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Abstract: Oxidative stress, defined as a disequilibrium between pro-oxidants and antioxidants,
can result in histopathological lesions with a broad spectrum, ranging from asymptomatic hepatitis to
hepatocellular carcinoma in an orchestrated manner. Although cells are equipped with sophisticated
strategies to maintain the redox biology under normal conditions, the abundance of redox-sensitive
xenobiotics, such as medicinal ingredients originated from herbs or animals, can dramatically invoke
oxidative stress. Growing evidence has documented that the hepatotoxicity can be triggered by
traditional Chinese medicine (TCM) during treating various diseases. Meanwhile, TCM-dependent
hepatic disorder represents a strong correlation with oxidative stress, especially the persistent
accumulation of intracellular reactive oxygen species. Of note, since TCM-derived compounds
with their modulated targets are greatly diversified among themselves, it is complicated to elaborate
the potential pathological mechanism. In this regard, data mining approaches, including network
pharmacology and bioinformatics enrichment analysis have been utilized to scientifically disclose
the underlying pathogenesis. Herein, top 10 principal TCM-modulated targets for oxidative
hepatotoxicity including superoxide dismutases (SOD), malondialdehyde (MDA), glutathione (GSH),
reactive oxygen species (ROS), glutathione peroxidase (GPx), Bax, caspase-3, Bcl-2, nuclear factor
(erythroid-derived 2)-like 2 (Nrf2), and nitric oxide (NO) have been identified. Furthermore,
hepatic metabolic dysregulation may be the predominant pathological mechanism involved in
TCM-induced hepatotoxic impairment.
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1. Introduction

It appears in early evolution that oxidative stress commonly associates with either long-term
degenerative diseases or acute ischemia–reperfusion injury [1–6]. The causes for these pathologies
are generally inseparable from the shift of reactive oxygen species (ROS) from mediating normal
physiological responses (i.e., redox biology) to invoke inevitable cellular dysfunctions through
oxidative damage, especially inefficient oxidative phosphorylation in the mitochondria [7]. ROS,
characterized as a byproduct of aerobic metabolism, primarily comprises superoxide anion, hydrogen
peroxide, and hydroxyl radicals that confer reactivity to numerous targets in physiological and
pathological processes. Despite the fact that mammals possess well-equipped antioxidant systems,
including enzymes and non-enzyme antioxidants, it remains inadequate to normalize the severe
hepatotoxicity induced by toxic substances with strong pro-oxidant properties.
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Treatment strategies of traditional Chinese medicine (TCM) in alleviating different diseases,
such as tumor proliferation, diabetic retinopathy, and liver dysfunctions, have had prolonged
utilization and are generally considered as multitarget therapies with minimal adverse actions [8–11].
In contrast to the therapeutic effects, side effects of TCM, such as hepatotoxicity, have rarely been
reported. However, accumulating evidence regarding TCM-associated oxidative hepatotoxicity
was frequently addressed in recent years, particularly in paradoxical pharmacological activities
of toxic and curative actions [12]. The most vital clue is the association between the initiation of
TCM administration and hepatotoxicity generation and, of equal importance, to the deceleration
following withdrawal. Concordantly, liver is the primary organ susceptible to pathological cascades
of oxidative stress. In particular, parenchymal cells are most vulnerable in an oxidative environment.
Abundant ROS are produced from mitochondria, and microsomes in parenchymal cells by regulating
PPARα-associated signaling pathways. In addition, in Kupffer cells, the hepatic oxygen sensor and
resident liver macrophage, has been postulated to trigger the formation of hepatic fibrosis by excessive
ROS-induced apoptosis and inflammation [13]. Both hepatic stellate and endothelial cells are all
specialized in producing ROS in physiological and pathological systems, and accustomed to suffering
from lipid peroxidation [14]. Of note, although studies in the evaluation of mammal’s susceptibility to
TCM-induced oxidative hepatotoxicity have been extensively demonstrated, specific identification
of potential targets in relation to pathogenesis of TCM-dependent hepatotoxicity is limited. Hereby,
we performed a literature review with network pharmacology, aiming to systematically decipher the
highly pathogenic molecular targets for oxidative hepatotoxicity regulated by TCM.

2. Molecular Mechanisms Involved in TCM-Induced Oxidative Hepatotoxicity

2.1. Redox Status in Physiology and Pathology

Redox signaling is of essential importance to aerobic metabolism in regulating cell functions,
including signal transduction pathways, defense in response to invading microorganisms, and gene
expressions for cell physiological activity [15]. Oxidative stress is one of the key pathogenic processes
that mainly associates to the disorder of redox homeostasis. A high concentration of redox signaling
of ROS is commonly observed with cell damage and metabolic dysregulation, including lipid
peroxidation, and irretrievable protein and DNA degeneration [16]. Moreover, the trigger of
oxidative stress in a coordinated manner can disseminate the impairment to extrahepatic organs,
including the failure of kidney, brain, and lung, which seem to indiscriminately oxidize almost all
molecules in tissues [17–19]. However, under normal oxygen metabolism, ROS is perceived to be
a molecular secondary messenger involved in the signal transduction mechanism in response to
cytokines, hormones, and adenosine triphosphate (ATP), regulating the biological and physiological
processes [20]. However, excessive ROS can be efficiently scavenged through intracellular redox
homeostasis to maintain the cell metabolism and survival. The antioxidant system in our body
is sensitive to the alterations in redox state for alleviating potential chain reactions of oxidative
stress. Therefore, whether ROS is linked to orchestrated biological processes in routine metabolism
or initiation of oxidative stress depends on the steady or imbalance of redox state. Aside from
the beneficial effects, disruption of redox homeostasis, by chemicals in general, is correlated to the
moderate-to-severe damage in organisms which, in turn, accelerates the progression of oxidative
stress-related impairment [21].

To keep the generation of ROS controllable in liver, both enzymatic and non-enzymatic systems are
in charge of maintaining the redox homeostasis. The steady-state cellular redox status can malfunction
when exposed to pro-oxidant xenobiotics with toxic levels [22]. More specifically, redundant ROS is
generally eliminated by a series of the following enzymes, primarily containing superoxide dismutase
(SOD), catalase (CAT), and glutathione peroxidase (GPx), whereas non-enzymatic molecules include
glutathione (GSH), tocopherol, and beta-carotene. When the antioxidant system is vulnerable,
the expression of activated ROS will be enhanced [23]. Ultimately, disruption of redox homeostasis
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is established with the undesirable elevated pro-oxidants. Subsequently, the physiological functions
of several amino acids, such as cysteine, tyrosine, and tryptophan, are impaired. ROS-mediated
pathological alterations in these amino acids are greatly susceptible to proteolytic attack via
proteasomes in oxidized proteins, since proteins are composed of numerous amino acids and
comparatively more prone to have specific targets of ROS [24]. An excess of ROS enhances
mitochondrial permeability and functions. Reactive aldehydes, like 4-hydroxynonenal (4-HNE),
can be released by ROS that inactivate the mitochondrial respiratory chain by hindering electron
stream and activating oxidative stress [25].

In addition, pathological changes in sensitive proteins caused by oxidative stress can be a
reversible or irreversible process. Reversible modifications are commonly implicated with cysteine for
preventing the ROS-induced irreversible loss of cell function, including the carbonylation of lysine
and arginine, Di-tyrosine generation, and protein–protein crosslinks, that exacerbate the degeneration
and accumulation of proteins in cytoplasmic inclusions [26]. Therefore, regarding the prevention
of oxidative stress in physiological circumstances, interference with superfluous pro-oxidant factors
should be controlled through redox homeostasis system, which is typically composed of enzyme and
non-enzymatic antioxidants.

2.2. Enzymatic and Non-Enzymatic System in Redox Homeostasis

The human body possesses sophisticated mechanisms to optimally maintain the redox
homeostasis and cell functions against oxidative stress. This is achieved by the generation of
antioxidative substances derived from endogenous antioxidant system or producing exogenous
components of enzymatic and non-enzymatic antioxidants. Enzymatic reactions mediated by
antioxidant endogenous enzymes ameliorate cellular oxidative stress-induced cell death principally
through scavenging toxic substances, including overproduced intracellular ROS and reactive nitrogen
species (RNS), aiming to stabilize the cellular contents of DNA and protein. As shown in Figure 1,
the principal antioxidant enzymes concerning the neutralization of ROS are SOD, CAT, GPx,
glutathione reductase (GR), and GRx. More specifically, SOD catalyzes the dismutation of superoxide
peroxide (O2−) to oxygen (O2) and hydrogen peroxide (H2O2). H2O2 is decomposed into H2O and
O2 by the action of CAT and GPx. In this process, CAT is an enzyme that can be found in almost all
aerobiotic organs [27], whereas GPx enzymes transform H2O2 by using it to oxidize reduced GSH
into oxidized glutathione (GSSG). GR, a flavoprotein (FAD-containing) enzyme, regenerates GSH
from GSSG with the reducing power of nicotinamide adenine dinucleotide phosphate oxidase
(NAD(P)H) [28,29].

Notably, accumulating superoxide is the vital substance that tends to be more correlated with
oxidative stress, rather than redox signaling, in the oxygen consumption of this enzymatic system.
Specifically, superoxide normally consists of the one-electron reduction of intracellular oxygen that can
be converted by SOD into H2O2. SOD is the main defense substance against superoxide, including two
isoforms as SOD1 and SOD2. SOD1 is a homodimeric protein termed Cu-ZnSOD, and mainly
distributed in the cytosol as well as mitochondrial intermembrane space. SOD1 comprises the ions of
copper and zinc in cytoplasm and nucleus [30]. Copper is necessary for catalytic reaction, whereas zinc
is imperative for maintaining protein structure. However, SOD-2 is defined as manganese-associated
SOD (MnSOD) and primarily exists in the mitochondrial matrix. Both two isoforms possess an identical
mechanism of dismutation of O2− into H2O2.

Non-enzymatic antioxidants capable of rapidly inactivating free radicals and oxidants, can be
categorized into two classifications, as follows: endogenous (metabolism) and exogenous (nutrient)
antioxidants, in which metabolisms comprise glutathione, lipoic acid, and L-arginine, etc. In terms of
their location, these proteins and molecules exert intracellular or extracellular therapeutic mechanisms
to counteract excessive ROS and RNS. In addition, compounds that cannot be directly synthesized
in vivo but in vitro, such as vitamin C, vitamin D, and trace metals, are identified as exogenous
antioxidants [31]. As for vitamin C (ascorbic acid), it is a water-soluble, potent intra- and extracellular
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antioxidant that eliminates physiological free radicals, including hydroxyl and peroxyl radicals [32].
Moreover, GSH is an affluent thiol-based antioxidant inside cells, rich in live aerobic cells, and involved
in both enzymatic and non-enzymatic reactions. As a cofactor for GPx, GSH catalyzes the reduction
of H2O2 to H2O and O2. Furthermore, GSH can restrain the formation of the highly toxic substance
hydroxyl radical through attenuating genomic instability and preventing lipids, proteins, and DNA
from being indiscriminately oxidized [33,34].
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Figure 1. Schematic mechanisms of redox biology and traditional Chinese medicine (TCM)-induced
oxidative stress in hepatocytes.

2.3. Hepatotoxicity Caused by Specific Pro-Oxidant TCMs

Regarding the indispensable role of liver in the biotransformation of foods and medicines,
hepatic disorders commonly result from the imbalance of metabolic homeostasis [35]. Although the
ingestion of toxic substances, heterologous compounds, anticancer drugs, and immunosuppressive
agents are known as the potential inducers of liver injury, growing evidence illustrates that long-term
intake of curative drugs, such as certain anti-inflammatory and anticancer TCMs, may as well
cause a large spectrum of hepatotoxicity including acute liver injury, steatosis-hepatitis, and fibrosis,
etc. [36–40]. Furthermore, heightened reports of TCM-induced oxidative hepatic damage were
particularly emphasized in recent studies [41]. In parallel, liver is the main organ of escalating
ROS attack [42]. Although ROS may act in either positive or negative role on cellular functions in terms
of the intensity and duration of oxidative stress, ROS production with an intoxicating dosage has been
frequently detected by certain TCM treatments. Hepatotoxic TCM can irretrievably alter the biological
functions of proteins, DNA contents, lipids, carbohydrates, membranes, which leads to oxidative
stress-triggered hepatocyte injury [43]. However, the explicit mechanism by which overloaded
ROS causes hepatic injury upon TCM treatment is not fully disclosed. Thus, searching effective
approaches for identifying potential TCM with oxidative hepatotoxicity and underlying mechanisms
are urgently demanded.

2.4. Literature Search Methodology

To further achieve an in-depth understanding of TCM-induced oxidative hepatotoxicity, series of
the terms, including “Chinese medicine” or “Chinese herb” in combination with “hepatotoxicity”
or “liver injury”, are firstly utilized to search the database of PubMed, Google Scholar, and Web of



Int. J. Mol. Sci. 2018, 19, 2745 5 of 29

Science. After the initial exploration, in-text references related to these screening conditions will be
selected manually. The keyword of “oxidative stress” will be further taken in the screening filter.
Finally, literature that matched with all aforementioned criteria are accepted, otherwise, the articles
were considered irrelevant and excluded. In addition, studies within the past 5 years are incorporated
into the construction of both Table 1 and network pharmacology, which provide the up-to-date
comprehension of the role of TCM-dependent oxidative hepatotoxicity. Several hepatotoxic TCMs
with intensive elucidation are discussed in the following sections.

2.5. Pure Compounds

Tetrandrine, a principal alkaloid isolated from Stephania tetrandra, has revealed multiple
therapeutic effects on rheumatism, glaucoma, myocardial infarction, and tumor treatments [44–47].
However, it is noteworthy that tetrandrine-related liver toxicity has been reported, and overexpression
of ROS and disorder of mitochondrial permeability transition (MPT) was found to associate with
tetrandrine-induced liver toxicity. MPT is a vital pathogenetic mechanism of drug-induced liver failure,
and was identified by the overloaded intramitochondrial Ca2+-induced progressive permeabilization
of the inner mitochondrial membrane, resulting in mitochondrial swelling and membrane rupture [48].
Besides, GSH depletion, as well as the activation of the pro-oxidant enzyme cytochrome P450 (CYP450)
and especially cytochrome P2E1 (CYP2E1), was observed in tetrandrine-treated hepatocytes. Of note,
chronic administration of tetrandrine for more than 3 months, with the dose ranging from 2 to 5 mg/kg,
sensitized hepatocytes to oxidative damage [44].

Isoline and retrorsine are the pyrrolizidine alkaloid derived from the Chinese medicine Ligularia
duciformis [49]. In spite of the curative effect of anti-inflammation and blocking cough reflex,
pyrrolizidine alkaloid is commonly believed to be a representative poisonous alkaloid that disturbs
the metabolism of numerous organs, especially in the liver [50]. Potential intoxication of enhanced
serum alanine transaminase (ALT) and aspartate aminotransferase (AST) can be detected in clinical
application as an antitussive agent. Furthermore, increased expression of GPx-1 and GST-Pi can
be recognized in isoline-treated mouse liver, indicating that the self-defense to counteract oxidative
stress in the body is activated, because both GPx-1 and GST-Pi are GSH-associated antioxidant
enzymes. Concomitantly, upregulated malondialdehyde (MDA) and ROS, in combination with the
degradation of glycine N-methyltransferase (maintaining contents of cellular folate), GPx, and CAT
can be observed as well, alterations which further confirmed the soline-induced oxidative stress in
hepatotoxicity [51]. Severe hepatic GSH depletion can take place as a result of the excessive production
of dehydro-retrorsine generated from P450-modulated metabolic activation of retrorsine with the toxic
dose of 0.2 mmol/kg, along with the abundant serum AST and ALT. Meanwhile, as covalent binding of
reactive metabolites plays a vital role in the mechanism of toxic actions, higher rates of pyrrole–protein
adduction than the vehicle group were observed in retrorsine-treated mouse, indicating that additional
convincing evidence of Ligularia duciformis-caused hepatotoxicity has been provided [52–54].

Geniposide, an iridoid glycoside in Gardenia jasminoides, exerts anti-fibrotic, anti-osteoarthritis,
and anti-epilepsy actions by modulation of the expression of transforming growth factor-β
(TGF-β)/Smad4, p38 mitogen-activated protein kinase (p38 MAPK), and PI3K/Akt/GSK-3beta
signaling pathways, respectively [55–57]. Whereas, geniposide manifested a number of pathological
phenomena in the liver of SD rat with the dose greater than 574 mg/kg, such as elevated
MDA, liver enzymes (ALT, AST, alkaline phosphatase (ALP), total bilirubin), focal necrosis,
and downregulated SOD, leading to the onset of oxidative stress caused hepatotoxicity [58]. Meanwhile,
exposure to geniposide less than 574 mg/kg was considered non-toxic to the liver, according to the
unaltered serum biochemical indicators and liver weight [58].

Saikosaponins, an oleanane-type triterpenoid saponins, is the major bioactive ingredient extracted
from Radix bupleuri, which has been used to prevent Alzheimer’s, pulmonary diseases, and even
viral hepatitis [59–61]. However, in accordance with the cumulative evidence, saikosaponins
probably contributed to toxicity in hepatocytes, and in particular, caused acute liver injury with
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doses of more than 19 g/day for a human being with 70 kg body weight. Metabolic dysregulation
of lipids and proteins can be taken place due to excess ROS generation in the treatment of
saikosaponins. Saikosaponins dose- and time-dependently evoked the increase of AST, ALT, and lactate
dehydrogenase (LDH) [62]. CYP2E1, an important member of cytochrome P450 mixed function oxidase
enzymes, plays a critical role in the metabolism of xenobiotics. Abundant ROS was detected, along with
the upregulating CYP2E1 that linked to the dysregulated lipid metabolism upon saikosaponins
treatment. Saikosaponin-induced oxidative stress was further proved by the dose-dependent depletion
of GSH and elevation of MDA and inducible nitric oxide synthase (iNOS) [62].

Vincristine, a major compound of Catharanthus roseus, has been demonstrated to
potently attenuate a series of malignancies, including colon cancer, metastatic breast cancer,
and rhabdomyosarcoma [63–65]. The most therapeutic mechanism of inducing tumor death
by vincristine is to break the polymerization of mitotic spindle microtubules and continuous
arrests cell division during metaphase. Regarding the signs of vincristine-induced hepatotoxicity,
increased levels of serum ALT, ALP, and AST are revealed in relation to the altered liver architecture.
Moreover, hepatic content of MDA is enhanced, along with the significant decrease of hepatic SOD,
GPx, reduced GSH (GSHr), GST, indicating that oxidative stress is established. Concomitantly,
higher mRNA expressions of interleukin-12 (IL-12), interleukin-14 (IL-14), Bax, p53, and cleaved
caspase-3 are simultaneously observed in hepatocytes, which stand for the induction of apoptosis.
Reduced intracellular mRNA levels of Bcl-2 can be measured as well, suggesting that uptake of
vincristine will invoke ROS-triggered apoptotic and inflammatory effects in liver tissues and cells [66].

Oxymatrine is a quinolizidine alkaloid isolated from the Chinese medicine Sophora flavescens and
adopted to treat chronic viral hepatitis, plaque psoriasis, and arrhythmia [67–69]. Besides the findings
of beneficial actions, it is proved to worsen liver damage. When treated with oxymatrine, cell viability
will be reduced while the rate of apoptosis will be enhanced, as the intracellular markers for apoptotic
pathway containing pro-caspase-3, -8, -9, and Bax are increasing, associated with the decrease of Bcl-2.
In addition, expressions of endoplasmic reticulum (ER) stress indicators have been altered as well,
including the activation of glucose regulated protein (GRP78), C/EBP homologous protein (CHOP),
cleaved caspase-4, phospho-c-Jun N-terminal kinase (p-JNK), inositol-requiring enzyme 1 (IRE1),
activating transcription factor 6 (ATF6) and pancreatic ER kinase (PERK). If there is interference with
ER stress inhibition, intercellular levels of ROS, p-JNK, and cleaved caspase-3 will be dramatically
dropped. As a consequence, hepatotoxicity of oxymatrine is linked with ER stress-induced ROS
production [70].

Triptolide, triptonide, and wilforgine, three principal ingredients of Tripterygium wilfordii,
elicit their pharmacodynamics in anti-inflammatory and anti-autoimmune diseases,
especially rheumatoid arthritis [71]. At present, the clinical application of Tripterygium wilfordii is
confined on account of its narrow therapeutic window and the high incidence of severe hepatotoxicity
and nephrotoxicity [72]. Metabolic pathways for triptolide and triptonide are hydroxylation and
cysteine conjugation, whereas wilforgine undergoes oxidative metabolism and hydrolysis. However,
triptolide was demonstrated to be the major contributor to Tripterygium wilfordii-induced hepatotoxicity
through hydroxylated by cytochrome P3A (CYP3A) [73], since CYP3A was specifically picked out as
the main isoform responsible for triptolide hydroxylation and activates hepatic P450 which facilities
the aggravation of liver toxicity [74,75]. Meanwhile, metabolic eliminations of GSH, as well as the
reduction of NAD(P)H and quinine oxidoreductase 1 (NQO1), was verified in triptolide-treated
mouse, indicating the dysfunction of the defense system to scavenge the oxidative species [76,77].
The nuclear factor erythroid 2-related factor 2 (Nrf2) is a regulator of cell resistance to pro-oxidant
substances, and further mediates the antioxidant response components to control the physiological
and pathophysiological outcomes of oxidant exposure. Triptolide-induced hepatotoxicity not only
contains the blockade of cytoplasmic and nuclear Nrf2 activation, but inhibits the transition of
hepatic influx and efflux transporters responsible for the interchanges of compound across cell
membranes, such as P-gp, multidrug resistance-associated protein 2 (MRP2), multidrug resistance
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protein 4 (MRP4), bile salt export pump, and organic anion transporting polypeptide 2 (OATP2),
at transcription level, which exerts more significant efficiency than that at functional level [76].
Meanwhile, blood biochemical levels of ALT and AST are elevated in combination with the
failure in hematopoiesis, reproductive, renal, and cardiac systems through 0.2 mg/kg triptolide
administration [78].

2.6. Herbal Extracts

Polygonum multiflorum (Heshouwu in Chinese) has been used in China for centuries,
with anticancer, anti-inflammation, and reinforcing kidney function effects [79–81], However,
accumulating evidence of liver cell damage arising from Polygonum multiflorum consumption has been
reported, especially acute injury in morphological alteration in a time-dependent manner [82]. In 2013,
the department of China Drug and Food Administration released a warning public announcement
that more than 100 case reports concerning hepatotoxicity with Polygonum multiflorum treatment
Investigation of Liver Injury of Polygonum multiflorum Thunb. Thus, a scientific basis for the
toxicological mechanism of Polygonum multiflorum needs to be clarified. Polygonum multiflorum
has two medicinal forms, Polygoni multiflori radix and Polygoni multiflori radix prapaerata. Notably,
there is growing interest in the paradoxical effect of Polygonum multiflorum regarding whether it is
hepatotoxic or not. Both forms share identical therapeutic effects in combating nonalcoholic fatty
liver disease (NAFLD), fibrosis, as well as the cirrhosis, when the daily intake is less than 6 g per
person [70,83,84]. The frequent mechanism of hepatotoxicity for both forms may contain cell cycle arrest
and facilitate the activities of ALT, AST, ALP, creatinine, total bilirubin (TBil), direct bilirubin (DBil),
and indirect bilirubin (IBil), and the leakage of LDH, whereas drug metabolic enzymes of cytochrome
P3A4 (CYP3A4), cytochrome P2C19 (CYP2C19), CYP2E1, and SOD are attenuated by different
pharmacokinetic behaviors [70,85–87]. The principal ingredients of Polygonum multiflorum include
emodin-O-hex-sulfate, tetrahydroxystilbene-O-(galloyl)-hex. Among these, emodin and cis-stilbene
glucoside might be the major responsibilities for liver toxicity [87]. In particular, cis-stilbene glucoside
extracted from Polygonum multiflorum can trigger immunological idiosyncratic liver dysfunction
in rats with lipopolysaccharide (LPS) intervention by repressing peroxisome proliferator-activated
receptor (PPAR-γ) [88]. Aside from that, the ethanol extract is more toxic than the aqueous extract [89].
A method of prolonged decoction was convincingly demonstrated to effectively detoxicate Polygonum
multiflorum [59]. Based on these alterations in biomarkers, Polygonum multiflorum-induced disturbance
in the metabolic process of fat, bile acid, and amino acid may be the dominant threats to the induction
of oxidative hepatotoxicity.

Evodiae fructus, an eminent Chinese herbal medicine, demonstrated its therapeutic capabilities in
regard to anti-analgesic antiemetic and anti-inflammatory effects in gastrointestinal and cardiovascular
diseases [90,91]. Alkaloids, including evodiamine and rutaecarpine, are the major bioactive
ingredient in Evodiae fructus, and were reported to alleviate colorectal carcinoma, atherosclerosis and
cardiovascular relaxation [92,93]. Nevertheless, the risk of increasing hepatotoxicity in patients treated
with Evodiae fructus was frequently reported. Aqueous extract of Evodiae fructus can distinctly cause
MPT in liver mitochondria, enhance the levels of AST, ALT, nitric oxide (NO), nitric oxide synthase
(NOS), and MDA and downregulate the levels of MnSOD, GSH, and GPx, which synergistically lead to
the occurrence of oxidative stress [94]. The cessation of ATP synthesis in association with induction of
cytochrome C (CytC) release in hepatocytes was demonstrated in Evodiae fructus-dependent treatment,
indicating the threshold of mitochondrial oxidative damage in liver [95,96].

Genkwa flos is characterized as the flower bud of Daphne genkwa and classified into the
Chinese Pharmacopoeia with its wide range of pharmacodynamics actions including anti-herpes,
anticancer, and inflammation-related symptoms [97–99]. Prior chemical studies have shown that
Genkwa flos encompasses various types of constituents involving flavonoids, diterpenoids, lignans,
and coumarins [100]. Current emerging evidence indicates that severe lesions to cardiac, renal,
hepatic, and cutaneous tissues can be identified by excessive and prolonged administration of Genkwa



Int. J. Mol. Sci. 2018, 19, 2745 8 of 29

flos [101–104]. Hepatotoxicity of Genkwa flos treatment have shown in HL-7702 liver cells, such as the
increased hepatic serum makers of ALT, AST, and MDA, and downregulated oxidative stress indexes of
CAT and GSH. In particular, phospholipase A2 (PLA2)/lysophosphatidylcholine (LPC) pathway is one
of the crucial metabolic pathways involved in the glycerol phospholipid metabolism and participates in
oxidative and inflammatory-induced liver injury [105]. It is remarkable that both the contents of PLA2
and LPC are significantly enhanced in Genkwa flos-treated HL-7702 liver cells [100]. The disruption
of S1P metabolism mainly focused on Sphk/S1P pathway may occupy a vital position in Genkwa
flos-related liver injury, as well [100]. Apart from that, chloroform extract of Genkwa flos demonstrated
an inhibitory effect on the transcriptional activity of uridine diphosphate glucuronosyltransferase
1A1 (UGT1A1) and serum bilirubin, which can enhance the susceptibility to oxidative stress-induced
chromosomal aberration during the liver injury [106].

Cassia occidentalis, mainly cultivated in the south of China and Asia, is adopted as a moderate
purgative and stomachic herbal medicine. The ethanol extract of Cassia occidentalis has numerous
therapeutic activities, including anti-inflammation and anti-anaphylaxis [107]. Several toxic reactions,
including loss of weight, myopathy, and hepatocellular necrosis, have been noticed in animals
fed with Cassia occidentalis [108,109]. In 2008, WHO reported that intermittent exposure to Cassia
occidentalis can ultimately cause hepatomyoencephalopathy with failed muscle, hepatic, and cerebral
dysfunction [110]. The transcriptional profiling demonstrated that gene expressions of antioxidant
enzymes containing CAT and SOD have been reduced in Cassia occidentalis-treated rats. On the contrary,
significant decreases in GPx and GSH expressions have been proofed, along with concomitant increase
of lipid peroxidation, which re-emphasizes the involvement of oxidative stress [111,112]. Furthermore,
profound reductions in xenobiotic-metabolizing enzymes, including CYP1A1, CYP1A2, CYP2B1, GST,
and quinone reductase, have been validated in combination with the impairment of carbohydrate
metabolism in Cassia occidentalis-treated rats, as well. Growing apoptotic and inflammatory factors,
including Bax, caspase-3, NF-κB, TNF-α, Akt, TGF-β, MAPK-9 and -14, IL-6, JNK, p-38, and FasL,
have been observed by microarray analysis in the hepatic tissue of rats fed with Cassia occidentalis,
suggesting that multiple pathological pathways are involved and contribute to hepatocyte death [111].
Interestingly, acute administration of Cassia occidentalis alleviates oxidative stress in the kidney of
Rattus norvegicus, which initially aims to treat hypertension by enhancing urinary excretion with
the elimination of Na+, Cl−, and K+. Therefore, exact evidence for the underlying profile of Cassia
occidentalis with hepatotoxicity deserves further studies [113].



Int. J. Mol. Sci. 2018, 19, 2745 9 of 29

Table 1. Summary on the properties of TCM-induced hepatotoxicity in the recent 5 years.

Natural Compound Sources of Chinese
Medicine

Study
Type Cell or Animal Biochemical Markers of Hepatotoxicity Type of Injury Reporting

Date Ref.

Vincristine Catharanthus roseus In vivo Wistar rat ALT, AST, IL-12. IL-4, p53, cleaved caspase-3, Bax↑; Bcl-2↓ Hepatitis 2018 [66]

Epigallocatechin-3-gallate Green tea In vivo C57BL/6 mouse SOD, GPx, respiratory complex-I -III, sirtuin 3, FOXO3, Nrf2↓ Hepatitis and
hemorrhage 2018 [114]

Oxymatrine Sophora flavescens In vitro L-02 cells Pro-caspase-3 -4 -8 -9, GRP78, CHOP, p-JNK, IREI, ATF6, PERK, Bax, MDA, ROS↑;
SOD, Bcl-2↓ Cell apoptosis 2018 [115]

Bavachinin Fructus psoraleae In vitro HepaRG cells JNK, p-p38, ROS, MAPK, MDA↑; SOD, GSH, CAT↓ Cell necrosis 2018 [116]

Genkwa Flos extract Genkwa flos In vitro &
in vivo

HL-7702 cells;
SD rat ALT, AST, MDA↑; CAT, GSH, SOD, NO, NOS↓ Metabolism

Dysregulation 2018 [117]

Fructus Meliae Toosendan
extract

Fructus meliae
toosendan In vivo BALB/c mouse ALT, AST, MDA, p53, p21, Cyclin E, Bax, CytC, caspase-3 -9, CDK2, ROS↑; Bcl-2,

Nrf2, miR-370-3p↓ Cell apoptosis 2018 [118]

Oxalicumone A Penicillium oxalicum In vitro L-02 cells ALT, AST, ROS, Caspase 3, MDA, NO, Fas, Bax, LDH, CytC↑; Bcl-2, GSH, SOD↓ Cell apoptosis 2018 [119]

Arsenic extract Arsenic In vitro HHL-5 cell Thioredoxin 1 (Trx1), TrxR1, ROS↑; Bax, CytC, Bcl-2↓ Cell apoptosis 2018 [120]

Pinelliae Rhizoma
Praeparatum Pinelliae rhizoma In vivo ICR mouse ALT, AST, ALP, bile acid, Mrp3, MDA↑; SOD, GSH, GPx, Bsep, Mrp2, Nrf2↓ Metabolism

dysregulation 2018 [121]

Hydroxyapatitenanoparticles
extract

Hydroxyapatite
nanoparticles

In vitro &
In vivo

BRL cells;
SD rat TNF-α, NO, MDA, ROS↑; respiratory complex-I, -II, -III, GSH, SOD↓ Metabolism

dysregulation 2018 [122]

Zishen Yutai pill extract Zishen yutai pill In vivo SD rat AST, ALP, ALT, MDA, LDH, PDGF, Cholestasis, Bile acid↑; SOD, GPx↓ Cell necrosis 2017 [123]

Polygoni Multiflori Radix
extract

Polygonum multiflorum
thunb In vivo SD rat ALT, AST, ALP, LDH, bilirubin, creatinine↑SOD↓ Metabolism

dysregulation 2017 [70]
[124]

Arsenic acid Arsenic In vivo Wistar rat MDA, NO↑; SOD, GSH, GST, GPx↓ Metabolism
dysregulation 2017 [125]

Saikosaponins Radix bupleuri In vitro &
In vivo

HepG2 cells;
Kunming mouse CYP2E1, AST, ALT, LDH, ROS, iNOS↑; GSH↓ Metabolism

dysregulation 2017 [62]

Ephedrine Ephedra sinica In vitro LX-2 cells Parkin, SOD2, ROS, Cox IV, p62, LC3 I, LC3 II↑ Excessive
Mitophagy 2017 [126]

Arsenic extract Arsenic In vivo Wister rat Bax, caspase-3↑, CytC, SOD, complexes I, COX-I-IV, NRF-1-2, PGC-1α, Tfam↓ Metabolism
dysregulation 2016 [127]

Dioscorea Bulbifera
saponins Dioscorea bulbifera In vitro &

In vivo
L-02 cells;
Wister rat ALT, AST, cytochromes P450, cholestasis↑; SOD, GPx, GST, GR, GCL↓ Metabolism

dysregulation 2016 [43]

Zuotai extract Zuotai In vivo Kunming mouse ALT, AST, HgS, MeHg, metallothionein-1, heme oxygenase-1 (HO-1), Egr1,
Gst-mu, mKC, MIP-2, NAD(P)H, Nqo1, Gclc↑

Cell
inflammation 2016 [128]

Oxymatrine Sophora flavescens In vivo ICR mouse ALT, AST, ALP, TNF-α, caspase-9, -8, -3, TRADD, p-SAPK, p-JNK↑ Cell apoptosis 2016 [129]

Evodia Fructus volatile oil Evodia fructus In vivo Kunming mouse ALT, AST, PGE2, MDA, NO, NOS↑; SOD, GSH, GPx↓ Metabolism
dysregulation 2015 [130]
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Table 1. Cont.

Natural Compound Sources of Chinese
Medicine

Study
Type Cell or Animal Biochemical Markers of Hepatotoxicity Type of Injury Reporting

Date Ref.

Fructus Meliae Toosendan
extract

Fructus meliae
toosendan In vivo BALB/c mouse ALT, AST, ALP, bilirubin, cholesterol↑; Nrf2↓ Cell necrosis 2015 [131]

Triptolide Tripterygium wilfordii In vivo Kunmingmouse ALT, AST, blood urea nitrogen (BUN), CREA↑; GSH↓ Acute hepatic
necrosis 2015 [77]

Asarones Asarum In vitro THLE-2 cells Caspase-3 -7, MDA↑; GSH, GSSG↓ Cell apoptosis 2015 [132]

Timosaponin A3 Anemarrhena
asphodeloides In vivo SD rat Bile acid, ROS, HO-1↑; Ntcp, Bsep, Mrp2, Cyp7a1, F-actin↓ Metabolism

dysregulation 2014 [133]

Astin B Aster tataricus In vitro L-02 cells ROS, JNK, CytC, Bax, caspases-9, -3, LC3-II↑; GSH, Bcl-2, p62↓
Cell apoptosis

and
inflammation

2014 [134]

Cassia Occidentalis
extract Cassia occidentalis In vivo Wister rat TGF-β, JNK, Bax, MDA↑; Akt, CREB1, CYP1A1, CYP2B1, CAT, SOD1, IL-6, SOD,

GR↓

Metabolism
dysregulation
and apoptosis

2014 [112]

Arecoline Hydrobromide Areca catechu In vivo Wister rat ALT, AST, MDA, CYP2B, CYP2E1↑; SOD, CAT, GPx, GSH↓ Liver cirrhosis
and HCC 2014 [135]

Diosbulbin B Dioscorea bulbifera In vivo ICR mouse ALT, AST, ALP, MDA↑; GPx, GST, SOD, CAT↓ Metabolism
dysregulation 2014 [136]

Evodiae Fructus extract Evodiae fructus In vivo SD rat MDA, CytC, AST, ALT, NO, NOS↑; SOD, GSH, GPx↓ Cell necrosis 2014 [94]
[95]

Gardeniae Fructus extract Gardeniae fructus In vivo SD rat ALT, AST, ALP, bile acid, MDA, TNF-α, Bax↑; SOD, GPx, Bcl-2↓

Cell
inflammation,
necrosis and

apoptosis

2014 [137]

Green tea extract Green tea In vivo SD rat ALT, AST, ALP, TBil, bilirubin, caspase-3, MDA, TG, GST-P↑
Metabolism

dysregulation
and apoptosis

2014 [138]

Monocrotaline Rattlebush In vivo SD rat GSH, GR, GPx, GST↓ Metabolism
dysregulation 2014 [139]

In the Table 1, the symbols of “↑” and “↓” respectively represent for upregulated (“↑”) or downregulated (“↓”) biochemical markers by traditional Chinese medicine (TCM) treatment.
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3. Network Pharmacology-Associated Study

3.1. Network Construction and Targets Discovery

The general analogy of pharmacological actions is like a selective “key” that integrates into
the specific “lock” of a drug target. The conception of creating selective ligands to counter
undesirable adverse actions has been the dominant paradigm during the innovation of drug discovery.
Nevertheless, post-genomic biology has revealed that the proposed schematic of drug action is far
more complicated, suggesting that not only various “keys” may be suitable for a single “lock” but one
“key” to fit multiple “locks”. Drug actions elaborated by means of network pharmacology can give
insights into the pharmacological activities of hepatotoxic TCM, rather than separately enumerate case
studies. As an innovative screening approach of drug target identification, network pharmacology
prioritizes targets for TCM-induced oxidative hepatotoxicity in a systematic manner, aiming to identify
the major pathological mechanism in hepatocytes.

With regard to plotting the visualized network figure, the literature that meets the screening
criteria mentioned in the section of “Literature Search Methodology” will be enrolled in the
construction of a network. After a large-scale screening, the qualified data are imported in a
bioscience software termed “Cytoscape” for network analysis (free access online at “http://www.
cytoscape.org/”) [140,141]. Components of nodes in the network (Figure 2) refer to specific
factors, including TCM-derived extracts, pure compounds, and TCM-modulated targets (protein or
gene), whereas edges that straightforwardly interconnect nodes stand for TCM–target interactions.
Those nodes with more shared edges and centripetal position account are more efficacious than
those with less. For providing a deeper insight, network analysis has been performed by a statistical
plug-in “NetworkAnalyzer” attached in Cytoscape, to calculate the correlation degree for each node
with a specific parameter, along with typical size and color. More specifically, as shown in Figure 2,
the larger and brighter the node is, the greater the degree of correlation is, which allows for the
perception of differentiating the relativity of each node with oxidative hepatotoxicity through the
color gradient from bright to dark (i.e., brightest-green; middle-yellow; darkest-red). Noticeably,
since the serum aminotransferases of ALT, AST, and ALP are well-accepted indicators for reflecting the
severity of liver diseases directly, the measurement of these three targets exists widely in the majority
of liver disease studies, which results in the extremely high value of the degree of correlation [142].
Although we cannot postulate that oxidative hepatotoxicity is not associated with the alteration of ALT,
AST, and ALP, these three serum aminotransferases with high correlation values will greatly interfere
with the judgment of ranking other targets in relation to oxidative liver injury. Thus, during the
statistical processing, these three factors will not be enrolled in the ranking of the TCM-regulated
targets susceptible to oxidative stress-induced hepatotoxicity. Based on exquisitely programmed
procedures by network pharmacology, the top 10 high influential factors modulated by TCM have
been shown in Figure 3B, and are ranked in order as the following: SOD, MDA, GSH, ROS, GPx,
Bax, caspase-3, Bcl-2, Nrf2, and NO, which play pivotal roles in the initiation and propagation of
oxidative hepatotoxicity.

http://www.cytoscape.org/
http://www.cytoscape.org/
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extracts for the generation of oxidative hepatotoxicity.

3.2. Hepatotoxic Role of Identified TCM-Regulated Targets by Network Pharmacology

3.2.1. SOD, MDA, GSH, ROS, and GPx

Although oxidative hepatotoxicity caused by various medicines has been verified in numerous
clinical trials, reports regarding the vital role of TCM-induced hepatic oxidative damage in patients are
far away from satisfactory. In accordance with the principal targets picked up by NetworkAnalyzer,
SOD is the most susceptible and regulated target for TCM-induced hepatic oxidative damage.
When hepatocytes are attacked by TCM-derived compounds like atractyloside and saikosaponins,
SOD will fail in preventing O2 overproduction when cell sensibility to hepatic injury is impaired by
inhibiting the formation of peroxynitrite [96,143]. Serum levels of antioxidant enzymes, like SOD1,
GPx, and CAT, are decreased in a patient with chronic liver cirrhosis and viral hepatitis when
compared to healthy individuals. Inversely, indicators of oxidative stress and liver damage, such as
MDA, NO, and ALT, are increased [144]. Upregulated ROS production in the formation of alcoholic
liver disease (ALD) facilities the decreased of Cu-ZnSOD activity in association with the positively
regulated NAD(P)H oxidase [145,146]. Interestingly, in certain special cases, even if the SOD content is
steady or increased under pathological conditions, the possibility of defective SOD-induced oxidative
damage may occur, since growing reports demonstrate that mutant forms of SOD may be generated,
for example, in amyotrophic lateral sclerosis (ALS) disease. Mutations of SOD are proposed to modify
the antioxidant proteins into pro-oxidants which are capable of invoking oxidative injury. However,
whether this mechanism may exist in the development of hepatotoxicity or not, further studies
are needed [144,147]. As for MDA, similar to 4-HNE, it is the end product of lipid peroxidation,
representing a credible biomarker of oxidative stress. The formation of MDA can be extensively
detected in ROS-caused degradation of polyunsaturated lipids [148]. Serum MDA levels usually
increase in proportion to the severity of oxidative damage. Hereby, measuring MDA content may be
considered as a reliable reference point for the degree of hepatic tissue impairment with oxidative stress.
In addition, oxidative stress-related cirrhosis has been demonstrated to usually be linked with the
negative regulation of MDA, SOD, GSH, and CAT [149]. ROS, undoubtedly acting as a dominant role
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in aerobic life, can be responsible for the manifestation of chronic liver disorders and stimulating their
deterioration simultaneously. Referring to my previous description, ROS consists of various species,
such as superoxide anion, hydrogen peroxide, and hydroxyl radicals. All of these substances possess
specific inherent chemical characteristics and interact with different physiological and pathological
targets. Hepatic cells, including Kupffer, endothelial, and stellate cells, are more susceptible to oxidative
stress-induced apoptosis, necrosis, and tumorigenesis, especially by overproduced ROS [150].

3.2.2. Bax, Caspase-3, and Bcl-2

Coincidentally, Bax, caspase-3, and Bcl-2 are all represented as notable biomarkers in cell apoptosis,
particularly in mitochondrial apoptotic pathway [151]. It is noteworthy that mitochondrial permeability
as well as transition potential can be disturbed by continuous ROS generation, phenomena which
may not only result in the release of apoptotic inductors, such as Bax, caspase-3 and cytochrome
C, but also the downregulation of Bcl-2, degradation of mitochondrial DNA, and dysregulation of
ATP synthesis in an oxidative phosphorylation system [152–154]. In detail, Bcl-2 family members
are evolutionarily conserved modulators for programmed cell death termed “apoptosis”, and both
pro-apoptotic (i.e., Bax) and antiapoptotic (i.e., Bcl-2) members are affiliated in the same family.
The ratio of Bax to Bcl-2 is broadly considered as a rheostat to measure the cell susceptibility to
apoptosis. Caspase-3 is a cysteine protease that mediates apoptosis by proteolysis of particular
substrates, especially by Bax/Bcl-2 [155]. Interestingly, in addition to being the downstream substrate
of caspase-3, Bcl-2, with its antiapoptotic property, can be inactivated by caspase-3 and converted into
a pro-apoptosis motivator unrelated to Bax/Bcl-2 pathway, suggesting that a feedback loop between
Bcl-2 and caspase-3 exists [156]. Considerable evidence supports the idea that enhanced Bax/Bcl-2
ratio, combined with cleavage of caspase-3, takes place in various liver diseases, including chronic
hepatitis, alcoholic liver, and hepatocellular carcinoma (HCC) [157–159].

3.2.3. Nrf2 and NO

Nrf2, also known as nuclear factor (erythroid-derived 2)-like 2, is the principal modulator of
encoding genes that protect cells against electrophilic stress. Thus, Nrf2 is comparatively less active in
cells without stress, and coordinated with the basal flow of endogenic electrophile [160]. Activated Nrf2
in an oxidative environment not only illustrates the increasing synthesis of nucleophiles, including GSH
and thioredoxin but, also, the enzyme-relevant catalysis for redox transitions [161]. As a sensor of
cellular redox state, Nrf2 usually binds to Kelch-like epichlorohydrin-associated protein 1(KEAP1) in
the normal physiological state. Increasing ROS, as well as electrophiles, can result in the release of Nrf2
into the nucleus, in order to activate the transcription of cell-protective genes. Antioxidant response
element (ARE) can be activated to invoke antioxidant genes during oxidative stress [162]. However,
ARE-associated genes, primarily regulated by Nrf2, govern GSH homeostasis and the activities of
NAD(P)H quinone oxidoreductase 1 and uridine 5′-diphospho-glucosyltransferase [163]. Therefore,
reduction of Nrf2 may make cells less sensitive to oxidative stress. Growing investigations have
drawn attention to the alteration of Nrf2ARE feedback loop in counteracting the progression of
various liver disorders including viral hepatitis, cirrhosis, hepatocellular carcinoma, and nonalcoholic
liver disease [164–167]. Furthermore, this feedback loop associates with liver regeneration, as well.
Overproduced ROS, derived from mitochondria, can be observed in Nrf2-knockout mice fed with
pro-oxidant hepatotoxins or high-fat diet, along with more susceptibility to hepatotoxicity. Therefore,
targeting Nrf2 as a curative target to treat oxidative stress-related liver diseases is meaningful
and promising [168]. As for NO, it is a short-time lived free radical in gaseous state. It plays
a variety of roles in the liver and other organs [168]. In healthy liver, NO production primarily
originates from endotheliocytes by endothelial NO synthase (eNOS), and the low flow of NO is
documented to adequately support the perfusion of liver sinusoids though regulating vascular tone and
permeability [169]. Apart from that, endotheliocytes maintain sinusoid perfusion though upregulating
NO generation. NO also regulates leukocyte adherence to sinusoidal endothelial cells, which is
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associated with attenuating the aggregation and adhesion of platelets [170]. In line with accelerating
research studies, the expressions of NO and iNOS are positively regulated in almost all hepatocytes
containing hepatic stellate cells under chronic hepatitis and endotoxemia [171,172]. In certain
circumstances, NO has been deemed either a cytoprotective or a cytotoxic reagent, which depends
on the local productive ratio of reactive oxygen intermediates (i.e., oxygen-centralized free radicals).
Nevertheless, the predominant role of NO, in combination with the low contents of reactive oxygen
intermediates is inclined towards the protective effect [173,174]. However, NO donors are reported to
alleviate liver necrosis mainly by suppressing the levels of hydroxyl radical and lipid peroxidation,
processes which can be blocked by the interaction between NO and reactive oxygen intermediates
(i.e., lipid alkoxyl and lipid hydroperoxyl) and, in turn, attack the liver with overloaded NO [175,176].
In addition, upregulated serum aminotransferases of ALT, AST, and ALP may have strong linkage
with oxidative hepatotoxicity, due to their high correlation with hepatic injury [177].

3.3. Bioinformatics Enrichment Analysis

Functional analysis of genes or signaling pathways in physiopathology are traditionally
conducted among few clusters or even studied separately at a time. On the contrary, the lists of
differential gene activities in most cases can be obtained and analyzed by gene-annotation databases
with bioanalysis tools and experimental approaches, including DAVID (database for annotation,
visualization and integrated discovery), KEGG (Kyoto encyclopedia of genes and genomes) database,
KOBAS (KEGG orthology-based annotation system), microarray, and ChIP-on-CHIPs [178]. All these
alternative technologies are indeed the bioinformatics scanning methods with sophisticated algorithms,
rather than purely statistical tools. Gene-annotation enrichment study allows researchers to predict
genome-wide genes under certain conditions and discern a series of specific biological processes most
relevant to their investigation. Notably, the database of DAVID is equipped with powerful exploratory
capacity for annotating, visualizing, and integrated discovering bioinformatics resources (available at
https://david.ncifcrf.gov/home.jsp). Therefore, all the hepatotoxic TCM-modulated targets identified
by network pharmacology have been incorporated into the integrated bioinformatics tool termed
“Gene ontology (GO)” and “KEGG pathway analysis” in DAVID for identifying enriched biological
pathways and highly correlated diseases (shared with similar participating genes) with kappa statistical
analysis. Minus log (−log) transformed p value or q value (adjusted p value) have been input into GO
and KEGG analysis, respectively (Figure 3A,C) followed by quantitatively estimating the statistical
difference in comparison with background genes (background genes are usually automatically collected
from backend database in DAVID). A value of −log10 (p or q) larger than 1.3 (equally in p < 0.05) is
regarded as a significant difference. The figure of enriched KEGG pathways (Figure 3A) is plotted by
R project (available at https://www.r-project.org)

Regarding this study, the methods of collecting biological information with a mode of
“gene-to-annotation” is appropriate for mining primary TCM-modulated targets in triggering
oxidative hepatotoxicity. After integrating network identified targets into the analytic tools of
GO—Biological Process (BP) and KEGG in DAVID, KEGG result indicates that “metabolic pathway
(−log10 (q) = 2.492)”, “pathways in cancers (−log10 (q) = 2.122)” and “P13K-Akt signaling pathway
(−log10 (q) = 2.057)”, may have the most relevance to hepatotoxic TCM-modulated targets (Figure 3A).
However, GO analysis in BP subunit illustrates that the most underlying pathways regulated
hepatotoxic TCMs are “extrinsic apoptotic pathway in absence of ligand (−log10 (q) = 3.619)”,
“response to toxic substance (−log10 (q) = 3.222)”, “heterocycle metabolic process (−log10 (q) = 2.602)”,
and “drug metabolic process (−log10 (q) = 2.009)” (Figure 3C), indicating that intervention with
metabolic process may play a vital role in TCM-dependent oxidative liver injury. Nevertheless, it is
worth noting that management with targeting mining in a single database is limited with regard to
providing comprehensive evidence. In this sense, heterogeneous databases with diverse enrichment
tools should be taken into optimized analytic procedures in further study.

https://david.ncifcrf.gov/home.jsp
https://www.r-project.org
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Figure 3. Target mining for TCM-caused oxidative hepatotoxicity by network pharmacology
and bioinformatics enrichment analysis. (A) Scatter plot of enriched KEGG pathways statistics.
The gene ratio illustrates the significantly expressed gene number to the total gene number in a
certain pathway. (B) Identification of TCM-modulated targets for oxidative liver injury by network
pharmacology. (C) GO analysis on the involvement of principal biological process. (*): −log10 (p) > 1.3;
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3.4. RUCAM (Roussel Uclaf Causality Assessment Method) in TCM-Induced Hepatotoxicity in Clinical Studies

3.4.1. RUCAM-Based Causality Assessment

To cope with the increasing tendency of herb-induced liver injury (HILI), which includes herbal
TCM-associated hepatotoxicity, clinicians have made great efforts to establish valid diagnostic criteria
in the face of numerous clinical biomarkers [179]. In accordance with the recommendation in Asian and
European regions, a causality assessment of HILI can be achieved by using a diagnostic tool RUCAM
(Roussel Uclaf Causality Assessment Method), which provides a high degree of certainty [180,181].
Based on the systematical algorithms and quantitative method for identifying hepatotoxins and
pharmacological hallmarks in case series, RUCAM is deemed as a validated mean of assigning key
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points for perceiving liver-specific clinical symptoms and cases. The resulting causality scores are
marked in terms of core elements in updated RUCAM, such as time period and alterations of ALT
values, etc. Of note, [182]. RUCAM scale typically ranges from −9 to +14, which can be hierarchically
categorized as the following: ≥9 (highly probable); 6–8 (probable); 3–5 (possible); 1–2 (unlikely);
≤0 (excludes causality) [182,183].

3.4.2. Identified Hepatotoxic TCM in Case Reports Using RUCAM

Although our knowledge of characteristics related to HILI has been substantially enriched
within decades, little amounts of TCM-associated HILI have been identified, not to mention the
causality between TCM consumption and hepatotoxicity in RUCAM-dependent clinical trials [184].
Herein, several updated RUCAM-based case reports containing TCM administration have been
reviewed in this study. Melchart et al. performed a prospective and large-scale study concerning
TCM-hepatotoxicity on the basis of RUCAM [185]. In the research, a total of 21,470 patients
without liver diseases were treated with 11 independent herbal TCMs, such as Bupleuri radix,
Scutellaeiae radix, and Glycyrrhizae radix, etc. Finally, 26 patients (0.12%) experienced high values
of ALT (≥5 × upper limit of normal). However, RUCAM-related causality grades for TCM-treated
patients were probable in 8/26 patients (score = 6–8), possible in 16/26 (score = 3–5), and excluded in
2/26 (score ≤ 0). Therefore, 24 patients (0.11%) might undergo TCM-induced hepatotoxicity and the
most suspicious TCMs with hepatotoxic effects in this study were Bupleuri radix and Scutellaeiae radix,
suggesting that these two herbs are mainly prone to induce liver injury with the causality grading
of “possible”. Additional insights should be focused on the treatment of greater celandine and kava,
since several RUCAM-based causality assessments indicated that hepatitis and liver cell necrosis could
be generated in either greater celandine- or kava-treated patients. Both greater celandine and kava
hepatotoxicity are primarily considered as an idiosyncratic liver injury in most susceptible individuals.
More specifically, the causality gradings of 12 patients treated with greater celandine were probable or
highly probable, while scores of highly probable, probable, or possible gradings could be marked in
8 patients with kava intervention, indicating that hepatic histological activity is more vulnerable to
greater celandine or kava treatment [186–189]. Hao et al. has analyzed the etiology, clinical features,
and prognosis of antipyretic analgesic drugs, antibiotics, and TCM-induced hepatotoxicity, including
Tripterygium wilfordii, Eucommia ulmoides, and others. According to RUCAM-associated causality
assessments in these HILI cases, TCM has emerged as a potential hepatotoxin (score > 3), with the
grading at least “possible”, which is identical to both of the antipyretic analgesic drugs and antibiotics
(both scores > 3) [190]. Zhang et al. have conducted literature mining targeting hepatotoxic TCM with
RUCAM-based high causality grading. As a result, Polygonum multiflorum was documented to be the
high probable TCM in 65 of 114 cases, a finding which was consistent with the experimental evidence
discussed in this review [191].

3.5. Ethnopharmacology-Associated Challenges and Threats

Until now, accumulating evidence has especially manifested that liver injury may be the
result of a therapeutic drug including TCM treatment. On the basis of both TCM theory and
aforementioned findings in this study, principal strict challenges and threats can be summarized
in the following seven aspects: (a) The criteria for distinguishing and identification of hepatotoxic
TCM is ambiguous. Only a minority of hepatotoxic TCMs have been approved with safety issues by
the department of China Drug and Food Administration. (b) Systematic screening and research studies
focused on discovering and elaborating potential toxic targets for liver injury are greatly limited and
time-dependent. Therefore, the findings gained from a certain period may have a deviation from the
truth. (c) Most of the investigations concentrate on TCM-dependent pure compounds rather than TCM
formula-caused liver dysfunction. Noticeably, TCM formula, which consists of multiple medicinal
herbs, is the predominant form applied for treating diseases by TCM practitioners, rather than using a
compound or refined extraction from a single herb. Therefore, growing attention should be drawn on
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disclosing the hepatotoxic effects involved in TCM formula, which seems to be equally meaningful.
(d) A majority of studies regarding TCM-induced hepatotoxicity are still under the experimental stage
and inadequate in multicenter clinical trials on a large scale. (e) Hepatotoxic role of TCM is composed
of diverse pathological mechanisms and not limited to oxidative damage. Such hepatotoxicity-related
pathogenesis as inflammation and apoptosis have crosstalk with oxidative stress. Hereby, it is uncertain
which pathology plays a predominant and uncontestable role in hepatotoxicity development. (f) Due to
the complexity of biological activities, interpretations of the association between numerous genes and
relevant pathways should be performed with various advanced algorithms and annotation terms,
aiming to avoid incomprehensive data mining. (g) Last but not least, assessment of risk-to-benefit
ratio concerning the pharmacological actions of a novel anti-disease drug, including TCM or Western
medicine, is imperative, and should be strictly conducted before any clinical applications.

4. Conclusions and Prospects

Regardless of the “holistic” and “natural” therapeutic modalities of TCM in response to
various functional abnormalities, escalating interests are related to the cytotoxic role of TCM
in the perturbation of organic physiological activities. Current investigations, including this
study, have documented that oxidative stress usually participates in progressive hepatotoxicity,
particularly triggered by TCM-regulated targets in hepatocytes (Figure 1). However, although liver
is equipped with a well-established defense mechanism to protect hepatocytes from oxidative
impairment, the intervention of potential toxic TCM remains to successfully invoke oxidative
hepatotoxicity. Depending on the target mining by network pharmacology, 10 predominant factors,
susceptible to hepatic oxidative injury upon TCM therapy, have been identified, including SOD, MDA,
GSH, ROS, GPx, Bax, Caspase-3, Bcl-2, Nrf2, and NO. In addition, TCM-induced hepatotoxicity may be
mainly involved in a metabolic pathway in accordance with bioinformatics enrichment analysis. Thus,
practitioners should make an effort to be aware of the underlying hepatotoxic hazards prior to TCM
application, but not be limited to focusing attention on the limited findings in this review. Selective
TCM therapies to multiple diseases without ineluctable hepatotoxicity are essential and should be
further studied.
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ALD alcoholic liver disease
ALP alkaline phosphatase
ALS amyotrophic lateral sclerosis
ALT alanine transaminase
AST aspartate aminotransferase
ATF6 activating transcription factor 6
ATP adenosine triphosphate
CAT catalase
CHOP C/EBP homologous protein
CytC cytochrome C
CYP2C19 cytochrome P2C19
CYP2E1 cytochrome P2E1
CYP3A cytochrome P3A
CYP3A4 cytochrome P3A4
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CYP450 cytochrome P450
DAVID database for annotation, visualization and integrated discovery
DBil direct bilirubin
eNOS endothelial NO synthase
ER endoplasmic reticulum
GPx glutathione peroxidase
GRP78 glucose regulated protein
GSH glutathione
GST glutathione S-transferase
HCC hepatocellular carcinoma
HCV hepatitis C virus
HILI herb-induced liver injury
IBil indirect bilirubin
IL-6 interleukin 6
IL-12 interleukin-12
IL-14 interleukin-14
IRE1 inositol-requiring enzyme 1
iNOS inducible nitric oxide synthase
JNK c-Jun N-terminal kinases
Keap1 Kelch-like ECH-associated protein-1
KEGG Kyoto encyclopedia of genes and genomes
KOBAS KEGG orthology-based annotation system
LDH lactate dehydrogenase
LPC lysophosphatidylcholine
LPS lipopolysaccharide
MDA malondialdehyde
NA(D)PH nicotinamide adenine dinucleotide phosphate oxidase
NAFLD non-alcoholic fatty liver disease
NO nitric oxide
NOS nitric oxide synthase
NQO1 NAD(P)H dehydrogenase, quinone 1
Nrf1 nuclear respiratory factor 1
Nrf2 nuclear factor (erythroid-derived 2)-like 2
MPT mitochondrial permeability transition
MRP2 multidrug resistance-associated protein 2
MRP4 multidrug resistance protein 4
OATP2 organic anion transporting polypeptide 2
p38 MAPK p38 mitogen-activated protein kinase
p-JNK phospho-c-Jun N-terminal kinase
PERK pancreatic ER kinase
PKC protein kinase C
PLA2 phospholipase A2
PPAR-α peroxisome proliferator activated receptor α
PPAR-γ peroxisome proliferator-activated receptor-γ
RNS reactive nitrogen species
ROS reactive oxygen species
RUCAM Roussel Uclaf Causality Assessment Method
SOD superoxide dismutases
TBil total bilirubin
TGF-β transforming growth factor- β
TNF tumor necrosis factor
UGT1A1 uridine diphosphate glucuronosyltransferase 1A1
4-HNE 4-hydroxynonenal
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