolerance of E. angustifolia seedlings (Figure 11).

1. AMF accelerates the secondary metabolism of plants, mainly phenylpropanoid metabolism
(shikimate O-hydroxycinnamoyltransferase, cinnamyl alcohol dehydrogenase, and caffeoyl-CoA
O-methyltransferase), reducing salt damage to plants.

2. AMF enhances the signal transduction of the second messenger Ca2+ (G protein, phospholipase C,
plasma membrane Ca2+ transporter ATPase (PMCA), calcium binding (CML), calcium-dependent
kinases (CDPKs), and calmodulin (CaM), increasing the speed of sensing and transmitting of
stress signals, allowing plants to follow up.

3. Among a variety of antioxidant pathways (TRX/GRX, GST/GPX, POD), AMF enhances the
antioxidant capacity of plants by increasing ROS clearance.

http://www.ebi.ac.uk/intact/
http://string-db.org/
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4. AMF promotes protein biosynthesis, speeding up protein folding, and inhibiting protein
degradation (ubiquitin-60S ribosomal, 60S acidic ribosomal, elongation factor mitochondrial,
ubiquitin activating enzyme E1, and E3 ubiquitin- ligase).

5. In the chloroplast, AMF maintains the PSII reaction centre conformation stability and speeds up
photosynthetic electron transport (TRX/GRX, photosystem II D1 precursor processing PSB27-
chloroplastic); in mitochondria, AMF enhances the synthesis of ATP (NADH dehydrogenase,
cytochrome C oxidase, iron sulfur protein NADH dehydrogenase, and ATP synthase), providing
sufficient energy for cellular activities.Int. J. Mol. Sci. 2019, 20 13 
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folding and degradation: peptidyl-prolyl cis-trans isomerase FKBP12; FKBP-type peptidyl-prolyl
cis-trans isomerase 5 isoform 1; peptidyl-prolyl cis-trans isomerase CYP18-1; peptidyl-prolyl cis-trans
isomerase FKBP62; prefoldin subunit 1; prefoldin subunit 2; Heat shock 70 kDa partial; small
heat shock protein 17.3 kDa; E3 ubiquitin ligase (UPL3); ubiquitin-like 1-activating enzyme (E1
B). PMCA: calcium-transporting ATPase; CaM: calmodulin; CML: calcium-binding CML20; CDPK:
calcium-dependent kinase; POD: peroxidase; GST: glutathione S-transferase; GPX: glutathione
peroxidase; GRX:glutaredoxin; TRX:thioredoxin; D1:photosystem II D1 precursor processing PSB27;
EF-Tu: elongation factor mitochondrial; NADH: NADH dehydrogenase [ubiquinone] 1 beta
subcomplex subunit 7; Fes: NADH dehydrogenase [ubiquinone] iron-sulfur mitochondrial; Cytc:
cytochrome c oxidase subunit mitochondrial.

4. Materials and Methods

4.1. Experimental Materials and Salinity Treatments

E. angustifolia seeds were provided by Heilongjiang Jinxiudadi Biological Engineering Co.
Ltd. (Haerbin, China). AM fungus Rhizophagus irregularis (RI) was propagated and preserved
by Heilongjiang Provincial Key Laboratory of Ecological Restoration. The mycorrhizal inoculum
containing approximately 25–30 AM propagules/g consisted of soil, spores, mycelia, and infected root
fragments. The soil was collected from the Forest Botanical Garden of Heilongjiang Province, sieved
(5 mm), and mixed with vermiculite (3:1, soil:vermiculite, v/v). The soil medium was pre-autoclaved
at 121 ◦C for 2 h.

There were four different treatments as follows: E. angustifolia inoculated Rhizophagus irregularis
without salt stress, E. angustifolia inoculated Rhizophagus irregularis under salt stress (300 mmol/L



Int. J. Mol. Sci. 2019, 20, 788 14 of 24

NaCl), E. angustifolia non-inoculated Rhizophagus irregularis without salt stress, and E. angustifolia
non-inoculated Rhizophagus irregularis under salt stress (300 mmol/L NaCl). Each treatment had six
replicates. The inoculated dosage of mycorrhizal inoculum per pot was 10 g. The same amount of
inactive mycorrhizal inoculum (121 ◦C, 2 h) was used in non-inoculated treatments. The 300 mmol/L
NaCl was added into the pots after 4 months of being inoculated with mycorrhizal inoculum as
described [47]. Seedlings continued to be cultivated for 30 days. The experiment was carried out under
outdoor natural conditions.

Three seedlings were randomly selected from each pot and 6–7 round leaves were removed from
each seedling. Leaves from two pots of the same treatment were combined as one sample. There were
three biological repeats per treatment. The proteomic, AMF colonization, and growth parameter of the
samples was detected.

4.2. Measurement of AMF Colonization and Growth Parameter

The AMF colonization rate of E. angustifolia was determined by the acid fuchsin staining
method [59]. The height and diameter of E. angustifolia were measured by a vernier caliper. The root
area and root length of E. angustifolia were measured by a root scanner.

4.3. Measurement of Soluble Sugar Content, Soluble Protein Content in the Leaves of E. angustifolia under
Salt Stress

To assess the degree of stress, the contents of sugar and soluble protein were detected using the
anthrone colorimetric method and coomassie brilliant blue G-250 method [60,61]. Samples were taken
during the same growth period and from the same leaf positions.

4.4. Extraction and Quantification of Proteins

The leaves of all samples were frozen in liquid nitrogen and ground with a pestle and mortar.
TCA/acetone (1:9) was added to the powder (1:5, v/v) and mixed by vortex. The mixture was placed
at –20 ◦C for 4 h, and centrifuged at 6000× g for 40 min at 4 ◦C. The supernatant was discarded.
The pre-cooling acetone was added into the pellet and washed three times. The precipitation was
air dried. SDT buffer (1:30, v/v) was added to 20–30 mg of powder, mixed, and boiled for 5 min.
The supernatant was filtered with 0.22 µm filters. The filtrate was quantified with the BCA Protein
Assay Kit (P0012, Beyotime, Shanghai, China).

4.5. FASP Digestion

Proteins of each sample (200 µg) were mixed with 200 µL UA buffer, and the mixture was filtered
by a ultrafiltration centrifugal tube (10 kD) at 14,000× g for 15 min, and the pellet was re-suspended
and filtered. The 100 µL iodoacetamide (100 mM IAA in UA buffer) was added into each sample and
incubated for 30 min in darkness. The filters were washed with 100 µL UA buffer three times and
subsequently with 100 µL 25 mM NH4HCO3 buffer twice. The protein suspensions were digested
with 4 µg trypsin in 40 µL 25 mM NH4HCO3 buffer overnight at 37 ◦C. The collection of the resulting
peptides with a new collector and peptides were desalted on C18 Cartridges, freeze-dried, and
reconstituted in 40 µL of 0.1% (v/v) formic acid. The peptide content was estimated by UV light
spectral density at 280 nm.

4.6. LC-MS/MS Analysis

Proteins were separated by using an Easy nLC HPLC liquid phase system with an increasing
flow rate. The chromatographic column was balanced by 95% A solution (0.1% formic acid aqueous
solution). The sample was injected onto the C18 column (Thermo Scientific Acclaim PepMap100,
100 µm × 2 cm, nanoViper C18) by an automatic sample injector and separated by C18-a2 analytical
column (Thermo scientific EASY column, 10 cm, ID75 µm, 3 µm, C18-A) at a flow rate of 300 mL/min.
Solution B (0.1% formic acid acetonitrile aqueous solution) was then used for gradient elution.
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The samples separated by chromatography were analyzed with a Q-Exactive mass spectrometer.
The analysis time was 120 min, the detection method was the positive-ion mode, the parent-ion
scanning range was 300–1800 m/z, the resolution of a first-order mass spectrometer was 70,000 at
200 m/z, the AGC target was 3e6, the first level maximum IT was 10 ms, the number of scan ranges
was 1, and the dynamic exclusion was 40.0 s.

4.7. Database Search and Protein Quantification

The database used was P16440_Unigene.fasta.transdecoder_73797_20161212.fasta (Sequence
73797, self-building). Maxquant software 1.3.0.5 [62] was used to analyze the protein qualitatively and
quantitatively in the original raw file. The maxquant software parameter table is shown in Table 3.

Table 3. Maxquant software parameter table.

Item Value

Main search ppm 6
Missed cleavage 2

MS/MS tolerance ppm 20
De-Isotopic True

Enzyme Trypsin
Database P16440_Unigene.fasta.transdecoder_73797_20161212.fasta

Fixed modification Carbamidomethyl (C)
Variable modification Oxidation(M), Acetyl (Protein N-term)

Decoy database pattern reverse
LFQ True

LFQ min. ratio count 1
Match between runs 2min

Peptide FDR 0.01
Protein FDR 0.01

For the proteins identified by mass spectrometry in the original data, differentially expressed
proteins and differentially expressed proteins were screened by the screening criteria of Ratio > +/−2
and p value < 0.05. The quantified protein sequence information was extracted in batches from the
UniProtKB database (version number: 201701).

4.8. Protein GO Functional Annotation and KEGG Pathway Annotation

Blast 2 GO was used to annotate the functions of the targeted proteins [63]. KASS software was
used for pathway analysis. The target protein sequences were classified by KO compared to the KEGG
GENES database, and then the pathway information involved in the target protein sequence was
automatically acquired according to the KO classification.

4.9. Protein—Protein Interact Network (PPI)

The protein—protein interaction information of the studied proteins was retrieved from the IntAct
molecular interaction database (http://www.ebi.ac.uk/intact/) by their gene symbols or STRING
software (http://string-db.org/). The results were downloaded in the XGMML format and imported
into Cytoscape5 software (http://www.cytoscape.org/, version 3.2.1) to visualize and further analyze
the functional protein-protein interaction networks. Furthermore, the degree of each protein was
calculated to evaluate the importance of the protein in the PPI network.

http://www.ebi.ac.uk/intact/
http://string-db.org/
http://www.cytoscape.org/
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5. Conclusions

E. angustifolia seedlings’ growth was significantly inhibited by salt stress, and growth was
improved in mycorrhizal symbionts. Furthermore, mycorrhizal E. angustifolia had a higher leaf
soluble sugar and soluble protein content than that of the non-mycorrhizal seedlings during
salt stress. Additionally, it was found that AMF inoculated E. angustifolia seedlings increased
secondary metabolism, enhanced Ca2+ signal transduction and ROS scavenging capacity, promoted
protein biosynthesis, accelerated protein folding, and inhibited protein degradation compared with
non-inoculated plants under salt stress. In addition, AMF maintained the conformation stability of the
PS II reaction center, accelerated the photosynthetic electron transfer, enhanced ATP synthesis, and
provided sufficient energy for cell activity. Overall, these findings show that AMF played an important
role in easing salt stress in plants and contributed to saline alkali soil remediation.
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Appendix A

Table A1. The identification and quantitative analysis of the protein in leaves of E. angustifolia with AMF under salt stress (salt-tolerance-related proteins induced by
symbiosis).

TR Number Protein Name Unique
Peptides

Sequence
Coverage [%]

Mol. Weight
[kDa] AM/CK AM+NaCl/AM Fold

Change
t Test p
Value

Metabolic process
115007 Auxin response 4 2 5.7 52.521 under over
142773 purple acid phosphatase 2-like [64,65] 2 11.2 53.569 under over
71893 probable alkaline neutral invertase B [22] 2 4 65.249 under over

Protein folding and degradation
101573 AAA-ATPase At5g17760-like [66] 2 8 58.706 under over
12335 Heat shock 70 kDa partial [67] 1 55.3 22.844 under over

143526 small heat shock protein 17.3 kDa 2 1.1 81.397 over over 2.32 0.032
Protein synthesis

109446 ubiquitin-60S ribosomal L40 [23] 1 41.4 14.643 under over
Redox

127397 thioredoxin 1 [68,69] 1 10.5 20.973 under over
130845 glutaredoxin 3 [37] 2 24 13.046 under over

Cytoskeleton
114464 actin-related 7 [70] 1 4.7 39.154 under over

Transport
119356 transmembrane 147 [71] 2 10.5 25.299 under over
88151 vesicle transport v-SNARE 13 [72] 2 15.8 24.96 under over

Signalling
136541 serine/threonine-protein kinase PRP4 [73,74] 1 5.1 28.709 under over
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Table A2. The identification and quantitative analysis of the protein in leaves of E. angustifolia with AMF under salt stress (salt-induced mycorrhizal protein).

TR Number Protein Name Unique
Peptides

Sequence
Coverage [%]

Mol. Weight
[kDa] AM+NaCl/AM Fold

Change
t Test p
Value

Metabolic process
103310 beta-glucosidase 40 [75] 3 7.7 60.254 over
142616 beta-glucosidase 42 [75] 7 18.8 57.009 over 2.16 0.037
105849 1,2-dihydroxy-3-keto-5-methylthiopentene dioxygenase [76] 6 32.2 23.919 over 2.42 0.014
121954 anthocyanidin reductase [77] 2 5.2 37.122 over
123153 shikimate O-hydroxycinnamoyltransferase-like 2 5.5 47.978 over
124556 acetyl-CoA carboxylase [78] 5 4.8 155.54 over
47457 chorismate mutase chloroplastic-like [20,21] 1 8.7 14.428 over
66089 probable cinnamyl alcohol dehydrogenase 1 [20,21] 9 31.5 38.574 over 2.22 0.006
99076 caffeoyl-CoA O-methyltransferase [20,21] 1 1.5 72.473 over
73516 phosphoglucan phosphatase chloroplastic isoform X1 1 2 62.123 over

98093 delta-1-pyrroline-5-carboxylate dehydrogenase
mitochondrial-like [2] 9 35.5 37.633 over 2.07 0.001

99156 anthranilate phosphoribosyltransferase [20,21] 2 3.3 83.928 over 2.06 0.016
120341 UDP-glucose 4-epimerase [79] 15 49.7 43.428 over 2.68 0.007

Signalling
87721 phospholipase C 6 14 59.562 over
114971 calcium-dependent kinase 29 [30] 1 6 51.414 over
142143 calcium-transporting ATPase plasma membrane-type [28] 1 11.4 15.308 over
155255 glycine-rich 2-like [80] 2 32.8 11.363 over 2.17 0.018
19556 calcium-transporting ATPase plasma membrane-type [28] 1 8.8 18.439 over
67342 probable calcium-binding CML20 [29] 3 15.8 22.997 over
61926 calmodulin-7 [30] 7 46.7 21.009 over 2.7 0.046
24540 guanylate-binding family 1 7.8 13.089 over

Protein folding and degradation
110214 E3 ubiquitin- ligase UPL3 [26] 2 2.3 196.04 over
122927 peptidyl-prolyl cis-trans isomerase FKBP12 [23,25] 2 21.4 12.076 over

74495 FKBP-type peptidyl-prolyl cis-trans isomerase 5 isoform 1
[23,25] 1 8.9 33.514 over

61488 prefoldin subunit 2 [23,25] 3 31.1 16.223 over
72620 prefoldin subunit 1 [23,25] 3 26.4 14.922 over
91034 peptidyl-prolyl cis-trans isomerase CYP18-1 [23,25] 1 8.8 17.474 over
93048 peptidyl-prolyl cis-trans isomerase FKBP62-like [23,25] 1 20.8 13.805 over
73875 ubiquitin-like 1-activating enzyme E1 B [26] 6 11.4 74.427 over 2.64 0.000

Protein synthesis
92755 60S acidic ribosomal P1 2 36.9 14.968 over 2.73 0.013
33127 exportin-2 [81] 1 14.1 11.097 over
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Table A2. Cont.

TR Number Protein Name Unique
Peptides

Sequence
Coverage [%]

Mol. Weight
[kDa] AM+NaCl/AM Fold

Change
t Test p
Value

106351 nuclear pore complex NUP98A [82,83] 1 3.8 50.09 over
109126 elongation factor mitochondrial [24] 2 5.4 44.427 over

Redox
101431 monothiol glutaredoxin-mitochondrial 3 15.6 19.243 over 2.27 0.010
12964 peroxidase 16-like 1 7.6 13.952 over
29124 probable linoleate 9S-lipoxygenase 5 2 19.3 17.097 over 3.06 0.036
59386 glutathione S-transferase L3-like [39,40] 11 42.6 29.735 over 2.65 0.003
79685 probable glutathione peroxidase 2 [45,46] 6 33.2 21.733 over 2.35 0.017
97566 2,4-D inducible glutathione S-transferase [39,40] 4 22.7 25.559 over
87674 glutathione S-transferase T1 [39,40] 3 16.8 27.036 over
88089 probable glutathione peroxidase 8 [45,46] 3 17 19.394 over 2.43 0.006

Energy
109215 ATP synthase subunit mitochondrial 4 60.6 14.69 over 3.36 0.015

141440 NADH dehydrogenase [ubiquinone] 1 beta subcomplex
subunit 7 5 40.6 15.264 over 2.59 0.010

28754 NADH dehydrogenase [ubiquinone] 1 beta subcomplex
subunit 7 1 7.9 11.862 over

78587 NADH dehydrogenase [ubiquinone] iron-sulfur mitochondrial 2 9.4 18.933 over 2.19 0.029
104876 cytochrome c oxidase subunit mitochondrial-like 2 30.3 11.185 over 2.27 0.050

Transport
88283 aquaporin PIP2-1-like [84] 1 4.9 30.753 over
7488 aquaporin PIP1-4 [84] 2 11.9 21.091 over

87290 mechanosensitive ion channel 1 [85] 2 2.5 85.926 over
88244 vacuolar sorting-associated 2 homolog 1 [86] 2 6.7 25.106 over
Stress
109624 GDSL esterase lipase 1 [87] 3 13.2 42.914 over
93161 GDSL esterase lipase At3g27950-like [88] 2 8.9 30.265 over 2.07 0.029
58645 stress response NST1-like 1 2.8 35.36 over

Photosynthesis

71168 photosystem II D1 precursor processing
PSB27-chloroplastic-like [54–56] 2 12.3 23.507 over

8490 hexokinase-3 isoform X1 [89] 1 14.9 16.704 over 2.5 0.002
Cytoskeleton

73217 profilin 2 13.1 19.413 over 2.45 0.039
121711 actin-depolymerizing factor 1 [90] 2 26.6 16.042 over
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