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Abstract: Recently a temperature-jump FTIR study of a designed three-stranded sheet 

showing a fast relaxation time of ~140  20 ns was published. We performed massively 

parallel molecular dynamics simulations in explicit solvent to probe the structural events 

involved in this relaxation. While our simulations produce similar relaxation rates, the 

structural ensemble is broad. We observe the formation of turn structure, but only very 

weak interaction in the strand regions, which is consistent with the lack of strong 

backbone-backbone NOEs in previous structural NMR studies. These results suggest that 

either DPDP-II folds at time scales longer than 240 ns, or that DPDP-II is not a well-defined 

three-stranded β-sheet. This work also provides an opportunity to compare the performance 

of several popular forcefield models against one another. 

Keywords: Ultrafast folding; downhill folding; DPDP; DPDP-II; designed beta- 

sheet proteins. 

 

OPEN ACCESS



Int. J. Mol. Sci. 2009, 10             

 

 

1014

1. Introduction 
 

Xu et al. have recently studied the nanosecond time scale folding dynamics of a designed three-

stranded sheet mini-protein [1]. This peptide, called DPDP-II, is one of many peptide sequences 

originally designed by the Gellman group for the purposes of elucidating the sources of 

thermodynamic stability and folding cooperativity of beta-hairpin and beta-sheet structures [2]. The 

most stable of these beta-sheet designs have a scaffold that incorporates successive D-proline and 

glycine residues (DPG) in the turn regions, a motif shown to form a stable Type-II´ turn [3].  

Of great interest as model systems have been several three- and four-stranded beta-sheet designs 

from the Gellman group. The first of these, DPDP, was studied by NMR and shown to have cross-strand 

NOEs and chemical shifts indicative of beta-sheet populations [4]. Syud et al. built upon DPDP, 

producing (among others): DPDP-II, a three-stranded sheet whose C-terminal hairpin is identical to the 

N-terminal hairpin of DPDP (Figure 1); and DPDPDP, a four-stranded composite of DPDP and DPDP-II 

[5]. The stability of these designs was assessed in a similar fashion by NMR. 

Figure 1. Designed beta-sheet peptides designed by the Gellman group: DPDP [4], 
DPDP-II [5], and DPDPDP [5]. DP denotes D-Proline, and O denotes Ornithine.  

 
 

Recently, designed DPG-turn beta-sheet peptides have become interesting candidates for ultrafast 

folding beta-sheet systems. Many proteins have been engineered to fold quickly [6-8], close to the 

“speed limit” of folding [9,10]. Upper limits on protein folding rates are thought ultimately to be 

controlled by the conformational search rate for forming intermolecular contacts [11,12]. For beta-

sheet proteins, the entropic barriers of turn formation are rate limiting [13]. Indeed, a designed variant 

of human Pin1 WW domain, with a DPG substitution in the turn region, shows a 10-fold increase in 

folding rate compared to native sequence, up to (~10 s)-1, becoming one of the fastest folding beta-

sheet proteins to date [13]. 

It had been hypothesized that because of the reduced conformational entropy of the DPG turn 

regions, the folding landscape of DPDP-II might not have activation barriers to folding, and shown to be 

that of a “downhill” folder [8], with kinetics shaped mainly by landscape roughness. Using 

temperature-jump FTIR, Xu et al. showed that DPDP-II has “the fastest T-jump relaxation rate observed 

for a beta-sheet system so far” of (~140  20 ns)-1, with single-exponential relaxation kinetics [1]. 

More recently, T-jump FTIR studies of the related four-stranded peptide, DPDPDP, show similar single-

exponential kinetics, but with a folding time of ~440 ns [14]. 

While the single-exponential kinetics of DPDP-II can be fit to a two-state Arrhenius-type model, Xu 

et al. showed that one-dimensional Langevin models of dynamics over a rough free-energy surface 

[15,16] explain the data equally well, which is their preferred interpretation. In the case of the four-
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stranded DPDPDP, Xu et al. suspect that many parallel but degenerate refolding pathways may be 

present [14].  

One reason to prefer the “downhill” interpretation is the lack of features typical of activated folding 

kinetics [15,16]. The fast rate of the relaxation (on the time scale of helix-coil transitions) imply that 

unfolded and folded ensembles must have a similar degree of compactness, and end-to-end distances 

as measured by FRET show little sensitivity to temperature. Xu et al. suggest a reason for this is the 

reduced accessible conformational space imposed by the rigid DPG turns. Smith and Tokmakoff used 

time-resolved infrared spectroscopy along with site-specific isotopic labeling techniques to show that 

the DPG turn region of de novo hairpin peptide PG12 does not undergo significant rearrangement upon 

a temperature-jump, where as the mid-strand regions rearrange on a ~130-ns time scale [17]. Their 

results support a model where the unfolded state is an expanded but native-like ensemble.  

Simulation studies have shed some light onto the thermodynamics of DPG-turn beta-sheet proteins. 

While there have been no previous simulations of DPDP-II, several groups have simulated the related 
DPDP peptide, which shares an 11-residue stretch of hairpin residues (Figure 1). Wang and Sung 

simulated a 100 ns molecular dynamics trajectory of DPDP using an implicit solvent model, starting 

from an extended conformation [18]. Their results show DPDP folding to beta-sheet structures, and 

agree with experimental findings that the DPG turn is more stable than designed three-stranded 

peptides with NG or GS turns. Roe et al. used replica exchange molecular dynamics in a modified 

AMBER99 forcefield with an implicit solvation model to sample the thermodynamics of DPDP [19]. 

REMD (12 replica trajectories each of ~130 ns) dramatically enhanced the convergence of the free 

energy landscape compared to single-replica MD. The two hairpins of DPDP show simulated 

populations of ~50% and ~75%, respectively, consistent with NMR and CD studies [4,20], and 

estimates of thermodynamic cooperativity of -1 to -3 kcal/mol. The less stable of the two DPDP hairpins 

comprises the C-terminal sequence of DPDP-II. 

We have been interested in DPDP-II as a target for molecular simulation for several reasons. It 

appears to be the fastest-folding beta-sheet protein so far, with relaxation kinetics within the time scale 

range that can be effectively addressed with all-atom molecular simulation. Moreover, the 

experimental kinetics remain ambiguous as to whether activation barriers exist for this peptide. To 

investigate the underlying conformational dynamics, we perform massively parallel molecular 

dynamics simulations of DPDP-II in explicit solvent. 

As we report below, the reaction coordinates of average radius of gyration and solvent-accessible 

surface area of backbone C=O over time show good agreement with the experimentally measured 

relaxation rates, but we observe very few three-stranded sheet structures folded within 240 ns, 

regardless of the forcefield model used. These results suggest that either DPDP-II folds at time scales 

longer than 240 ns, or that DPDP-II is not a stable well-defined β-sheet, which is consistent with 

previous NMR spectroscopic data [5]. 

2. Results and Discussion 

The Folding@Home distributed computing platform [21] was used to simulate molecular dynamics 

(MD) trajectories, each up to 240 ns in length, for five different forcefields, for a total of ~8.2 ms of 

simulation. Simulations were performed using the GROMACS simulation package [22], with 
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AMBER94 [23], AMBER96 [24], AMBER99 [25], AMBER99 [26], and AMBER03 [27] forcefields 

(see Methods section). 1000 total trajectories were generated for the AMBER99 simulations, and 

10,000 trajectories each were generated for the other forcefield simulations. Figure 2 shows the 

distribution of trajectory lengths for each forcefield tested. 

Figure 2. The distribution of trajectories achieving a given trajectory length, shown for the 

forcefields tested in this study.  

 

2.1. Simulated relaxation kinetics 

Time-resolved FTIR measurements cannot directly determine whether a protein is folded, but 

instead report the status of backbone amide groups, which may be closely related. To best connect with 

the relaxation rates experimentally measured using FTIR [1], we therefore analyzed the ensemble time 

course of the total solvent-accessible surface area of backbone C=O groups, as well as the average 

radius of gyration of the entire molecule. In general, reaction coordinates must be carefully chosen 

because a poor choice of can yield projection-dependent results [28,29]. The C=O solvent-accessible 

surface area is a measure that closely connects with the measured amide I band, which is known to be 

sensitive to hydration status [30]. The radius of gyration is a global quantity that does a good job of 

characterizing the structural distribution and compactness of a conformational ensemble. 

We simulated 1,000 trajectories each (100 each for AMBER99) from 10 different starting 

configurations (Figure 3) taken randomly from a high-temperature equilibration trajectory of DPDP-II 

started from a semi-extended state (see Methods). Figure 4a shows a typical trace of the ensemble-

average radius of gyration over time (for a particular combination of forcefield and starting 

conformation), which fits well to a bi-exponential curve. Figure 6a shows a typical trace of the 

ensemble-average C=O solvent-accessible surface area over time. The kinetics also fit well to a bi-

exponential curve. In both cases, the kinetics show a fast equilibration phase (usually 1 ~1-10 ns) and 

a slower relaxation phase (2 ~100 ns). Similar kinetics were computed across all forcefields and 

starting conformations (Figure 4b). In most cases, the fast phase corresponds to fast equilibration of the 

starting conformation. Alternatively, in some cases, the fitted values of 1 were extremely short (~0.1 
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ns), less than the snapshot frequency, indicating that the kinetics may be better described as a single-

exponential process with rate constant 2. Numerical values for all fitted kinetic parameters are shown 

in the Supplementary Material (Tables S1 and S2). 

Figure 3. Ten different starting conformations taken from a high-temperature trajectory 

were used to seed the simulations.  

 

Figure 4. Simulated relaxation kinetics for DPDP-II, as characterized by the average radius 

of gyration. (a) An example trace of the average radius of gyration over time (blue) with 

the best-fit bi-exponential curve (green). (b) Fitted bi-exponential time constants 1 and 2 

across all forcefields and starting conformations.  
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Regardless of forcefield choice, the slow relaxation times estimated from our simulations are 

consistent, ranging from about ~60 to ~100 ns for the radius of gyration reaction coordinate (Figures 

4b, 5), and ~80 to ~150 ns (Figures 6b, 7) for the solvent-accessible surface area. Both compare very 

favorably to the experimentally measured relaxation time of ~140  20 ns obtained by T-jump infrared 

spectroscopy [1]. 

Figure 5. Average simulated relaxation times for DPDP-II, for each forcefield, as 

characterized by average radius of gyration. Error estimates are computed from the 

standard deviation across the 10 starting conformations. 

 

Figure 6. Simulated relaxation kinetics for DPDP-II, as characterized by average C=O 

solvent-accessible surface area. Description is as Figure 4. 
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Figure 7. Average simulated relaxation times for DPDP-II, for each forcefield, as 

characterized by average C=O solvent-accessible surface area. Error estimates are 

computed from the standard deviation across the 10 starting conformations. 

 
 

The agreement between simulated and experimental rates is comparable to other contemporary 

examples of physical kinetics simulations [31]. The slightly faster relaxation rates observed in the 

simulations may in part reflect the anomalously high diffusion constant of the TIP3P water model [32]. 

The average radius of gyration at 240 ns across all forcefields is 8.32Å ± 0.47Å, and the average 

value of the exponential baseline, C, is 8.28Å ± 0.47Å. This reflects a more conformationally 

expanded ensemble than seen in simulations of DPDP, which showed radius of gyration of ~7Å for 

unfolded states, ~6.5Å for partially unfolded states, and ~5.5Å for a fully strand-paired native-state 

conformation [19]. 

2.2. Secondary structures over time 

The per-residue secondary structure over time for each forcefield was calculated using the DSSP 

algorithm [33]. The general features observed across the different forcefields include fast formation of 

the DPG turn regions, and negligible amounts of sheet formation as quantified by the amount of 

backbone hydrogen-bonded strand content (see Supplementary Material). It should be noted that strand 

content may be somewhat underestimated due to the stringent definition required by DSSP.  

The amounts of secondary structure across different forcefields reproduce previously noted 

secondary structural biases [26]. For example, AMBER94 is slightly biased toward more helical 

conformations and has more populated turn regions (as defined by DSSP), while AMBER96 biased 

toward beta-sheet conformations, which detectable populations of strand (see Supplementary 

Material). The more modern forcefields of AMBER99, AMBER99phi, and AMBER03 all show 

comparable amounts of secondary structural propensities intermediate between AMBER94 and 

AMBER96. In all cases the DSSP populations are relatively static after ~100 ns. 
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2.3. Hairpin formation over time 

2.3.1. QH1 and QH2 at 100-150 ns and 200-230 ns over time 

 

To examine hairpin formation, we computed two quantities, QH1 and QH2, reporting the fraction of 

“native” contacts in (N-terminal) hairpin 1 and (C-terminal) hairpin 2, respectively (see Methods). The 

quantities QH1 and QH2 were used as reaction coordinates to compute the landscape of sampled 

conformations at two time slices: 100-140 ns and 200-240 ns (Figure 8).  

Figure 8. Conformational landscapes for DPDP-II. Histograms of sampled populations were 

constructed in reaction coordinates QH1 and QH2, which monitor the fraction of hairpin 1 

and hairpin 2 contacts, respectively. Populations at times 100-140 ns and 200-240 ns are 

shown in the first two columns. The third column shows a difference map of the population 

shift over this time. Distributions are plotted on a log-scale, with each color gradation 

representing one unit kBT of free energy at room temperature. 

 
Regardless of the choice of forcefield, the conformational landscape mostly disfavors the formation 

hairpin. Recall that the less stable of the two DPDP hairpins comprises the C-terminal sequence of 
DPDP-II, corresponding to hairpin 2. With the exception of the AMBER96 simulations, only the 

formation of hairpin 2 is mostly observed, and only then with a population of 3% or less at 200 ns. For 
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the AMBER96 trajectories, formation of both hairpin 1 and hairpin 2 is observed. For all the 

simulations, comparisons of the conformational landscape at 100 ns and 200 ns shows very little 

change in hairpin populations on the ~100 ns time scale (Figure 8). 

Folding to a three-stranded sheet is observed for only two out of a total of 10,000 AMBER96 

trajectories (Figure 9). One of these two trajectories shows a fully hydrogen-bonded three-stranded 

sheet structure, while the other shows only hairpin 2 with defined hydrogen bonds, but is otherwise 

“native” according to inter-residue contacts defined by the QH1 and QH2 reaction coordinates. 

Figure 9. Only two of 10,000 AMBER96 trajectories show folding events for DPDP-II 

within 240 ns. Shown is the time course of reaction coordinates QH1 and QH2, which 

monitor the fraction of hairpin 1 and hairpin 2, with conformational snapshots. The second 

of the two trajectories is “native” by our reaction-coordinate definition, although hairpin 1 

does not have a fully hydrogen-bonded structure. 

 

 
 

Across all of the forcefields we studied, most all of our simulations do not produce stable three-

standed hairpin conformations. We think that this result is very unlikely to be due to poor sampling. 

With as many as 10,000 simulation replicas per forcefield, there should be a strong likelihood of 

observing at least some trajectories reaching the folded state [34]. It is possible that forcefield 

deficiencies may be at work here, but we tested a wide range forcefields, and consistently found 

negligible amounts of three-stranded. Parallel simulation techniques to accelerate kinetic sampling also 

has its limits on short timescales where first-passage times are short compared to the folding time [35], 

but that is not the case here. If the experimentally observed relaxation does indeed correspond to 

folding, then the overlap in simulated and experimental relaxation time scales should be very favorable 

for observing transitions to native conformational ensembles. 
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Is DPDP-II a stable folded three-stranded sheet? While Syud et al. reported qualitative NOE data for 
DPDP-II, this peptide was the least well-folded compared to the other designed sequences in this paper 

[5]. The measured NMR resonances were weak, and aggravated by poor dispersion, so only key inter-

residue contacts hinting at the designed structure were reported (Syud and Gellman, personal 

communication). Combined with our simulation results, this suggests that perhaps DPDP-II is unstable 

as a three-stranded sheet, and may not be a very relevant model system for studying beta sheet 

peptides.  

Similar plasticity has observed in another designed three-stranded sheet, the betanova peptide [36]. 

Both betanova and the DPG-turn peptides of Gellman et al. were designed with stable turns and 

hydrogen-bonded strand regions, to be used as model systems to study beta-sheet cooperativity. WW 

domains, by contrast, are three-stranded beta-sheet proteins found in nature, whose structures are well-

defined [37]. Unlike designed beta-sheet peptides, WW domains additionally possess a conserved 

network of hydrophobic interactions between their termini. Thus, in general, beta-sheet model systems 

such as DPDP-II may not have the necessary amount of long-range cooperative interactions needed to 

fully stabilize their structure. 

2.4. Conformational clustering and Markov State Model (MSM) analysis 

Kinetics-based conformational clustering was performed for all snapshots from the AMBER96 

trajectories. The AMBER96 trajectories were chosen as they contained the greatest extent of beta-sheet 

structure, and the only observed folding events. Our clustering procedure was used to identify five 

macrostate clusters calculated to be the most metastable, which were used to construct Markov State 

Models [38-40] of the dynamics (see Methods). 

We constructed a series of MSMs from matrices of macrostate transition counts, using different lag 

times ranging from 8 to 240 ns. The performance of these models reveals much about the underlying 

folding landscape.  

The most striking result of the MSM-building procedure was our failure to identify well-separated 

metastable states that would indicate large activation barriers on the folding landscape. The first 

indication of this comes from our clustering algorithm, designed to identify the most kinetically 

metastable states. Only five metastable states were identified, and each contained a broad ensemble of 

microstate conformations, with average RMSD between any two microstates ranging from 7.3-8.0 Å 

(Figure 10). 

Regardless of lag time, the spectrum of relaxation rates predicted by the MSM is broad, without a 

large gap that would indicate a pronounced separation of time scales (Figure S2, Supplementary 

Material). These results, at least within the time scale of our simulations, are not inconsistent with 

either multistate folding or the “downhill” folding interpretation of Xu et al. Moreover, as we increase 

the lag time used to build the models, the longest implied timescale also increases. If clear activation 

barriers were present, such that metastable dynamics on the > 10 ns time scale resulted, the implied 

timescales should level off as the lag time increases. This result is not simply a consequence of poor 

state definitions, because the kinetic clustering procedure we use should insure that the macrostates are 

the most metastable basins. 
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Figure 10. Kinetics-based clustering was used to find five maximally metastable 

macrostates (see Methods). The representative conformations shown for each state are the 

most probable conformations in that state. Shown next to each representative conformation 

is the average RMSD between microstates in that cluster, a measure of the compactness of 

the conformational ensemble, and the number of microstates (of 4000 total) comprising 

each macrostate. 

 
 

The variability of simulated relaxations across the ten starting conformations offer an additional 

indication of the absence of large barriers. This is not only evident from the bi-exponential fits of 

average radius of gyration and average solvent accessible surface area over time, but also from 

individual MSMs we built using trajectory data generated from each conformation (Figures S3 and S4, 

Supplementary Material). Similar kinds of heterogeneity in relaxation dynamics for different starting 

conformations have been observed in previous parallel simulations of ultrafast folders [9]. 

The other striking result of our MSM-building procedure is the unexpected sensitivity of the 

average C=O solvent-accessible surface area (SAS) to expanded states (Figure 11). When we use the 

average SAS of each macrostate to compute a projection of the time evolution of the SAS observable, 

the effects of averaging over each macrostate is severe enough to produce a signal that increases over 

time instead of decreasing. When the average SAS is projected onto each microstate, this effect is less 

severe, yet is still present. The simulation data suggest that the average SAS is more sensitively 

dependent on expanded conformations that quickly collapse, as compared to more compact 

conformations. Given our good overall results in recapitulating experimentally observed relaxation 

rates, we remain confident that our representative set of starting conformations is a useful ensemble to 

compare with FTIR T-jump experiments. However, the SAS projections underscore the importance of 

choosing experimental observables that overlap well with the reaction coordinate of interest (in this 

case, the folding reaction) as to best report the underlying dynamics. 
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Figure 11. Average C=O solvent-accessible surface area (SAS) over time computed from 

simulation snapshot data (blue), compared to the average SAS of each microstate projected 

onto the 4000 microstate populations over time (red), and average SAS of each macrostate 

projected onto 5 macrostate populations over time (green). The differential effects 

produced by averaging over microstates and macrostates indicate a sensitive dependence of 

the SAS observable on short-lived expanded conformations. 

 
 

One question partially addressed by our work is how experiment and simulation might be used to 

distinguish between two-state vs. “downhill” folding. As we have shown, one potential indication of 

so-called “downhill” folding from simulations might be a failure to build a Markovian kinetic model 

able to describe dynamics as transitions between well-defined metastable states. However, our work 

suggests that perhaps DPDP-II is not a well-defined beta-sheet structure, which brings into question 

what is meant by “folding” in this case. 

Can simulations help suggest experiments that could discriminate downhill vs. activated folding? 

This is a challenging task, as the observed experimental kinetics for “downhill” folders may depend on 

many factors. Liu and Gruebele, using one-dimensional Langevin models, present an excellent 

elucidation of the possible experimental outcomes that can arise from slight differences in folding 

landscapes (such as native-biases, roughness, and barrier heights) and the reaction coordinate-

dependence of reporter probes [16]. Using simulations to identify observables that connect well with 

folding reaction-coordinates may be particularly useful. For example, our simulations of DPDP-II 

suggest that the C=O solvent-accessible surface area (SAS) is more sensitive to expanded versus 

compact states. The insensitivity may be in part because the SAS is an aggregate measure across all 

peptide residues. To the extent that the SAS correlates with the amide I band spectroscopic observable 

in FTIR T-jump experiments, we suggest that multiple time-resolved FTIR experiments using isotopic 

labeling of specific residues, combined with microscopic information about peptide conformations 

from simulation, would help to better resolve folding landscapes for ultrafast folding proteins. 
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3. Experimental Section 

3.1. System preparation and simulation protocol 

Ten initial starting conformations were selected iteratively from a 1 ns stochastic dynamics (SD) 

simulation at 3000K, with 9 Å cutoffs for Coulomb and vdW interactions, integration time step of 1 fs, 

neighbor searching on a grid every 10 steps, at solvent (shear) viscosity of 10 ps-1. Ten conformations 

were picked iteratively from a collection of snapshots saved every 1 ps. After picking the first 

conformation, the most diverse structure (as measured by RMSD) was picked as the next. This 

procedure was repeated to create a structurally diverse starting set. Each chosen (nearly random) 

structure was then minimized and equilibrated for the production runs. 

Production runs were performed using the TIP3P water model [32] for explicit solvation. A rhombic 

dodecahedral box of largest dimension 58.7Å was used with periodic boundary conditions. The box 

contained a DPDP-II molecule with uncapped termini, approximately 4,650 water molecules (this 

number varied slightly with starting conformation) and two chloride counterions to achieve a net 

neutral charge. Molecular dynamics (MD) simulations were ran at 308 K in the NVT ensemble with a 

2 fs integration time step. The same cut-off and neighbor-list settings above were employed, along 

with a reaction-field electrostatics model, Berendsen temperature coupling, and constrained bonds with 

the LINCS algorithm. Trajectory snapshots were recorded every 100 ps. Total C=O solvent-accessible 

surface area was calculated for each snapshot from the set of all carbon and oxygen atoms in the 

backbone carbonyl groups, using a solvent probe radius of 1.4Å. 

3.2. Exponential curve fitting 

Best-fit parameters *=(A, B, C, 1, 2) for bi-exponential curves of the form f(t) = Aexp(-t/1) + 

Bexp(-t/2) + C were calculated for time series of the average radius of gyration and C=O solvent-

accessible surface area, by using a simulated annealing protocol to minimize the sum of squared errors. 

The first 5 ns of the time series were omitted from the fitting procedure. Variances i
 in average 

radius of gyration at each time point i were calculated by non-parametric bootstrap of 100 samples. 

Errors in parameter estimates for each j were calculated as diagonal elements of the covariance matrix 

C(*) = (FTWF)-1, where F is the (N x 5) Jacobian matrix 

Fij 
f (ti ,)

 j *

  (2) 

and W is an N x N diagonal matrix of inverse variances: Wij = 1/i
 for i=j, Wij = 0 for i≠j [41].  

 

3.3. Secondary structure and “native” hairpin contacts 

 

The DSSP algorithm was used to assess the extent of helix, strand (sheet), turn, and loop secondary 

structures [33]. DSSP recognizes eight types of secondary structures based on hydrogen bonding 

patterns: G (310 helix), H (alpha helix), I (pi helix), B (beta bridge), E (extended sheet), T (turn), S 

(loop). We monitor helix content as the total of G, H, I, the strand content as the total of B and E. 
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QH1 and QH2 report the fraction of native contacts present for (N-terminal) hairpin 1 and (C-

terminal) hairpin 2, respectively. We use the same criteria derived by Roe et al., who used a model of 

the native conformation to define “native” contacts in each of the two possible hairpins [19]. For 

hairpin 1, the set of native sidechain contacts (C for glycine) is defined as residue pairs (R1,I3), 

(R1,T12), (F2,11), (I3,V5), (I3,T12), (E4,G7), (E4,K9), (V5,F10) and native backbone hydrogen bonds 

(R1-H, T12-O), (R1-O, T12-H), (I3-H, F10-O), (I3-O, F10-H). For hairpin 2, the set of native 

sidechain contacts is defined as residue pairs (K8,F10), (K8,20), (K9,20), (F10,T17), (F10,T19), 

(I11,S13), (I11,Y18), (I11,E20), (T12, DP-14), (T12,G15), (T12,T17), (S13,Y8) and native backbone 

hydrogen bonds (K9-H, E20-O), (I11-H, Y18-O), (I11-O, Y18-H), (S13-H, K16-O). A contact 

between sidechains is defined when centroid distances < 6.5Å and a backbone contact is defined when 

hydrogen donor-acceptor distance < 2.5Å.  

3.3. Kinetics-based clustering for building Markov State Models (MSM) 

Representative conformations were extracted from the simulation data using a procedure previously 

described [42], though constant temperature simulations were used. This method uses Markov State 

Models (MSMs) to identity kinetically related regions of phase space. Thus, two conformations will be 

found in the same state if a simulation can move between them quickly but will be grouped into 

different states if transitioning between them is slow. The definitions of fast and slow are based on the 

timescales observed in the simulations [39,42].  

The first step in building such an MSM is to group conformations with a high degree of structural 

similarity into small sets called microstates. In this study 4,000 microstates were generated based on 

their all-atom RMSD using a k-centers clustering algorithm [43]. A desirable feature of this algorithm 

is that the resulting microstates have approximately equal volumes so their populations are directly 

related to their densities, or free energies. If each microstate is sufficiently small then it is assumed that 

structural similarity is equivalent to kinetic similarity since it should take a very short time to transition 

between very similar conformations. Kinetically related microstates, as judged by the number of 

transitions between them observed in the data, are then grouped together using the PCCA algorithm 

and this lumping is refined using a simulated annealing scheme [38,44,45]. The center of the most 

populated microstate from each macrostate is then selected as the representative conformation for that 

macro state as it is the most probable.  

3.4. Markov State Model (MSM) construction 

The matrix of transition probabilities T between the five macrostates was computed from the 

trajectory data. The entries of this matrix Tij contain the probability of transitioning from state i to state 

j in time , which ranged from 8 ns to 240 ns. Diagonalization of (TT - 1) produces a set of eigenvalues 

k and corresponding eigenvectors ek which describe the dynamics of state populations p(t) as a linear 

combination of relaxation processes: 

p(t)   iek
k
 ek t   (1) 
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where k=[ln k]/, and the i are determined by the initial state populations p(0) [38,39]. Thus k
-1 are 

the set of implied timescales involved in the relaxation dynamics. 

4. Conclusions 

We performed massively parallel folding simulations of DPDP-II to investigate the conformational 

dynamics underlying its nanosecond refolding dynamics. The simulated relaxation rates, as monitored 

by average radius of gyration and average C=O solvent-accessible surface area, agree well with the 

single-exponential relaxation rates experimentally measured by T-jump FTIR. Furthermore, Markov 

state models built from the trajectory data do not show a separation of metastable timescales consistent 

with large activation barriers. These results, at least within the time scale of our simulations, are not 

inconsistent with either multistate folding or the “downhill” folding interpretation of Xu et al. 

However, despite the agreement with experimental kinetics, we observe very few trajectories that fold 

to stable three-stranded beta-sheet structures. These results suggest that either DPDP-II folds at time 

scales longer than 240 ns, or that DPDP-II is not a well-defined three-stranded β-sheet. The latter 

interpretation is consistent with previous NMR spectroscopic data [5]. 
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Acknowledgements 

The authors would like to thank Faisal Syud and Samuel Gellman for their insightful comments 

about the DPDP-II design, and Frank Noe for his comments on Markov State Models. We acknowledge 

support from NSF FIBR (NSF EF-0623664) and NIH (NIH U54 GM072970), and thank the valued 

contributors of the Folding@Home distributed computing project, without whom this work would not 

have been possible. 

References and Notes 

1. Xu, Y.; Purkayastha, P.; Gai, F. Nanosecond folding dynamics of a three-stranded beta-sheet. J. 

Am. Chem. Soc. 2006, 128, 15836-15842. 

2.  Espinosa, J.F.; Syud, F.; Gellman, S. Analysis of the factors that stabilize a designed two-stranded 

antiparallel β-sheet. Protein Sci. 2002, 11, 1492-1505. 

3. Stanger, H.; Gellman, S.H. Rules for antiparallel β-sheet design: D-Pro-Gly is superior to L-Asn-

Gly for β-hairpin nucleation. J. Am. Chem. Soc. 1998, 120, 4236-4237. 

4. Schenck, H.; Gellman, S.H. Use of a designed triple-stranded antiparallel β-sheet to probe β-sheet 

cooperativity in aqueous solution. J. Am. Chem. Soc. 1998, 120, 4869-4870. 

5. Syud, F.; Stanger, H.; Mortell H.S.; Espinosa, J.F.; Fisk, J.D.; Fry, C.G.; Gellman, S.H. Influence 

of strand number on antiparallel beta-sheet stability in designed three- and four-stranded beta-

sheets. J. Mol. Biol. 2003, 326, 553-568. 



Int. J. Mol. Sci. 2009, 10             

 

 

1028

6. Arora, P.; Oas, T.; Myers J. Fast and faster: A designed variant of the B-domain of protein A folds 

in 3 microsec. Protein Sci. 2004, 13, 847-853. 

7. Kubelka, J.; Chiu, T.; Davies, D.; Eaton, W.; Hofrichter, J. Sub-microsecond protein folding. J. 

Mol. Biol. 2006, 359, 546-553. 

8. Yang, W.; Gruebele, M. Folding λ-Repressor at Its Speed Limit. Biophys. J. 2004, 87, 596-608. 

9. Ensign, D.; Kasson, P; Pande, V. Heterogeneity Even at the Speed Limit of Folding: Large-scale 

Molecular Dynamics Study of a Fast-folding Variant of the Villin Headpiece. J. Mol. Biol. 2007, 

374, 806-816. 

10. Kubelka, J.; Hofrichter, J.; and Eaton, W.A. The protein folding 'speed limit'. Curr. Opin. Struct. 

Biol. 2004, 14, 76-88. 

11. Eaton, W.A.; Muñoz, V.; Thompson, P.A.; Henry, E.R. Kinetics and Dynamics of Loops, Alpha-

Helices, Beta-Hairpins, and Fast-Folding Proteins. Acc. Chem. Res. 1998, 31, 745-753. 

12. Ghosh, K.; Ozkan, S.B.; Dill K.A. The ultimate speed limit to protein folding is conformational 

searching. J. Am. Chem. Soc. 2007, 129, 11920-11927. 

13. Deechongkit, S.; Nguyen, H.; Jager, M.; Powers, E.; Gruebele, M; Kelly, J.W. β-Sheet folding 

mechanisms from perturbation energetics. Curr. Opin. Struct. Biol. 2006, 16, 94-101. 

14. Xu, Y.; Bunagan, M.R.; Tang, J.; Gai, F. Probing the Kinetic Cooperativity of β-Sheet Folding 

Perpendicular to the Strand Direction. Biochemistry 2008, 47, 2064-2070. 

15. Gruebele, M. Comment on probe-dependent and nonexponential relaxation kinetics: Unreliable 

signatures of downhill protein folding. Proteins 2008, 70, 1099-1102. 

16. Liu, F; Gruebele, M. Downhill dynamics and the molecular rate of protein folding. Chem. Phys. 

Lett. 2008, 461, 1-8. 

17. Smith, A; Tokmakoff, A. Probing local structural events in β-hairpin unfolding with transient 

nonlinear infrared spectroscopy. Angew. Chem. Int. Ed. 2007, 46, 7984-7987. 

18. Wang, H.; Sung, S. Molecular dynamics simulations of three-strand β-sheet folding. J. Am. Chem. 

Soc. 2000, 122, 1999-2009. 

19. Roe, D.R.; Hornak, V.; Simmerling, C. Folding cooperativity in a three-stranded β-sheet model. J. 

Mol. Biol. 2005, 352, 370-381. 

20. Kuznetsov, S.V.; Hilario, J.; Keiderling, T.A.; Ansari, A. Spectroscopic studies of structural 

changes in two-sheet-forming peptides show an ensemble of structures that unfold 

noncooperatively. Biochemistry 2003, 42, 4321-4332. 

21. Shirts, M.R.; Pande, V.S. Screen savers of the world, unite! Science 2000, 290, 1903-1904. 

22. Lindahl, E.; Hess, B.; van der Spoel, D. GROMACS 3.0: A package for molecular simulation and 

trajectory analysis. J. Mol. Model. 2001, 7, 306-317. 

23. Cornell, W.D.; Cieplak, P.; Bayly, C.I.; Gould, I.R.; Merz, Jr., K.M.; Ferguson, D.M.; 

Spellmeyer, D.C.; Fox, T.; Caldwell, J.W; Kollman, P.A. A second generation force field for the 

simulation of proteins nucleic acids and organic molecules. J. Am. Chem. Soc. 1995, 117,  

5179-5197. 

24. Kollman, P.; Dixon, R.; Cornell, W; Fox, T.; Chipot, C.; Pohorille, A. The 

development/application of a ‘‘minimalist’’ organic/biochemical molecular mechanic force field 

using a combination of ab initio calculations and experimental data. In Computer Simulations of 



Int. J. Mol. Sci. 2009, 10             

 

 

1029

Biomolecular Systems: Theoretical and Experimental Applications, van Gunsteren, W.F., Wiener, 

P.K., Eds.; Escom: Dordrecht, The Netherlands, 1997; pp. 83-96,. 

25. Wang, J.; Cieplak, P.; Kollman, P.A. How well does a restrained electrostatic potential (RESP) 

model perform in calculating conformational energies of organic and biological molecules? J. 

Comput. Chem. 2000, 21, 1049-1074. 

26. Sorin, E.J.; Pande, V.S. Exploring the helix-coil transition via all-atom equilibrium ensemble 

simulations. Biophys. J. 2005, 88, 2472-2493. 

27. Duan, Y.; Wu, C.; Chowdhury. S.; Lee, M.L.; Xiong, G. A point-charge force field for molecular 

mechanics simulations of proteins based on condensed-phase quantum mechanical calculations. J. 

Comp. Chem. 2003, 24, 1999-2012. 

28. Best, R.B.; Hummer, G. Reaction coordinates and rates from transition paths. Proc. Natl. Acad. 

Sci. 2005, 102, 6732-6737. 

29. Juraszek, J.; Bolhuis, P. Rate constant and reaction coordinate of Trp-Cage folding in explicit 

water. Biophys. J. 2008, 95, 4246-4257. 

30. Walsh, S.T.R.; Cheng, R.P.; Wright, W.W.; Alonso, D.O.V.; Daggett, V.; Vanderkooi, J.M.; 

DeGrado, W.F. The hydration of amides in helices; a comprehensive picture from molecular 

dynamics, IR, and NMR. Protein. Sci. 2003, 12, 520-531. 

31. Snow, C.; Sorin, E.; Rhee, Y.; Pande, V. How well can simulation predict protein folding kinetics 

and thermodynamics? Annu. Rev. Biophys. Biomol. Struct. 2005, 34, 43-69. 

32. Jorgensen, W.L.; Chandrasekhar, J.; Madura, J.D.; Impey, R.W.; Klein, M.L. Comparison of 

simple potential functions for simulating liquid water. J. Chem. Phys. 1983, 79, 926. 

33. Kabsch, W.; Sander, C. Dictionary of protein secondary structure: pattern recognition of 

hydrogen-bonded and geometrical features. Biopolymers 1983, 22, 2577-2637. 

34. Shirts, M.R.; Pande, V.S. Mathematical analysis of coupled parallel simulations. Phys. Rev. Lett. 

2001, 86, 4983-4987. 

35. Marianayagam, N.; Fawzi, N.L.; Head-Gordon, T. Protein folding by distributed computing and 

the denatured state ensemble. Proc. Natl. Acad. Sci. USA 2005, 102, 16684-16689. 

36. Colombo, G.; Roccatano, D.; Mark, A.E. Folding and stability of the three-stranded beta-sheet 

peptide betanova: Insights from molecular dynamics simulations. Prot. Struct. Func. Genet. 2002, 

46, 380-392. 

37. Macias, M.J.; Gervais, V.; Civera, C.; Oschkinat, H. Structural analysis of WW domains and 

design of a WW prototype. Nat. Struct. Biol. 2000, 7, 375-379. 

38. Chodera, J.D.; Singhal, N.; Pande, V.S.; Dill, K.A.; Swope, W.C. Automatic discovery of 

metastable states for the construction of Markov models of macromolecular conformational 

dynamics. J. Chem. Phys. 2007, 126, 155101. 

39. Noe, F.; Fischer, S. Transition networks for modeling the kinetics of conformational change in 

macromolecules. Curr. Opin. Struct. Biol. 2008, 8, 154-162. 

40. Chodera, J.D.; Swope, W.C.; Pitera, J.W.; Dill, K.A. Long-time protein folding dynamics from 

short-time molecular dynamics simulations. Multiscale Model. Sim. 2006, 5, 1214-1226. 

41. Bates, D.M.; Watts, D.G. Nonlinear Regression Analysis and Its Applications. Wiley: New York, 

1988. 



Int. J. Mol. Sci. 2009, 10             

 

 

1030

42. Bowman, G.R.; Huang, X.; Pande, V.S. Using generalized ensemble simulations and Markov 

state models to identify conformational states. Methods 2009, in press. 

43. Dasgupta, S.; Long, P.M. Performance guarantees for hierarchical clustering. J. Comp. Sys. Sci. 

2005, 70, 555-569. 

44. Deuflhard, P. Identification of almost invariant aggregates in reversible nearly uncoupled Markov 

chains. Lin. Alg. Appl. 2000, 315, 39-59. 

45. Deuflhard, P.; Weber, M. Robust Perron cluster analysis in conformation dynamics. Lin. Alg. 

Appl. 2005, 398, 161-184. 

 

© 2009 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland. 

This article is an open-access article distributed under the terms and conditions of the Creative 

Commons Attribution license (http://creativecommons.org/licenses/by/3.0/). 


