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Abstract: Inflammation and oxidative stress play an important part in the pathogenesis of 

focal cerebral ischemia/reperfusion (I/R) injury, resulting in neuronal death. The signaling 

pathways involved and the underlying mechanisms of these events are not fully 

understood. Chrysin, which is a naturally occurring flavonoid, exhibits various biological 

activities. In this study, we investigated the neuroprotective properties of chrysin in a 

mouse model of middle cerebral artery occlusion (MCAO). To this end, male C57/BL6 

mice were pretreated with chrysin once a day for seven days and were then subjected to 1 h 

of middle cerebral artery occlusion followed by reperfusion for 24 h. Our data show that 

chrysin successfully decreased neurological deficit scores and infarct volumes, compared 

with the vehicle group. The increases in glial cell numbers and proinflammatory cytokine 

secretion usually caused by ischemia/reperfusion were significantly ameliorated by chrysin 

pretreatment. Moreover, chrysin also inhibited the MCAO-induced up-regulation of 

nuclear factor-kappa B (NF-κB), cyclooxygenase-2 (COX-2), and inducible nitric oxide 
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synthase (iNOS), compared with the vehicle. These results suggest that chrysin could be a 

potential prophylactic agent for cerebral ischemia/reperfusion (I/R) injury mediated by its 

anti-inflammatory and anti-oxidative effects. 
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1. Introduction 

Stroke is believed to be the second most common cause of death and the main factor leading to  

long-term disability as a result in irreversible brain injury and loss of neuronal function [1]. Of the 

three types of stroke (intracerebral hemorrhage, ischemic stroke, and subarachnoid hemorrhage),  

70%–80% of cases are ischemic, which is characterized by the occlusion of blood vessels by the 

formation of an obstructive thrombus or embolus. Ischemia/reperfusion (I/R) injury, which is the 

cascade of events leading to neuronal injury and death, involves the release of nitric oxide, excitatory 

amino acids, cytokines, and free radicals, mitochondrial respiratory enzymes damage, the induction of 

programmed cell death, and microglia activation [2]. Adjunct therapies that increase ischemic 

tolerance or limit reperfusion injury may extend the therapeutic window or improve the efficacy of 

reperfusion therapy. Several neuroprotective agents have been investigated in preclinical studies, 

although none have demonstrated efficacy in clinical practice. 

In recent years, the benefits of traditional Chinese medicines exhibiting neuroprotective effects have 

been increasingly investigated in I/R injury [3]. Chrysin (5,7-dihydroxyflavone), which is a natural 

flavonoid that is present in honey, bee propolis, and many plant extracts [4,5], is well-known for its 

various biological activities. Multiple studies have indicated antioxidant [6], antihypertensive [7], 

antidiabetogenic [8], and anxiolytic functions [9]. In particular, chrysin has the ability to block the cell 

cycle, induce apoptosis [10], disrupt mitotic spindle formation [11] and inhibit angiogenesis [12], 

making it a potential candidate as an anticancer drug. Recent, studies have shown that chrysin  

inhibits the NF-κB signaling pathway, providing an underlying mechanism for its anti-inflammatory 

activity [13–15]. 

However, the therapeutic potential of chrysin in I/R injury is unknown. Thus, the goal of the current 

study was to assess the neuroprotective capacity of chrysin and the underlying mechanisms in a mouse 

model of middle cerebral artery occlusion (MCAO) and reperfusion. 

2. Results and Discussion 

2.1. Effect of Chrysin on Neurological Deficits, Infarct Volume and Pathomorphological Changes 

Chrysin has been implicated as an adjunct therapeutic agent for I/R injury. Multiple previous  

studies conducted in various animal models, have shown that chrysin exerts anti-inflammatory and 

neuroprotective effects when administered at doses ranging from 25 to 100 mg/kg/day [6,16,17]. 

Therefore, in this study, we first evaluated the clinical scores in a mouse model of MCAO following 

pretreatment with chrysin at the 25, 50, 75, and 100 mg/kg. Clinical scores were lower in mice treated 

with the 75 or 100 mg/kg doses compared to the control mice, while the 25 and 50 mg/kg doses had no 
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significant effect (data not shown). On the basis of these findings, mice were therefore pretreated with 

chrysin at doses of 75 mg/kg/day for this study. 

An examination of neurological function was carried out in mice subjected to 1 h of ischemia 

followed by 24 h of reperfusion. Compared with the MCAO group, the neurological deficit scores 

were significantly reduced in mice treated with chrysin (p < 0.05). The range of neurological deficit 

scores for the different groups is shown in Figure 1A. Representative brain slices showed that normal, 

viable brain tissues were stained deep red, while staining of the infarcted area was pale. No areas of 

infarction were observed in the sham group. The MCAO group had an obvious rise of infarct volume 

in comparison with the sham group. TTC staining (2,3,5-tripenyltetrazolium chloride) of brain sections 

following MCAO and reperfusion showed noticeable damage in the areas supplied by the middle 

cerebral artery. In comparison with the MCAO group, chrysin pretreatment significantly reduced the 

infarct volume (Figure 1B,C). 

Figure 1. Effect of chrysin on neurological deficits, brain infarct volume and 

pathomorphological changes in mice with cerebral I/R injury. (A) Neurological score was 

measured in mice that underwent 1 h of ischemia followed by 24 h of reperfusion. Chrysin 

decreased the neurological score compared to the middle cerebral artery occlusion 

(MCAO) group; (B) Representative coronal brain sections stained with 1% TTC. Mice 

were subjected to 1 h of ischemia followed by 24 h of reperfusion; the infarct area is white; 

(C) Quantitative analysis of the percentage of brain infarct volume. Chrysin pretreatment 

diminished the percentage of brain infarct volume and there is a statistical difference 

compared with the MCAO group; (D) H&E staining showed that the normal morphologic 

features of neurons were present in the sham group. The MCAO group showed the loss of 

neurons and the presence of multiple vacuolated interspaces. Chrysin significantly 

ameliorated the damage of neurons that is associated with ischemia in the MCAO group 

(Magnified 20×). Data are expressed as means ± SEM, * p < 0.05, vs. MCAO group, n = 6. 
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H&E staining of brain tissues subjected to 1 h ischemia followed by 24 h reperfusion revealed 

neuronal loss and the presence of multiple vacuolated interspaces. Examination of the MCAO group 

brain sections showed that intact neurons were absent in those areas (Figure 1D). In contrast, the 

corresponding areas of brain sections from the chrysin pretreatment group showed partial neuronal loss 

and the presence of intact neurons in between the vacuolated spaces (Figure 1D), thus, indicating that 

chrysin pretreatment was neuroprotective. 

2.2. Effect of Chrysin on SOD Activity and MDA Content 

Both superoxide dismutase (SOD) activity and malondialdehyde (MDA) levels were measured 

evaluate the level of oxidative stress associated with I/R injury. Compared with the sham group, SOD 

activity in the MCAO group was dramatically decreased (p < 0.05) and the MDA content increased 

significantly after I/R injury (p < 0.05). Compared with MCAO group, the SOD activity after I/R 

injury markedly increased, while the MDA content decreased significantly in the chrysin pretreatment 

group (both p < 0.05) (Figure 2). These data suggest that chrysin reduced MCAO-induced  

oxidative stress. 

Figure 2. Effect of chrysin on the activity of SOD and the contents of MDA. (A) SOD 

activity were significantly increased in the MCAO group as compared to the sham group, 

Compared with the MCAO group, the activities of SOD were significantly increased in the 

chrysin pretreatment group; (B) The contents of MDA were significantly increased in the 

MCAO group as compared to the sham group, while it was significantly decreased in the 

chrysin pretreatment group. Data are expressed as means ± SEM, * p < 0.05, MCAO vs. 

sham group, # p < 0.05, chrysin pretreatment group vs. MCAO group, n = 6. 

 

2.3. Effects of Chrysin on Levels of iNOS, COX-2 and NF-κB 

NF-κB is known to regulate the expression of iNOS and COX-2. Immunofluorescence staining 

showed that the expression levels of COX-2, iNOS and NF-κB were significantly raised in the  

peri-infarct areas of the brain in the MCAO group (Figure 3). However, pretreatment with chrysin 

suppressed the expression of COX-2, iNOS and NF-κB compared to mice that did not receive this 

treatment. Further analyses of mRNA expression in the ischemic-reperfusion brains were carried out 

with real-time PCR. As shown in Figure 4, the chrysin pretreatment group had markedly reduced 

mRNA levels of iNOS, COX-2 and NF-κB compared with the MCAO group (p < 0.05). These data 
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suggest that the anti-inflammatory activity of chrysin is mediated by inhibiting NF-κB activation and 

iNOS and COX-2 gene expression. 

Figure 3. Chrysin pretreatment suppresses the production of iNOS, COX-2 and NF-κB in 

the I/R injured mouse brain. Representative coronal brain sections of the sham group, the 

MCAO group and the chrysin pretreatment group were stained using immunofluorescence 

for iNOS, COX-2 and NF-κB. The sham group showed negligible staining. However, the 

expression of iNOS, COX-2 and NF-κB was prominent in the MCAO group compared with 

the sham group, and the chrysin pretreatment group showed moderate staining for iNOS, 

COX-2 and NF-κB (Magnified 20×). Data are expressed as means ± SEM, * p < 0.05, vs. 

MCAO group, n = 6. 

 

Figure 4. Chrysin pretreatment suppresses the mRNA expression of iNOS (A), COX-2 (B) 

and NF-κB (C) in the MCAO model. Representative mRNA expression of iNOS, COX-2 

and NF-κB detected by RT-PCR. Compared to the MCAO group, chrysin pretreatment also 

inhibited the mRNA expression of iNOS, COX-2 and NF-κB. Data are expressed as  

means ± SEM, * p < 0.05, vs. MCAO group, n = 6. 

 



Int. J. Mol. Sci. 2014, 15 20918 

 

 

2.4. Effect of Chrysin on the Expression of GFAP and Iba-1 

Neuronal death in cerebral I/R injury is associated with astrocytosis and microgliosis. The numbers 

of GFAP- and Iba-1-positive cells were significantly increased in the ischemic-reperfusion brain 

sections in the MCAO group (Figure 5), compared to the sham-operated group. Compared with the 

MCAO group, there was a marked decrease in GFAP and Iba-1 expression in the chrysin pretreated 

group, suggesting that chrysin inhibits astrocytosis and microgliosis. 

Figure 5. Chrysin suppressed the expression of GFAP and Iba-1. (A) Immunofluorescence 

staining in cortical brain sections for the sham group, the MCAO group and the chrysin 

pretreated group show the expression of GFAP; (A,C) The sham group showed negligible 

GFAP-positive cells. However, the expression level of GFAP was prominent for the MCAO 

group compared with the sham group, while the chrysin pretreatment group showed 

moderate expression of GFAP levels. GFAP-positive cells and DAPI-positive nuclei were 

co-localized (Magnification 40×); (B,D) The expression of Iba-1 was observed in the all 

three treatment groups. The MCAO group showed increased gliosis compared to the sham 

group, while the chrysin pretreatment group showed a moderate expression of Iba-1 

(Magnification 20×). Data are expressed as means ± SEM, * p < 0.05, vs. MCAO group, n = 6. 
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2.5. Effects of Chrysin Treatment on Cytokine Profiles 

Semi-quantitative analysis of cytokine levels in the brain tissues of mice subjected to 1 h ischemia 

followed by 24 h reperfusion was performed using multi-cytokine ELISA kits. As shown in Figure 6, 

the production of proinflammatory cytokines (IL-1β, IL-6, IL-12, IL-1α, IL-17A, IFN-γ and TNF-α) in 

the chrysin pretreatment group was significantly reduced compared to that in the MCAO group  

(p < 0.05). However, there were no marked differences in the levels of IL-2, IL-4, IL-10, G-CSF,  

and GM-CSF among the three groups (Figure 6). These data further confirm the anti-inflammatory 

properties of chrysin. 

Figure 6. Chrysin reduced the secretion of proinflammatory cytokines. The brain tissue 

supernatants in mice that underwent 1 h of ischemia followed by 24 h of reperfusion were 

measured by ELISA. IL-1β, IL-6, IL-12, IL-1α, IL-17A, IFN-γ and TNF-α were inhibited, 

however, IL-2, IL-4, IL-10, G-CSF and GM-CSF showed no significant changes.  

The results are presented as mean OD ± SEM. * p < 0.05, vs. MCAO group, n = 6. 

 

2.6. Discussion 

In the present study, we used a temporary MCAO and reperfusion mouse model to determine  

the effects of chrysin following acute ischemic stroke. The intraluminal suture method is the most 

commonly adopted animal model of ischemic stroke used to study the neuroprotective effect of drugs. 

Our results show that infarct size, inflammation, and oxidative stress were reduced in this model by 

chrysin pretreatment. 

Histology can be used to link the development of the I/R lesion and the extent of neural protection 

conferred by pharmacological intervention. Infarction volume and neurological deficits are key  

factors for evaluating the consequences of stroke [18] with TTC and H&E staining employed to 

identify the infarcted areas. In the current study, the infarct regions in the MCAO group were clearly 

visible; however, the size of the affected regions and neuronal necrosis was significantly reduced by  

chrysin pretreatment. 

Accumulating recent evidence has shown that the overproduction of oxygen free radicals, such as 

superoxide anions, hydroxyl radicals and hydrogen peroxide, during reperfusion plays an important 
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role in acute ischemic stroke. Furthermore, considerable evidence has linked the production of reactive 

oxygen species (ROS) and subsequent oxidative damage to the pathogenesis of I/R injury [19].  

The mechanism of this effect may involve the stimulation of a radical ripple effect or activation of a 

signaling pathway that promotes damage to cellular macromolecules, leading to irreversible neuronal 

injury and cell death [20]. Based on the findings of the present study, we conclude that the 

antioxidative properties of chrysin are due in part to the inhibition of iNOS and COX-2 expression.  

In addition, the anti-inflammatory properties of chrysin were further confirmed by its effective 

inhibition of pro-inflammatory NF-κB activity. Thus, the down-regulation of iNOS and up-regulation 

of COX-2 provides a molecular basis for the neuroprotective effects of chrysin in I/R injury. 

Furthermore, SOD is believed to be the critical scavenger enzyme hindering tissue injury caused by 

peroxidase reactions. In addition, expression levels of MDA, a toxic final product of lipid peroxidation; 

is inversely linked to the ability of SOD to reduce the rate and extent of lipid peroxidation free radical 

productions [21]. Our results show the MDA content was markedly lower and the SOD activity 

slightly increased in the chrysin pretreated MCAO group compared with the vehicle-treated MCAO 

group. Overall, these results indicate that the potential of chrysin for the treatment of I/R injury due to 

its anti-oxidative properties. 

Reactive gliosis, which is associated with ischemic stroke involves both astrocytes and microglia,  

is an important component of the cellular and molecular pathways involved in stroke-induced 

destructive responses. In our study, I/R injury increased GFAP and Iba-1 expression, while the 

expression of these markers was reduced in mice pretreated with chrysin. These observations suggest 

that chrysin inhibits the proliferation of glial cells, further explaining its neuroprotective properties. 

Acute neuronal cell death after the onset of I/R injury is also associated with inflammatory 

mechanisms. Inflammatory cascades are initiated by energy depletion and necrotic neuronal cell death 

in the local ischemic area; therefore, inhibitors of proinflammatory cytokines are likely to have 

protective benefits during I/R injury. In this study, we observed the inhibition of IL-1β, IL-6, IL-12,  

IL-1α, IL-17A, IFN-γ, and TNF-α following chrysin pretreatment. In contrast, no significant changes 

in IL-2, IL-4, IL-10, G-CSF, and GM-CSF were observed in response to chrysin pretreatment. These 

data demonstrate that the anti-inflammatory effects of chrysin are associated with the regulation of 

inflammatory cytokine secretion. 

3. Experimental Section 

3.1. Animals and Reagents 

Male C57BL/6 mice (aged 10–12 weeks) were purchased from the Academy of Military Medical 

Science (Beijing, China). The mice were housed under temperature control and a 12-h light-12-h dark 

cycle with food and water provided ad libitum. The experiments were performed according to national 

regulations and approved by the Animal Experiments Ethical Committee of Tianjin Medical 

University General Hospital. Mice were acclimated to these conditions for one week following their 

arrival and prior to the start of the experiments. Chrysin (>98% purity, by high performance liquid 

chromatography analysis) was purchased from Nanjing TCM Institute of Chinese Materia Medica 

(Nanjing, China). It was freshly prepared in phosphate-buffered saline (PBS) containing 2% (v/v) 
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dimethylsulfoxide (DMSO). Chrysin was administered by oral gavage at a dose of 75 mg/kg body 

weight per day for 7 days. Control animals received the same volume of the vehicle (PBS/2% DMSO) 

using the same regimen. 

3.2. MCAO Model and Clinical Evaluation 

Animals were randomly separated into three groups of (6–10 mice per group): Group I,  

sham-operated group (vehicle-treated); Group II, MCAO group (vehicle-treated); Group III, chrysin 

pretreatment MCAO group. Focal cerebral ischemia was simulated by occlusion of the left middle 

cerebral artery based on the methods described by Longa et al. [22]. Briefly, the mice were 

anesthetized with chloral hydrate (30 mg/kg, intraperitoneally). A midline neck incision was then made 

to expose, the left common carotid artery, the external carotid artery and the internal carotid artery, 

which were isolated and ligated. A monofilament coated with silicone rubber (Shadong, Beijing, 

China) was inserted into the internal carotid artery (9–10 mm) through the common carotid artery until 

a mild resistance was felt, indicating occlusion of all blood flow from the posterior cerebral artery,  

the internal carotid artery, and the anterior artery. One hour after the induction of ischemia,  

the monofilament was removed to restore blood flow. The sham-operated group mice underwent all 

surgical procedures with the exception of monofilament insertion into the internal carotid artery. The 

body temperature of the mice was maintained at 37.0 ± 0.5 °C during surgery and mice were kept in a 

well-ventilated room at 25 ± 3 °C in individual cages, with the provision of food and water, until they 

regained full consciousness. Neurological function was evaluated in each mouse group 24 h after the 

MCAO and reperfusion using the modified Neurological Severity Score (mNSS) [23]. 

3.3. Infarct Volume Analysis 

After clinical scoring, the brains of the MCAO and reperfusion mice were immediately sliced into 

coronal sections (2 mm thick) from the frontal tips using scalpels. The sections were stained with 1% 

2,3,5-tripenyltetrazolium chloride (TTC; Sigma, St. Louis, MO, USA) and immersed in normal saline 

at 37 °C for 20 min. Brain sections were then fixed in 4% paraformaldehyde at 4 °C overnight before 

being photographed. Viable tissues stain deep red based on intact mitochondrial function, while 

infarcts remain unstained. The infarcted regions in each section were evaluated using Image-Pro® Plus 

v 4.0 image analysis software (Media Cybernetics, Washington, DC, USA). The total infarct volume 

was calculated as the sum of the infarct volume of each section. To compensate for the effect of  

brain edema, the infarct volume percentage was calculated as follows: infarct area × {1 −  

[(ipsilateral hemisphere area − contralateral hemisphere area)/contralateral hemisphere]} [24]. 

3.4. Pathological/Histological Analysis 

After 1 h of ischemia followed by 24 h of reperfusion, the mice were anesthetized with chloral 

hydrate (30 mg/kg, intraperitoneal) and transaortically perfused with 4% paraformaldehyde dissolved 

in 0.1 M phosphate-buffered saline (PBS, pH 7.4, 4 °C). The brains were removed and postfixed in 4% 

paraformaldehyde overnight at 4 °C. After being cut into successive, paraffin-embedded coronal 

sections (6 μm), the brain sections were stained with hematoxylin and eosin (H&E). The pathological 
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and histological changes were observed through a light microscope (Olympus, Tokyo, Japan) 

magnification at 20× and photographed. 

3.5. Determination of SOD Activity and MDA Level 

After I/R injury as described, brains were collected to determine SOD activity and MDA levels as 

indicators of oxidative stress. The brains were washed, weighed and then homogenized in ice-cold 

saline (9 volumes) for 20 min to prepare a 10% (w/v) homogenate. The homogenate was then 

centrifuged at 4000 rpm/min for 10 min at 4 °C. SOD activity and MDA levels were then measured by 

assay kits (A001 and A003; Nanjing Jiancheng Bioengineering Institute, Nanjing, China) in 

accordance with the manufacturers’ instructions. The assay results were normalized to the protein 

concentration in each sample, and expressed as U/mg protein or nmol/mg protein. 

3.6. Immunofluorescence Analysis of iNOS, COX-2, NF-κB and GFAP 

Paraffin-embedded coronal brain sections (6 μm) were subjected to deparaffinization, rehydration, 

and underwent a microwave oven antigen retrieval (microwave method). The brain sections were 

incubated overnight at 4 °C with the following primary antibodies: rabbit anti-mouse iNOS antibody 

(1:100 dilution, Zhongshan Goldenbridge Biotechnology, Beijing, China), rabbit anti-mouse COX-2 

antibody (1:100 dilution, Zhongshan Goldenbridge Biotechnology), mouse anti-mouse NF-κB 

antibody (1:50 dilution, Zhongshan Goldenbridge Biotechnology) or rabbit anti-mouse glial fibrillary 

acidic protein (GFAP) antibody (1:2000 dilution, Abcam Biotechnology, Cambridge, MA, USA).  

The slides were rinsed with cold PBS in order to remove the unbound antibodies. Sections were then 

incubated with IgG secondary antibody (1:2000 dilutions, goat anti-rabbit, Abcam Biotechnology) for 

1 h at room temperature followed by 4',6-diamidino-2-phenylindole (DAPI) for 5 min at room 

temperature. Finally, the sections were mounted with mounting media, cover-slipped and air-dried. 

Cells stained for iNOS, COX-2, NF-κB and GFAP in the core ischemic wound of the cerebral tissues 

were randomly analyzed in 10 sections of each brain under high magnification (20× or 40×).  

The results were presented as mean ± standard error of the mean (SEM). 

3.7. Immunohistochemical Detection of Iba-1 

Brain sections were exposed to 3% hydrogen peroxide for 10 min to destroy endogenous 

peroxidases activity and then blocked with bovine serum albumin for 30 min. Sections were 

subsequently incubated (in PBS) overnight at 4 °C with rabbit anti-mouse ionized calcium binding 

adapter molecule (Iba-1) antibody (1:1000 dilution, Abcam Biotechnology) diluted in a solution of 

0.3% Triton X-100. Sections were then incubated with anti-rabbit IgG secondary antibody for 1 h at 

room temperature. The primary antibody was replaced with PBS in negative control sections. After 

washing in PBS, immunoreactivity was detected with 3,3'-diaminobenzidine tetrahydrochloride (DAB) 

and counterstained with hematoxylin. Finally, the brain sections were dehydrated in a graded ethanol 

series, mounted in xylene and coverslipped. The results were expressed as the number of positive cells 

per mm2 tissue section counted in 10 randomly selected visual fields under high magnification (20×). 
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3.8. Quantitative Real-Time PCR 

Total RNA was extracted from the ischemic hemisphere using Trizol reagent (Invitrogen, Carlsbad, 

CA, USA) according to the manufacturer’s instructions. The concentration of RNA was quantified by 

ultraviolet spectrophotometry at 260/280 nm. cDNA was transcribed using QuantiTect Reverse 

Transcription Kit (Qiagen, Hilden, Germany) in accordance with the manufacturer’s instructions. The 

primer sequences used to measure gene expression were: iNOS sense [25,26], GGA ATC TTG GAG 

CGA GTT GTG GAT, and antisense, CCT CCA ATC TCT GCC TAT CCG TCT; COX-2 sense [27,28], 

ATC ATA AGC GAG GAC CTG GGT TCA C, and antisense, TCT CTG GGA TGT GAG GAG GGT 

AGA T; and NF-κBp65 sense [29,30], ACC GTC CTC TGC CCC AGT AT and antisense, GGC TTC 

CGA CAG CGT GCC TT. In addition, β-actin was used as an internal control. Quantitative real-time 

polymerase chain reaction (PT-PCR) analysis of iNOS, COX-2 and NF-κB mRNA expression was 

performed using SYBR green mix (Newbioindustry, Beijing, China) and calculated using the  

2−ΔΔTh method. 

3.9. Measurement of Cytokines 

Cytokines in supernatants from ischemic brain tissue cultures were measured with a quantitative 

enzyme-linked immunosorbent assay (ELISA) using the Multi-Analyte ELISArray Kit (Qiagen, 

Duesseldorf, Germany). The kit detects 12 cytokines simultaneously (IL-1α, IL-1β, IL-2, IL-4, IL-6,  

IL-10, IL-12, IL-17A, TNF-α, interferon-γ (IFN-γ), granulocyte colony-stimulating factor (G-CSF) and 

granulocyte-macrophage colony-stimulating factor (GM-CSF)) using an ELISA protocol conducted 

under uniform conditions. according to the manufacturer’s instructions. Determinations were 

performed in duplicate on individual mouse brains (n = 6 mice per group) and the results were 

expressed as mean OD value. 

3.10. Statistical Analysis 

SPSS 17.0 analysis software (SPSS. Inc, Chicago, IL, USA) was used to compare the differences 

between each group. The processed data were presented as mean ± SEM. For all statistical analyses, 

the level of significance was set at p < 0.05. 

4. Conclusions 

In summary, the findings of this study suggest that chrysin is a potentially useful prophylactic agent 

for I/R injury due to its anti-inflammatory and anti-oxidative properties, and may provide a potential 

promising new therapeutic strategy for acute ischemic stroke. 
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