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Abstract: Spinal cord injury (SCI) results in neuronal and glial death and the loss of axons 

at the injury site. Inflammation after SCI leads to the inhibition of tissue regeneration and 

reduced neuronal survival. In addition, the loss of axons after SCI results in functional  

loss below the site of injury accompanied by neuronal cell body’s damage. Consequently, 

reducing inflammation and promoting axonal regeneration after SCI is a worthy 

therapeutic goal. The receptor for advanced glycation end products (RAGE) is a 

transmembrane protein and receptor of the immunoglobulin superfamily. RAGE is 

implicated in inflammation and neurodegeneration. Several recent studies demonstrated  

an association between RAGE and central nervous system disorders through various 

mechanisms. However, the relationship between RAGE and SCI has not been shown. It is 

imperative to elucidate the association between RAGE and SCI, considering that RAGE 

relates to inflammation and axonal degeneration following SCI. Hence, the present review 

highlights recent research regarding RAGE as a compelling target for the treatment of SCI.  
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1. Introduction 

Spinal cord injury (SCI) is considered to be primarily associated with loss of motor function [1] and 

leads to activate diverse cellular mechanisms in the central nervous system (CNS) to attempt to repair 

the damaged spinal cord tissue [2]. Potential treatments for SCI, including stem cell therapy [3,4], 

transplantation of Schwann cells [5,6], neurotrophin and growth factor delivery [7,8], and regulation of 

inflammatory responses in injured spinal cord [9,10] have recently been investigated. SCI provokes an 

inflammatory response that causes further tissue damage and neurodegeneration [11]. The inflammation 

following SCI is considered an important process that promotes secondary damage to neuronal tissue 

in the spinal cord after traumatic injury and regulates the pathological progress during SCI [12–15]. 

After SCI, apoptotic cell death is observed in neurons and oligodendrocytes. In addition, Wallerian 

degeneration of white matter is simultaneously observed [16–18]. The receptor for advanced glycation 

end products (RAGE), a transmembrane protein and member of the immunoglobulin superfamily, is 

expressed in endothelial cells, neurons, macrophages, and monocytes [19]. RAGE binds diverse 

ligands, such as high mobility group box-1 (HMGB1) [20] and S100β [21], and is implicated in 

various diseases [22–30]. In this review, we will focus on how RAGE and its ligands are involved in 

various mechanisms that are activated following SCI. Specifically, we focus on three points: (1) the 

association between RAGE and inflammation following SCI; (2) the association between RAGE and 

neurite outgrowth after SCI; and (3) the association between RAGE and Schwann cell growth after 

SCI. Here, we highlight recent research regarding the rationale behind choosing RAGE and its ligands 

as potential targets for treating SCI.  

2. Spinal Cord Injury 

SCI resulting from mechanical trauma provokes secondary injuries, including severe tissue damage, 

inflammation, Wallerian degeneration, disruption of the blood-spinal cord barrier, myelin degradation, 

and glial scarring [2,31–33] (Figure 1). SCI has been reported to have an increased annual incidence [34]. 

Functional recovery due to the repair of the injured spinal cord is a major challenge in the 

neuroscience research field [35]. After SCI, inflammation is a major response and source of secondary 

injury, considering that it modulates the pathogenesis of acute and chronic SCI [36]. Inflammatory 

responses cause apoptosis of neurons and glia, as well as glial scar formation and the decline of 

neuronal function [37]. Pro-inflammatory cytokines, such as tumor necrosis factor-alpha (TNF-α) and 

interleukin-1 beta (IL-1β), are expressed by CNS cells, including microglia, astrocytes, neurons, and 

oligodendrocytes at early time points (one to three hours) after SCI [38–40]. In the injured spinal cord, 

increased TNF-α and IL-1β promote vascular permeability, inflammation, release of pro-inflammatory 

cytokines, and apoptosis of oligodendrocytes and neurons [41–46]. In addition, resident microglia  

are activated near the injury site with subsequent recruitment of neutrophils, macrophages, and 

lymphocytes after SCI [47]. Subsequently, Wallerian degeneration triggers the activation of microglia 

and astrocytes in injured spinal cord tissues [48,49]. Glial scarring from SCI is considered an obstacle 

for axon regeneration [50,51] and is an inducer of inflammatory cascades [52]. At the site of injury and 

inflammation, axons are engulfed by macrophages [53]. Subsequently, these direct macrophage–axon 

interactions can promote axonal degeneration [53]. Several studies have reported that inflammation 
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caused by SCI contributes to neuronal degeneration and loss of motor function below the injury  

site [54–56]. Consequently, inflammation should be modulated to reduce secondary injuries and 

functional decline following SCI. Hence, the study on the mechanisms of inflammation following SCI 

is important to find the therapeutic solution in SCI.  

Figure 1. Schematic representation regarding various responses following spinal cord 

injury. Spinal cord injury caused by traumatic mechanical injury leads to the secondary 

damages including inflammatory response, Wallerian degeneration, the activation of glia 

cells, glia scar formation. Finally, these secondary damages cause decline of neuronal 

function following spinal cord injury. 

 

3. RAGE 

RAGE is a 35-kDa membrane-bound protein receptor and a member of a superfamily of 

immunoglobulins [57] and shares homology with neuronal cell adhesion molecules such as NCAM or 

axonin [58,59]. RAGE consists of an extracellular moiety which is required for signal transduction and 

includes one N-terminal V-type and two C-type Ig domains [60]. RAGE was originally recognized as a 

receptor of advanced glycation end products (AGEs), which accumulate in diabetes and during aging [61]. 

Numerous studies demonstrate that AGEs form during metabolic processes involving proteins or 

peptides and sugars. AGEs are major sources of diabetic complications, such as atherosclerosis [25], 

nephropathy [27,62,63], and inflammation [26,64,65] due to their interactions with RAGE. RAGE 

binds to AGEs [66,67], but can also bind to other ligands, including a HMGB1 (amphoterin) [66–70], 

β-amyloid fibrils [28,71–74], and S100 proteins [24,75–77]. The RAGE VC1 domain has a net 

positive charge, but the C2 domain has a net negative charge [78,79]. The negatively charged HMGB1 

C-domain [80,81], AGEs, and S100 proteins are attracted to the positive charge of the VC1  

domain [78,79]. Recent research demonstrates that RAGE is involved in diseases, including CNS 

diseases, due to interactions with these various ligands [22–27]. RAGE has been reported to induce 

transduction pathways involving Ras (related with apoptosis through interaction with AGE in  

response to oxidative stress) [82], Rac/Cdc42 (related with neurite outgrowth through binding with 

amphoterin) [66], Jak/signal transducer and activator of transcription (Jak/STAT) (related with 
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alteration of gene expression/cytokine production through interation with HMGB1) [22–26,64,83,84], 

extracellular signal-regulated kinase (ERK) (related with cell survival/cell proliferation with activation 

of Rac-1 and Cdc42) [85–87], nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB) 

(related with cell apoptosis/cytokine production) [69,88–90]. RAGE is involved in various inflammatory 

mechanisms and participates in numerous diseases including CNS disorders by binding diverse ligands. 

In particular, several studies reported that RAGE was upregulated after SCI in rats and mice [91,92]. 

Also, by confirming using RAGE deficiency animals, RAGE was demonstrated that it plays a cardinal 

role in the various pathophysiological process of SCI [93]. Hence, RAGE should be examined to 

understand the mechanisms leading to secondary damage after SCI, particularly because RAGE is 

associated with inflammatory responses following SCI. 

4. RAGE and Its Ligands (HMGB1 and S100β): Focus on Inflammation Following SCI 

Among RAGE’s ligands, HMGB1 and S100β protein should be focused on the SCI’s research 

because these ligands participate in secondary mechanisms after SCI along with RAGE. RAGE is  

a major cellular binding site for HMGB1 (amphoterin) [57,94,95]. It acts as a pattern recognition 

receptor and participates in the innate immune response [61,96]. HMGB1 is generally expressed in 

cellular nuclei and cytoplasm in brain regions, including the hippocampal dentate gyrus, olfactory 

bulbs, cell lining of the telencephalic ventricles [97], the nuclei of adult neurons and astrocytes [98], 

spinal cord oligodendrocytes [99], choroid plexus endothelial cells [100], microglia [101], and 

Schwann cells [102]. S100β is abundantly expressed in astrocytes and binds to RAGE in the CNS [21]. 

HMGB1 and S100β protein has been reported to modulate both beneficial and harmful effects in in vitro 

study [103,104]. The interactions of RAGE with these ligands activate diverse mechanisms, including 

inflammation, oxidative stress, neurodegeneration, promotion of neurite outgrowth, cell survival, and 

neuronal differentiation [20,60,67,68,105,106]. Several studies demonstrate that mechanical injury 

following SCI results in secondary injuries, such as inflammatory responses [12,107], hemorrhage, 

ischemia, excessive free radical generation, vascular dysregulation, and immune cell infiltration [108–110]. 

Specifically, inflammation following SCI has been known to play an important role in the regulation of 

remyelination and neuronal and glial cell death [12,15,107,111–115]. Inflammation has been recognized 

as an important process that affects the progression of neuronal tissue damage following SCI [15,116,117]. 

Cell death caused by inflammation is affected by injury-promoting factors, such as pro-inflammatory 

cytokines [15,92]. Within one hour post-SCI, TNF-α and interleukin-6 (IL-6) are strongly upregulated 

around the contused site [38,118]. Inhibition of cell death is important for improving neurologic 

dysfunction following SCI [15,92]. Inflammation during SCI has been regarded as be important the 

regulation through NF-κB [119]. A transgenic mouse model of SCI, in which NF-κB was selectively 

suppressed in astrocytes, showed reduced inflammation and increased axonal sprouting [120,121]. 

RAGE activation perpetuates NF-κB p65 activation by de novo synthesis of NF-κB p65 which is 

directly associated with cell proliferation and that the interaction of RAGE and HMGB1 increases the 

expression of NF-κB p65 [122]. Among the ligands of RAGE, HMGB1 is specifically associated with 

neuronal cell death following SCI [15,91]. HMGB1 has been found to be elevated in injured spinal 

cord tissues of rodents [92,123–125]. HMGB1 binds to RAGE on neurons, glia, and endothelial cells 

in the CNS [126–128]. HMGB1 in living cells resides [129] mostly in the nucleus whereas necrotic 
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cells release HMGB1 immediately [130,131]. HMGB1 accelerates inflammatory responses through the 

binding with RAGE [20,132–134]. RAGE contributes to inflammatory responses [135] by regulating 

the production of cytokines, such as interferon-gamma (IFN-γ) [136], interleukin-6 (IL-6), and  

TNF-α [137,138], IL-1β [139] in monocytes and macrophages [140–142] after binding with HMGB1. 

In addition, interaction of RAGE and HMGB1 regulates the production of chemokines [143,144]  

to activate the immune cells such as dendritic cells [145,146] and monocytes [147]. Moreover, the 

binding of HMGB1 to RAGE regulates the migration of immune cells and the upregulation of 

interleukin-8 (IL-8), monocyte chemotactic protein-1 (MCP1), vascular endothelial growth factor 

(VEGF), intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), 

and E-selectin [133,148–150]. Subsequently, the binding of HMGB1 to RAGE participates in 

neovascularization after injury [133,148–150]. In addition, HMGB1-induced signaling through RAGE 

activates diverse signaling pathways, such as the JNK and NF-κB pathways [66,149], in inflammatory 

environments. The binding of HMGB1 to RAGE seems to contribute to the inflammatory response 

generating the secondary damage of SCI by controlling the secretion of cytokine and chemokine and 

by mediating apoptosis signaling (Figure 2). 

Figure 2. Schematic representation regarding the role of receptor for advanced glycation 

end products (RAGE) in inflammation following spinal cord injury. After spinal cord 

injury, RAGE binds to high mobility group box-1 (HMGB1) and subsequently follows in 

the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) or JNK 

pathway. The interaction RAGE and HMGB1 regulates the production of a variety of 

cytokines, adhesion molecules and growth factors and finally inhibits neuronal cell death. 

Thus, the interaction RAGE and HMGB1 may improve the functional decline after spinal 

cord injury.  

 

5. RAGE and Its Ligands: Focus on Neurite Outgrowth Following SCI 

SCI results in the failure of axonal regeneration, leading to functional decline [151]. To improve 

function after SCI, various solutions, such as neural precursor cell transplantation to increase 

remyelination, have been proposed [152–157]. Axon regeneration and neurite outgrowth are key to 

treating functional decline following SCI. Several studies demonstrate that HMGB1 promotes neurite 
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outgrowth, cell migration after injury [68,92,101,158]. Binding of amphoterin to RAGE has been 

known to promote neurite outgrowth [20,66,68,104,159,160]. HMGB1 binds to RAGE-associated  

N-glycans and subsequently promotes neurite outgrowth [161,162]. Hori et al. demonstrated that  

anti-RAGE IgG/(Fab')2 inhibited HMGB1-RAGE activation and blocked HMGB1-induced neurite 

outgrowth [20]. Several studies demonstrated that RAGE-amphoterin interaction involves Rac and 

Cdc42, and promotes the neurite outgrowth [66,163]. In addition, several studies show the role of 

RAGE in cell migration [143,144,164–167] and in the dynamics of the actin cytoskeleton [143]. 

RAGE signaling mediates neurotrophin-dependent neurite outgrowth [168]. Among the RAGE 

ligands, S100β also has known to promote neurite outgrowth and induce translocation of transcription 

factors, such as NF-κB and CREB, following interaction with RAGE [21,104,169–171]. In detail, 

S100β-RAGE activation regulates neurite outgrowth through STAT3 and p44/p42 MAP kinases via 

RAGE [172]. S100β-mediated RAGE activation also participates in cell motility [164]. In a study on 

the function of RAGE in cell motility, transfectants exposed to amphoterin induced neuritis [66]. 

Collectively, the interaction between RAGE and HMGB1/S100β may activate cell motility and neurite 

outgrowth after SCI (Figure 3). Hence, RAGE and its ligands may improve functional decline after 

SCI by promoting neurite outgrowth, considering that regulation of neurite outgrowth is important for 

neurite regeneration after nerve injury [173]. 

Figure 3. Schematic representation of the relationship between RAGE and neurite 

outgrowth after spinal cord injury. The binding RAGE to HMGB1 promotes Rac, Cdc42 

pathway and is involved in the dynamics of actin cytoskeleton. Also, the binding RAGE to 

S100B increases cell motility and is related to CREB, NF-κB, STAT3 signaling. These 

mechanisms result in the promotion of neurite outgrowth and finally may improve the 

functional decline after spinal cord injury. 

 

6. RAGE and Its Ligands: Focus on Schwann Cell Growth and Migration after SCI 

Schwann cells have important roles in tissue repair after CNS injury because Schwann cells are 

involved in various mechanisms, including differentiation, migration, proliferation, and myelination of 

axons [174,175]. In addition, Schwann cells promote the secretion of a variety of neurotrophic factors, 
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subsequently inducing axonal regeneration after CNS injury [174]. After SCI, Schwann cells are 

sometimes observed in remyelinating axons in the spinal cord [110,176–179]. The remyelination by 

Schwann cells in the spinal cord is regarded as the result of migration from the periphery [176]. 

Wiliams et al. reported that the implantation of Schwann cells in injured spinal cords supports 

regeneration of axons, reduces cyst formation, and improves functional decline [180]. Schwann cell 

myelination occurs through increased fibronectin expression [181]. S100β-mediated RAGE activation 

promotes mRNA expression of fibronectin [182,183]. Several studies demonstrated that Schwann 

cells, RAGE, and S100β are necessary for peripheral nerve regeneration [182–184]. RAGE plays a key 

role in Schwann cell’s function during regeneration of injured nerves [185]. Moreover, S100β-activated 

RAGE has been reported the association with Schwann cell migration during the repair procedure  

of injured peripheral nerves through activation of p38 MAPK, CREB, and NF-κB [186]. These 

researches indicate that the interaction between RAGE and its ligands may promote the Schwann cell’s 

beneficial function including secretion of neurotrophic factors, myelination of axons and axonal 

regeneration for treating after spinal cord injury (Figure 4).  

Figure 4. Schematic representation of the association between RAGE and Schwann cell 

growth and proliferation after spinal cord injury. After spinal cord injury, the interaction 

RAGE and S100β promotes the activation of NF-κB, CREB, p38 signaling and the 

expression of fibronectin. These mechanisms may promote the growth and proliferation of 

Schwann cells and finally improve the functional decline after spinal cord injury. 

 

7. Conclusions 

In the present review, we discuss the association of RAGE and its ligands with SCI from various 

perspectives. We addressed three points: (1) Binding of RAGE and its ligands appears to contribute to 

the inflammatory response caused by SCI by regulating the secretion of cytokines and chemokines and 

modulating apoptosis signaling; (2) RAGE and its ligands may improve functional decline after SCI 

by promoting neurite outgrowth, which is crucial for neurite regeneration after CNS injury; (3) RAGE 

and its ligands may promote the myelination of axons and axonal regeneration as treatments for 
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injured spinal cords by activating Schwann cells. This review indicates that further studies of RAGE 

and its ligands in SCI are necessary for a good understanding of the various mechanisms leading to 

functional decline after SCI.  
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