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Abstract: We have performed a detailed study of the thermodynamics of the titration 
process in an isothermal titration calorimeter with full cells. We show that the relationship 
between the enthalpy and the heat measured is better described in terms of the equation  
ΔH = Winj + Q (where Winj is the work necessary to carry out the titration) than in terms of 
ΔH = Q. Moreover, we show that the heat of interaction between two components is 
related to the partial enthalpy of interaction at infinite dilution of the titrant component, as 
well as to its partial volume of interaction at infinite dilution. 

Keywords: isothermal titration calorimetry; ITC; calorimetry; thermodynamics; infinite 
dilution; binding; partial properties; enthalpy; heat 

 

1. Introduction 
 
Isothermal titration calorimetry [1] is a fundamental quantitative biochemical tool for characterizing 

intermolecular interactions, such as protein-ligand, protein-protein, drug-DNA and protein-DNA. It 
uses stepwise injections of one reagent into a calorimetric cell containing the second reagent to 
measure the heat of the reaction for both exothermic and endothermic processes.  
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Figure 1 shows the basic performance of a titration in an isothermal titration calorimeter with full 
cells. The titration cell (I) is composed of a vessel, a syringe containing a second liquid and a drainage 
capillary, through which liquid in excess is removed from the full cell upon introduction of a new 
liquid from the syringe. The vessel is maintained at a constant temperature, and the interior liquid is 
stirred to achieve homogeneity. 

 
Figure 1. Typical performance of an isothermal titration calorimeter. The electronic details 
of the measurement of the calorimetric signal have been omitted for clarity. 

 
When the liquid of the vessel interior (see Figure 1-I) is titrated with the amount of liquid in the 

syringe heat flows from or to the vessel (Figure 1-II); this heat flow is measured and recorded by a 
suitable electronic system. At this time, a volume of liquid equal to that of the titrant liquid exits the 
vessel through the drainage capillary (Figure 1-II). In the final state (1-III), the interior of the vessel 
contains the two liquids that are completely mixed at a known composition and the drainage capillary 
holds an amount of liquid with a different composition. Thus, it is possible to consider an effective 
volume in the vessel in which a determinate amount of heat is produced (or adsorbed) and in which the 
concentrations are known. Importantly, this effective volume is constant throughout the titration 
process. If the cell is half-full, however, this assumption is not necessarily correct, because the volume 
of sample varies in the process of titration. In this work, we consider only full cell titration 
calorimeters. Table 1 shows a list of isothermal titration calorimeters that are currently commercially 
available. The majority of these calorimeters use the full cells method. 

It is commonly accepted that with a suitable procedure involving simple titration experiments [2], 
it is possible to measure the heat of interaction between two components (components 2 and 3) in a 
solvent (component 1). In a first experiment, a solution of component 2 in the solvent (component 1) 
is titrated with a stock solution of component 3 in the same solvent. The contributions to the heat that 
is measured are the heat of interaction between the components 2 and 3, the heats of dilution of 
components 2 and 3, and the heats of interaction between the component 3 and the different parts of 
the experimental setup (vessel walls, stirrer and syringe needle). In a second experiment the solvent 
(component 1) is titrated with the stock solution.  
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Table 1. Isothermal titration calorimeters that are currently manufactured and the method 
employed by each (full cell or half-full cell). 

Calorimeter (Company) Type of method: full cell or half-full cell 
iTC200 (Microcal Inc.) Full Cell (1) 
AUTO iTC200 (Microcal Inc.) Full Cell (1) 
VP-ITC (Microcal Inc.) Full Cell (1) 
Nano ITC 2G (TA Instruments) Both, but the full cell method is most often used 

and is the strongly recommended method (2) 
TAM 2277 (TA Instruments) Both, but the half-full cell method is most often 

used and is the strongly recommended method (2) 
TAM III ITC (TA Instruments) Both, but the half-full cell method is most often 

used and is the strongly recommended method (2) 
(1) Technical information supplied by MicroCal Inc. (2) Technical information supplied by 
TA Instruments. 

 
This experiment is carried out using the same conditions as the first experiment. In this case, the 

contributions to the heat measured are the heat of dilution of the component 3 and the interaction with 
the different parts of the experimental setup. In the third experiment the solution of component 2 in the 
solvent is titrated with the solvent and the heat of dilution of component 2 is the contribution to the 
heat measured. In the fourth experiment the solvent is titrated with the solvent. Figure 2 shows an 
example of this experiment, in which water is titrated with water. The heat of interaction is interpreted 
as the following balance: 

[ ] [ ]
[ ] [ ]

Heat of interaction = Heat of experiment 1 - Heat of experiment 2 -

                                - Heat of experiment 3 Heat of experiment 4  +
 (1)

The fourth experiment takes part in the protocol because its contribution appears also in 
experiments one, second and three. From a practical point of view, the heats of experiments 3 and 4 
are negligible since they are usually insignificant [2]. In this way, Equation (1) takes the form [1,2]: 

[ ] [ ]Heat of interaction = Heat of experiment 1 - Heat of experiment 2   (2)

Because all processes in the above protocol are carried out at constant pressure, the measured heat 
is usually interpreted in terms of the following Equation [3]: 

Q H= Δ  (3)

where ΔH is the difference in enthalpy between the final and the initial estates, and Q is the heat 
measured by the calorimeter. The heat of interaction that is obtained from the above protocol is usually 
interpreted as the enthalpy of interaction. 

It is interesting to note that the origin of the protocol shown in Equations (1) and (2) is empirical. 
The use of the set of Equations (1) and (2) to obtain heats of interaction seems reasonable and reliable, 
and it is supported by a considerable amount of experimental evidence; nonetheless, we do not have a 
rigorous demonstration that this heat can be considered as a heat of interaction. Thus, we do not know 
if this interpretation is exact or if it is an approximation. If it is an approximation, it would be useful to 
know under what conditions it can be applied. It is also very interesting to note that Equation (3) is 
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inconsistent with the considerations made in the protocol shown in the Equations (1) and (2). If for 
example, we consider the titration of water in water, the initial state is a volume V of pure water, and 
the final state after titration is this volume V of pure water. The difference in enthalpy for this system 
is zero. From Equation (3), the expected heat for this experiment is zero, against the experimental 
result shown in Figure 2. Without the Equation (3) the problem now is the following: can we interpret 
the heats obtained by Equations (1) and (2) as enthalpies of interaction?  

Figure 2. Titration of water with water at 30 °C. Graph I shows the calorimetric signal as 
function of the time and graph II shows the heat involved in each titration. This heat is 
calculated by the integral of the calorimetric signal between the initial and final times for 
each peak. The volume titrated for each peak is 20 μL and the volume cell is 1,300 μL. 

 
In this paper, we address the above problem and the physical meaning of the heat obtained from the 

given protocol based on the typical performance of an isothermal titration with full cells which is 
described in Figure 1. We first aimed to find a new equation to replace the equation Q = ΔH  
[Equation (3)]. Next, we determined how the concentrations of different components vary after the 
titration. Then, we calculated the heats involved in the titration process. We also applied a set of 
thermodynamic tools that were developed in our previous works [4–6]. We consider the hypothesis 
that the solutions are sufficiently diluted. This hypothesis was mathematically implemented, supposing 
that the molar (or specific) thermodynamic properties could be described by a Taylor expansion of the 
first order (high diluted region). Another concept that we applied is the “fraction of a system”. A 
fraction of a system is a thermodynamic entity (with internal composition) that groups several 
components. This concept is essential for working with multicomponent systems at infinite dilution.  

We observed that the heat measured in an experiment where solvent is titrated with itself has its 
origin in the work required for to inject the volume of titrant. For this reason it can be named as “heat 
of injection”. In addition, we see that the heat involved per mol of titrant when the titration is 
infinitesimally small is related to its partial molar enthalpy of interaction at infinite dilution and its 
molar partial volume of interaction also at infinite dilution. That is, using the full-cell method, the heat 
measured by the calorimeter when the above protocol is employed is the partial molar enthalpy of 
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interaction only when the variation in the molar partial volume of interaction can be neglected. This 
fact is true in binding events where protein unfolding is involved. 
 
2. Experimental 

 
The calorimeter used was an ITC 4200 from CSC equipped to work with nanowatt sensitivity. The 

volume cell is 1,300 μL. The working temperature was in all cases 30 °C. The water used was 
bidestilated and the toluene (reagent grade) was obtained from Fermont. 
 
3. Thermodynamics 
 
3.1. Application of the First Principle of Thermodynamics to the titration process with constant P  
and V 

 
From a thermodynamic point of view, the process of titration shown in Figure 1 can be described as 

a process in which the temperature T, the pressure P and the volume V are kept constant. Applying the 
First Principle of Thermodynamics to this titration process we have: 

U Q WΔ = +  (4)

where ΔU is the difference in internal energy of the system inside a cell with volume V, Q is the heat 
measured by the calorimeter and W is the work, which we need to bear in mind when we are 
considering the First Principle of Thermodynamics. Because the enthalpy is the Legendre transform of 
the internal energy U, it is possible to write: 

H U PV= +  (5)

Thus, for a process in which the pressure and the volume are maintained constant, the variation in 
the enthalpy is: 

H UΔ = Δ  (6)

Substituting Equation (6) into Equation (4) we have: 

H Q WΔ = +  (7)

With Equation (7) it is possible to explain the calorimetric signal that is obtained when a liquid is 
titrated with itself. As noted in the “Introduction”, ΔH = 0 for this process, substituting this result into 
(7) yields Q = -W. That is, the amount of heat obtained comes from the work performed. This work is 
very easy to identify. In Figure 3 (State 2) we show that the titration is carried out by the displacement 
of the syringe plunger, which introduces an amount of liquid into the vessel and forces the exit of the 
same amount of liquid through the drainage capillary. Thus, it is necessary to apply work to replace an 
amount of liquid in the vessel. This work, Winj, will be named “injection work”; and the heat measured 
by the calorimeter is then: 

inj injQ W= −  (8)
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and will be named “injection heat”. Therefore the application of the First Principle of thermodynamics 
to the general titration process [Equation (7)] takes the form:  

injH W QΔ = +  (9)

Note that in Equation (9) the enthalpy variation results from the contribution of heat (measured by 
the calorimeter) and the work of titration. In addition, through Equation (6), this variation in internal 
energy is derived directly from the variation in enthalpy. 

 
3.2. Determination of the concentrations in the process of titration 

 
In this section, we will determinate the concentrations in experiments where a solution of 

components 2 and 3 in a solvent (component 1) is titrated with a stock solution of 3 in the same 
solvent. This titration experiment can be described as the combination of two simpler experiments. 
The first experiment that we will address is one in which a solution of component 3 in a solvent is 
titrated with a more concentrated stock solution of component 3 in the same solvent. Because the 
concentration of component 3 will increase in each titration, this type of experiment will be named 
“concentration experiment”. The other experiment is one in which a solution of component 2 in a 
solvent is titrated only with the solvent. In this case, the concentration of component 2 will decrease 
with each titration; for this reason this experiment will be named “dilution experiment”. The more 
complex experiment, in which a solution of components 2 and 3 in a solvent is titrated with a more 
concentrated stock solution of 3 in the same solvent, can be considered to be the combination of two 
simultaneous experiments: a dilution experiment component 2 and a concentration experiment for 
component 3. This experiment will named the “concentration-dilution experiment”. 

The concentrations of 2 and 3 in component 1 are expressed as c2 = n2/V and c3 = n3/V, with n2 and 
n3 being the numbers of moles of components 2 and 3, respectively. 
 
3.2.1. Concentration experiment in 2-component systems 

 
Let us now consider the system in Figure 3. In State 1, a solution of component 3 in component 1 is 

located in the vessel at an initial concentration c(i)
3; and in the syringe, is present as a stock solution 

with a concentration cs
3. We will consider the infinitesimal process with respect to the titration volume  

in which the solution of the vessel with concentration c3 is titrated with a volume dv of stock solution. 
The different steps of this infinitesimal process are shown in Figure 3. 

In the first state, the number of moles of component 3, n3, in the volume V is: 

3 3n c V=  (10)

This solution (see State 1 of Figure 3) will be titrated with a volume dv of stock solution of 
concentration cs

3. The number of moles of component 3 contained in the volume dv is: 
s s
3 3dn c dv=  (11)
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In State 2, the volume dv of stock solution is introduced into the vessel. Because the volume of the 
vessel is constant, a similar volume with concentration c3 is removed from the vessel by the drainage 
capillary. The amount of moles of 3 that is pushed out is: 

3 3dn c dv=  (12)

In state 2 (see Figure 3), the interior of the vessel contains a volume V-dv with concentration c3 and 
another solution of volume dv with concentration cs

3. In the State 3, the above solutions are mixed, and 
the new concentration inside the vessel is c3 + dc3, with (c3 + dc3 )V being the final number of moles of 
component 3 in the vessel. Balancing the number of moles for the titration process, we have: 

s
3 3 3 3 3(c dc )V n dn dn+ = + −  (13)

where initially there were n3 moles of component 3, dns
3 moles were introduced into the vessel and dn3 

moles were removed. Substituting the Equations (10)–(12) into (13) and reorganizing yields: 

s3
3 3

dc 1 1c c 0
dv V V

+ − =  (14)

Figure 3. Different states to be considered during the titration process for an experiment of 
concentration of component 3. The first state (State 1) is a volume V (vessel volume) of 
solution with concentration c3. The concentration of component 3 in the syringe is cs

3. This 
state also includes a volume dv of stock solution with a concentration cs

3 at the end of the 
needle before the titration. In the second state (State 2), the volume dv of stock solution is 
introduced into the volume of the vessel while a volume dv with concentration c3 exits 
from the vessel volume by the drainage capillary. In the third state (State 3), the 
composition of the vessel interior is homogenized until it achieves the new concentration 
c3 + dc3; the drainage capillary includes a volume dv of solution with concentration c3. 
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Equation (14) is a linear differential equation of the first order, and its solution will be a function of 
v, c3 = c3(v), with the initial condition: 

(i)
3 3c c (0)=  (15)

then the solution c3 = c3(v) can be written as: 
v

s s (i) V
3 3 3 3c (v) c (c c )e

−
= − −  (16)

3.2.2. Dilution experiment in 2-component systems 
 
In this experiment, we will consider that a solution of component 2 in component 1 is located in the 

vessel and that this solution is titrated with an amount of component 1. Assuming that there are similar 
states in this process as those presented in Figure 3, that there is a similar balance of number of moles 
as in Equation (13), and that cs

3 = 0 because the syringe holds only component 1, we then obtain the 
equation: 

v
(i) V

2 2c (v) c e
−

=  (17)

3.2.3. Concentration-dilution experiment in 3-component systems 
 
We consider the case in which the vessel contains a solution of components 2 and 3 in component 1 

which is titrated with a solution of component 3 in component 1. The initial concentrations of 2 and 3 
are c(i)

2 and c(i)
3 respectively. This experiment can be considered as the sum of two experiments: the 

dilution the component 2 and the concentration of component 3. In the first, the concentration of 2 
after titration is given by Equation (17). In the second, the concentration of 3 after the titration is given 
by Equation (16). For convenience we define the variables cF and tf3 as: 

F 2 3c (v) c (v) c (v)= +  (18)

and: 

3
f 3

2 3

c (v)x (v)
c (v) c (v)

=
+

 (19)

Upon substituting (16) and (17) into Equations (18) and (19), we obtain: 
v

s s (i) V
F 3 3 Fc (v) c (c c )e

−
= − −  (20)

and: 
v

s s (i) V
3 3 3

f 3 v
s s (i) V
3 3 F

c (c c )ex (v)
c (c c )e

−

−

− −
=

− −
 (21)

where cF
(i) = c2

(i) + c3
(i). 
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3.3. Determination of heats involved in the titration processes 
 
In this section, we will determinate the heats that are involved in the different titration experiments: 

the concentration experiment, the dilution experiment and the concentration-dilution experiment. The 
heat of stirring (homogenization) is the same in all cases (all States). Then it cancels into the 
thermomechanical balance. 
 
3.3.1. Concentration experiment in 2-component systems 

 
In State 1 of Figure 3, we have a solution of volume V and concentration c3 in the interior of the 

vessel; before the titration, a volume dv of solution stock with concentration cs
3 is present at the end of 

the syringe needle. The enthalpy of the state 1, H1, is: 
s

1 3 3H H(c ,V) H(c ,dv)= +  (22)

In State 2 of Figure 3, inside the vessel we have a volume dv of stock solution with concentration 
cs

3 and a volume V-dv of solution with concentration c3; outside the vessel, in the drainage capillary, 
we have a volume dv of concentration c3. The enthalpy of state 2, H2, is: 

s
2 3 3 3H H(c ,dv) H(c ,V dv) H(c ,dv)⎡ ⎤= + − +⎣ ⎦  (23)

In State 3 of Figure 3, the vessel contains a solution of concentration c3 + dc3 and the drainage 
capillary has a volume dv of concentration c3. The enthalpy of the state 3, H3, is: 

3 3 3 3H H(c dc ,V) H(c ,dv)= + +  (24)

Figure 4 shows the variation in enthalpy between the different states of the titration process. The 
variation in enthalpy, dHc

1-2, for the process 1-2 between states 1 and 2 is defined as: 
c
1 2 2 1dH H H− = −  (25)

and the variation in enthalpy, dHc
2-3, for the process 2-3 between states 2 and 3 is: 

c
2 3 3 2dH H H− = −  (26)

The variation in enthalpy, dHc, for the entire process of titration between states 1 and 3 is: 
c c c

3 1 1 2 2 3dH H H dH dH− −= − = +  (27)

Applying the First Principle of Thermodynamics (Equation (9)) in the differential form to the 
process 1-2, we obtain: 

c c c
1 2 1 2 1 2dH dW dQ− − −= +  (28)

The value of dHc
1-2 can be calculated by substituting the values of H1 and H2 (Equations (22) and 

(23)) for the definition of dHc
1-2 (Equation (25)): 

c
1 2 3 3 3dH H(c ,V dv) H(c ,dv) H(c ,V)− = − + −  (29)

Considering that H(c3,V) = hv(c3)V (Equation (153) in “Appendix 4: Basic equations”) one has: 
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[ ]
3 v 3

3 v 3 v 3 v 3

H(c ,dv) h (c )dv
H(c , V dv) h (c ) V dv h (c )V h (c )dv

=

− = − = −
 (30)

Figure 4. Variation in enthalpy between the different states of a differential concentration 
experiment of titration. 

By substituting (30) into (29), we obtain the value of dHc
1-2: 

c
1 2dH 0− =  (31)

The applying in that case the First Principle of Thermodynamics [Equation (9)] for the process 1-2 
we have: 

c c
1 2 1 2dQ dW− −= −  (32)

That is, the heat involved in the process 1-2, dQc
1-2, comes from the work applied in order to 

introduce a volume dv of stock solution into the interior of the vessel while an equal volume dv of 
solution with concentration c3 is pushed out from the vessel. 

Applying the First Principle of Thermodynamics [Equation (9)] to the process 2-3 yields: 
c c c
2 3 2 3 2 3dH dW dQ− − −= +  (33)

In process 2-3, only a homogenizing process occurs in the vessel; thus, the work of injection is zero 
and: 

c c
2 3 2 3dH dQ− −=  (34)

This process of homogenizing involves the interaction between components 2 and 3. It is possible 
to calculate dHc

2-3 by introducing the values of H2 and H3 (Equations (23) and (24)) into the definition 
of dHc

2-3 [Equation (26)]: 

{ }c s
23 3 3 3 3dH H(c dc ,V) H(c ,dv) H(c ,V dv)= + − + −  (35)

Again, by virtue of H(c3,V) = hv(c3)V (Equation (153) in “Appendix 4: Basic equations”): 

State 1
H1 

H2 
State 2

State 3
H3

dHc
1-2

dHc
2-3

dHc
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3 3 v 3 3

s s
3 v 3

s s s
3 v 3 v 3 v 3

H(c dc ,V) h (c dc )V

H(c ,V) h (c )V

H(c ,V dv) h (c )(V dv) h (c )V h (c )dv

+ = +

=

− = − = −

 (36)

The heat involved in the process 2-3, dQc
2-3, is calculated by using (35) and (36) in (34): 

c s
2 3 v 3 v 3 v 3dQ dh (c )V h (c ) h (c ) dv− ⎡ ⎤= + −⎣ ⎦  (37)

where: 

v 3 v 3 3 v 3dh (c ) h (c dc ) h (c )= + −  (38)

Now, we can apply the First Principle of Thermodynamics [Equation (9)] to the complete 
concentration process: 

c c c
injdH dW dQ= +  (39)

where the work involved is the work of injection. In this equation, dQc represents the heat measured by 
the isothermal titration calorimeter in the experiment of concentration. From Figure 3 and the values of 
dHc

1-2 and dHc
2-3 calculated with respectively Equations (28) and (34), we obtain: 

c c c
1 2 2 3

c c c
1 2 1 2 2 3

dH dH dH

dW dQ dQ
− −

− − −

= +

= + +
 (40)

Combining Equations (39) and (40) yields: 
c c
inj 1 2dW dW −=  (41)

c c c
1 2 2 3dQ dQ dQ− −= +  (42)

Note that according to (41), dWc
1-2 is the work of injection in the process of concentration; because 

dQc
1-2 = -dWc

1-2 (Equation (32)), dQc
1-2 can be considered the “injection heat”. We name this heat 

dQc
inj; then (42) can take the following form: 

c c c
inj 2 3dQ dQ dQ −= +  (43)

Now, it is possible to obtain the heat involved in the infinitesimal process of concentration, dQc, 
inserting the value of dQc

2-3 (Equation (37) ) into (43): 
c c s

inj v 3 v 3 v 3dQ dQ dh (c )V h (c ) h (c ) dv⎡ ⎤= + + −⎣ ⎦  (44)

 
3.3.2. Dilution experiment in 2-component systems 

 
In this experiment we will consider similar states as those in the concentration process; because it is 

a dilution experiment, however, the change in composition from c3 to c3 + dc3 is produced by a 
titration with the solvent located in the syringe. The states in the titration process are: 
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[ ]

d
1 3

d
2 3 3

d
3 3 3 3

H H(c , V) H(0,dv)

H H(c , V dv) H(0,dv) H(c ,dv)

H H(c dc , V) H(c ,dv)

= +

= − + +

= + +

 (45)

The variation in enthalpy for the total process of titration is: 
d d d

3 1dH H H= −  (46)

As in the concentration experiment presented in Figure 3, for the dilution experiment we consider 
similar processes 1-2 and 2-3 defined as: 

d d d
1 2 2 1dH H H− = −  (47)

d d d
2 3 3 2dH H H− = −  (48)

and then: 
d d d

1 2 2 3dH dH dH− −= +  (49)

The First Principle of Thermodynamics [Equation (9)] for the process 1-2 allows to write: 
d d d
1 2 1 2 1 2dH dW dQ− − −= +  (50)

The value of dHd
1-2 is obtained by substituting the values of Hd

1 and Hd
2 (Equation (45)) into the 

definition of dHd
1-2 (Equation (49)) and considering the property H(c2,V)=hv(c2)V (Equation (153) in 

“Appendix 4: Basic equations”): 
d
1 2dH 0− =  (51)

With this result, according to the First Principle of Thermodynamics [Equation (50)] for the process 
1-2, yields: 

d d
1 2 1 2dQ dW− −= −  (52)

For process 2-3, in which only a homogenizing process occurs, the work is zero and the First 
Principle of Thermodynamics [Equation (9)] for this process takes the form: 

d d
2 3 2 3dH dQ− −=  (53)

From this equation it is possible to calculate the value of dQd
2-3 by substituting the values Hd

2 and 
Hd

3 (Equation (45)) into the definition of dHd
2-3 [Equation (48)] and considering the property 

H(c2,V)=hv(c2)V: 

[ ]d
2 3 v 2 v 2 1 1dQ dh (c )V h (c ) h dv− = + − ρ  (54)

where: 

v 2 v 2 2 v 2dh (c ) h (c dc ) h (c )= + −  (55)

1 1 vh h (0)ρ =  (56)
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and h1 and ρ1 are the enthalpy and the density, respectively, of component 1 in the pure state. Now, the 
First Principle of Thermodynamics (Equation (9)) for the complete titration process of dilution gives: 

d d d
injdH dW dQ= +  (57)

where dWd
inj is the work employed in the process of titration and dQd is the heat measured by the 

isothermal calorimeter in the experiment of dilution. Equation (49) expresses dHd as the sum of the 
two contributions dHd

1-2 and dHd
2-3. With the First Principle of Thermodynamics applied to the 

process 1-2 [Equation (50)] and to the process 2-3 [Equation (53)], we have: 

( )d d d d
1 2 1 2 2 3dH dW dQ dQ− − −= + +  (58)

Putting (57) and (58) equal and reorganizing yields: 
d d
inj 1 2dW dW −=  (59)

d d d
inj 2 3dQ dQ dQ −= +  (60)

with dQd
inj = dQd

1-2= -dWd
1-2. Then substituting the value of dQd

2-3 expressed by Equation (54) into 
(60) we obtain: 

[ ]d d
inj v 2 v 2 1 1dQ dQ dh (c )V h (c ) h dv= + + − ρ  (61)

 
3.3.3. Concentration-dilution experiment in 3-component systems 

 
In this experiment, a solution of component 2 in a solvent (component 1) is titrated with a stock 

solution of component 3 in the same solvent. For State 1 as in Figure 3, we consider that the solution 
in the interior of the vessel is composed of components 2 and 3 in component 1 with the 
concentrations c2 = n2/V and c3 = n3/V, respectively. We consider that the volume dv, before it is 
introduced into the vessel, has a concentration cs

3. For convenience, we consider the 3-component 
system as fractionalized, being composed of component 1 and a fraction F containing components 2 
and 3. The composition of the fraction F will be expressed as a function of the variables cF and xf3, as 
defined by Equations (18) and (19). Thus, the enthalpy H1 of State 1 is: 

s
1 F f 3 3

s
v F f 3 v 3

H H(c , x , V) H(c ,dv)

h (c , x )V h (c )dv

= +

= +
 (62)

In State 2, while a volume dv of stock solution with a concentration cs
3 is titrated, an equal volume 

dv of solution with the composition cF and xf3, is pushed out from the vessel. The enthalpy of this state 
is: 

s
2 F f 3 3 F f 3

s
v F f 3 v 3

H H(c , x ,V dv) H(c ,dv) H(c , x ,dv)

h (c , x )V h (c )dv

⎡ ⎤= − + +⎣ ⎦
= +

 (63)

After homogenization, we have a volume V with composition cF + dcF and xf3 + dxf3 and a volume 
dv in the drainage capillary with the composition cF and xf3. In this way, the enthalpy of State 3 is: 
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[ ]3 F F f 3 f 3 F f 3

v F F f 3 f 3 v F f 3

H H(c dc , x dx , V) H(c , x ,dv)
h (c dc , x dx )V h (c , x )dv

= + + +

= + + +
 (64)

Applying the First Principle of Thermodynamics (Equation (9)) to this experiment gives: 

inj injdH dW dQ= +  (65)

Considering the processes 1-2 and 2-3 as in the above experiments, we arrive at the following 
equations: 

inj inj 1 2dW dQ dQ −= − = −  (66)

s
inj v F f 3 v F f 3 v 3dQ dQ dh (c , x )V h (c , x ) h (c ) dv⎡ ⎤= + + −⎣ ⎦  (67)

3.4. Heats of interaction between 2 components in the high dilution region 
 
Next, we will discuss the protocol for measuring the heat of interaction between two components in 

solution in the high dilution region (see “Appendix 3: The region of high dilution”). We assume that 
titration proceeds as an infinitesimal process. 

The first experiment is the titration of a solution of component 2 with a stock solution of component 
3. Initially, the concentration of component 2 in the vessel is c2, and the concentration of component 3 
in the stock solution is cs

3, with dv being the volume of titration. The solvent in the two solutions is the 
same. The heat measured in this experiment is named dQ(3) where the superindex (3) indicates that a  
3-component system is considered. The second experiment is a concentration experiment, in which the 
solvent is titrated with a volume dv of a stock solution of component 3. As in the first experiment the 
titrated volume of the stock solution of concentration cs

3 is dv. In this case, the heat measured is dQ(2)c 
where the superindex (2) indicates that a 2-component system is considered. The third experiment is a 
dilution experiment, in which a solution of component 2 is titrated with the solvent. Initially, the 
concentration of component 2 in the solvent is c2. The heat measured in this case is dQ(2)d. The fourth 
experiment is the tritration of the solvent with itself. In this experiment the heat measured is dQinj

(1) 
where the superindex (1) indicates that a 1-component system is considered in this experiment. We 
will define the following amounts: 

(3) (3) (3)
inj

(2)c (2)c (2)c
inj

(2)d (2)d (2)d
inj

dq dQ dQ

dq dQ dQ

dq dQ dQ

= −

= −

= −

 (68)

where dQ(3)
inj, dQ(2)c

inj, dQ(2)d
inj are the heats of titration in the three firsts experiments. We suppose 

that the heats of injection can be estimated by the titration of component 1 with itself (fourth 
experiment), dQ(1)

inj: 
(1) (2)d (2)c (3)
inj inj injdQ dQ dQ dQ≈ ≈ ≈  (69)

The heat, dq3;1,2, measured from the protocol with component 3 as the titrant is defined as: 
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{ }(3) (2)c (2)d
3;1,2dq dq dq dq= − +  (70)

The notation “dq3;1,2” means that a solution of components 1 and 2 is titrated with a stock solution 
of component 3. By substituting the values of dQ(3) (Equation (67)), dQ(2)c (Equation (44)) and dQ(2)d 
[Equation (61)], we arrive at:  

[ ]

(3) s
v F f 3 v F f 3 v 3

(2)c s
v 3 v 3 v 3

(2)d
v 2 v 2 1 1

dq dh (c , x )V h (c , x ) h (c ) dv

dq dh (c )V h (c ) h (c ) dv

dq dh (c )V h (c ) h dv

⎡ ⎤= + −⎣ ⎦
⎡ ⎤= + −⎣ ⎦

= + − ρ

 (71)

Combining Equations (71) and (70) yields: 

[ ] [ ]3;1,2 v F f 3 v 3 v 2 v F f 3 v 3 v 2 1 1dq V dh (c , x ) dh (c ) dh (c ) h (c , x ) h (c ) h (c ) h dv= − − + − − + ρ  (72)

For convenience, we define fv as: 

[ ]v F f 3 v F f 3 v 3 v 2 1 1f (c , x ) h (c , x ) h (c ) h (c ) h= − − + ρ  (73)

where c2 and c3 can be written as functions of cF and xf3 as c2 = (1-xf3) cF and c2 = xf3 cF.  
We are interested in the following amount: 

3;1,2

Heat obtained from the protocol per unit
of  volume of  titrant solution when  dq

  
component 3 is the titrant component and  dv

 the volume of titration is infinitesimal

⎧ ⎫
⎪ ⎪
⎪ ⎪≡ ⎨ ⎬
⎪ ⎪
⎪ ⎪⎩ ⎭

 (74)

Substituting (72) and (73) into (74) yields: 

3;1,2 v
v

dq dfV f
dv dv

= +  (75)

Now, we assume that the solutions in the cell are diluted solutions. In general, a molar property 
depends on xF (amount of fraction F) and xf3 (composition of F). In previous works [4–6] we have 
shown that a solution is diluted when its molar properties can be approximated by first order Taylor’s 
expansions for xF close to zero. The region of concentrations for which this approximation holds is a 
high dilution region. Function fv in Equation (73) is expressed in terms of hv(cF,xf3), hv(c3), hv(c2) and 
h1ρ1. From Equations (143) or (153) (in “Appendix 4: Basic equations”), hv is a “volumetric enthalpy” 
since hv = H/V, H being the total enthalpy of the system and V the total volume of the system. 
consequently, hv is expressed in “units of enthalpy per unit of volume”. Furthermore, hv = h/v, where h 
is the molar enthalpy and v the molar volume, we can thus consider dilute solutions in fv by using the 
first order Taylor’s expansions of molar volumes and molar enthalpies. The details of our calculations 
are presented in “Appendix 4: Basic equations”. By substituting the expressions of hv(xF,xf3), hv(c2) 
and hv(c3) for their dilute solutions [Equations (152) and (155)] in (73), we obtain that: 

o o o o o o
v F f 3 F F;1 2;1 f 2 3;1 f 3 1 1 F F,1 2,1 f 2 3,1 f 3f (c , x ) c h h x h x h c v v x v x⎡ ⎤ ⎡ ⎤= − − −ρ − −⎣ ⎦ ⎣ ⎦  (76)
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As indicated in “Appendix 2: Limits at infinite dilution in multicomponent systems,” the partial 
molar volume and the partial molar enthalpy of fraction F can be broken down into two parts. The first 
is the contribution of (non interacting) components of fraction F: 

o o
F,1 f 3 2,1 f 2 3,1 f 3

o o
F,1 f 3 2,1 f 2 3,1 f 3

h (x ) h x h x

v (x ) v x v x

∅

∅

= +

= +
 (77)

The second is the contribution from the interactions between components of the fraction: 
o o
F,1 f 3 F,1 f 3 F,1 f 3

o o
F,1 f 3 F,1 f 3 F,1 f 3

h (x ) h (x ) h (x )

v (x ) v (x ) v (x )

∅

∅

Δ = −

Δ = −
 (78)

Using (77) and (78), Equation (76) takes the form:  
o o

v F f 3 F F,1 f 3 1 1 F F,1 f 3f (c , x ) c h (x ) h c v (x )= Δ −ρ Δ  (79)

Therefore, if the solutions are sufficiently diluted, the function fv shows the contribution of the 
interaction enthalpy and the interaction volume of the fraction F. The differential can be expressed as: 

f 3 F

v v v f 3F

F f 3x c

df f f dxdc
dv c dv x dv

⎛ ⎞⎛ ⎞∂ ∂
= + ⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠

 (80)

By combining the equation for dfv/dv [Equation (80)], fv (Equation (79)) and those for cF = cF(v) 
and tf3 = tf3(v) given in (20) and (21), we obtain: 

o o
3;1,2 F;1 F;1s o s o

3 F;1 f 3 1 1 3 F;1 f 3
f 3 f 3

dq d h d v
c h (1 x ) h c v (1 x )

dv dx dx
⎡ ⎤ ⎡ ⎤Δ Δ

= Δ + − −ρ Δ + −⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

 (81)

In the definition of dq3;1,2/dv [Equation (74)] the volume of tritration is considered to be 
infinitesimally small. Thus, in the calculations for dcF/dv and dtf3/dv in Equation (81), we assume that 
exp(-v/V) ≈ 1. From the Equation (125) (see “Appendix 2: Limits at infinite dilution in 
multicomponent systems”) it is possible to write: 

o
F;1o

3;1,2 F;1 f 3
f 3
o
F;1o

3;1,2 F;1 f 3
f 3

d h
h h (1 x )

dx

d v
v v (1 x )

dx

Δ

Δ

Δ
Δ = Δ + −

Δ
Δ = Δ + −

 (82)

Now, (81) takes the form: 

3;2,1 s s
3 3;2,1 1 1 3 3;2,1

dq
c h h c v

dv
Δ Δ= Δ −ρ Δ  (83)

Since dns
3=cs

3 dv, then: 

3;1,2 3;1,2s
3 s

3

dq dq
c

dv dn
=  (84)

where: 
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3;1,2
s
3

Heat obtained from the protocol 
per mol of titrant component when   dq

  
  component 3 is the titrant component and dn

when the titrant amount is infinitesimal

⎧ ⎫
⎪ ⎪
⎪ ⎪≡ ⎨ ⎬
⎪ ⎪
⎪ ⎪⎩ ⎭

 (85)

By combining Equations (83) and (84), we obtain: 

3;1,2
3;1,2 1 1 3;1,2s

3

dq
h h v

dn
Δ Δ= Δ −ρ Δ  (86)

Figure 5. Calorimetric signal of the titration of toluene with toluene at 30 °C. The volume 
of titration was 200 μL. 

4. Discussion 
 
As it has been stated previously, a measured heat is obtained experimentally when a liquid is 

titrated with itself. Figure 2 shows the measurement of this heat when water is titrated with water at  
30 °C. This result agrees with those that have been obtained by other authors [2]. This heat has been 
named as “blank machine” [2] or “instrumental heat” and its origin could be attributed to a possible 
difference in temperatures between the titrated volume and the cell. In the case of Figure 2, the room 
temperature was 20 °C and the temperature cell was 30 °C. That is, if a difference in temperature 
existed, the initial temperature Ti of the titrant volume would be less than the final temperature Tf. 
According to equation: 

 inj pQ m c T= × ×Δ       (87) 

where Qinj is the heat obtained from the injection, m the mass of the titrant volume, cp the specific heat 
capacity and ΔT = Tf - Ti we would expect a heat positive. The heat shown on Figure 2 is negative and 
therefore it is not possible to explain the heat observed on Figure 2 in terms of a “blank machine” or an 
“instrumental heat”. The merit of the equation ΔH = Winj + Q [Equation (9)] is that it allows to take 
into account a heat measured by the calorimeter when a liquid is titrated with itself and the sign of this 
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heat. Because it is necessary to apply work to the system in order to introduce an amount of liquid into 
the cell and push out an equivalent amount of liquid, this work must be positive. Since in this case  
Qinj = -Winj, the heat measured must to be negative. The heat shown in Figures 2-II agrees with this 
prediction. 

Contributions to Qinj can be several as for example the friction between liquids (relative viscosities) 
and the friction between the liquid and the narrow bore tube of the needle. Recently [8] the following 
equation has been proposed that gives the temperature rise in a fluid from frictional flow in a tube: 

10
4

p

lvT 21 10
c d

− ′μ
Δ = ×

πρ
 (88)

where ΔT is the difference in temperature in K, μ is the fluid viscosity in centipoises, l is the length of 
the tube in cm, v’ is the volumetric flow rate in cm3 min-1, ρ is the fluid density in g cm3, C is the fluid 
heat capacity in J g-1 K-1, and d is the tube diameter in cm. For water flowing through a 0.4 mm 
diameter tube 30 cm long at 1 cm3 min-1, ΔT = 0.002 K. As it is stated by Equation (88) ΔT depends on 
the nature of the fluid through its viscosity, density and heat capacity, on the geometry of the 
calorimetric system through the diameter and length of the needle and to the conditions of the 
experiment through the volume flow rate. When combining Equations (87) and (88) it results an 
expected influence of the volumetric flow rate (v’) in Qinj. This fact was shown experimentally in the 
Figure 2.7 of ref. [2]. 

Figure 5 shows the calorimetric signal of the titration of toluene with toluene. Unlike in Figure 1 in 
which all peaks are exothermic, in this case a minimum with a negative value (endothermic peak) was 
recorded. Usually, the syringe is at the temperature of the room, and the cell is at the fixed temperature 
of the experiment. This endothermic peak can be explained by the large volume of titration (which is 
15% of the volume of the cell) and the difference in temperature between the cell and the room.  

Therefore we can state that a characteristic of isothermal titration calorimetry is the necessity of 
very small volume according to two considerations: first, with a large volume, the temperature of the 
experiment is not kept constant, second, the validity of Equation (81) imposes very small titration 
volumes in order to assume that the heat obtained following the experimental the protocol is related to 
a partial molar enthalpy of interaction at infinite dilution and to a term proportional to a partial molar 
volume of interaction also at infinite dilution. 

In Equation (86), we have two contributions to the heat obtained from the given protocol. One is the 
partial molar enthalpy of interaction of component 3 within the limit of infinite dilution (ΔhΔ3;1,2). The 
second contribution is – ρ1h1ΔvΔ3;1,2. This term represents the enthalpy of a volume of solvent ΔvΔ3;1,2 
as a consequence of the protocol employed. In addition to this, it is possible to demonstrate that when 
the interactions between two components are maximum, the heat dq3;1,2/dns

3 obtained is zero. In a 
previous work [5], we demonstrated that if the plot of jo

F;1 as function of a variable of composition is 
linear for a range of compositions of F, then the interactions between the components of the fraction 
are maximum in that range. The composition variable employed was the mass fraction of component 3 
in the fraction (tf3). Figure 6 shows an example when fraction F is composed of non-charged polymeric 
particles (component 2) and a cationic surfactant (component 3). The solvent in this case is water. 
From zero to tf3, the behavior is non-linear. Considering that the value tc

f3 in units of molar fractions is 
xc

f3, at this composition the partial property of F takes the value: 
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o c c c c c
F;1 f 3 f 2 2;1,3 f 3 f 3 3;1,2 f 3j (x ) x j (x ) x j (x )Δ Δ= +  (89)

where xf2= 1-xf3. Above the value xc
f3, jo

F;1 can be written as: 
o o c o
F;1 f 2 F;1 f 3 f 3 3;1j X j (x ) X j= +  (90)

where: 
c

f 3 f 3
f 3 c

f 2

x xX
x
−

=  (91)

and Xf2= 1-Xf3. When we write jΔ2;1,3 and jΔ3;1,2, we assume [4–6] that concomitantly component 2 is in 
the presence of components 1 and 3 and component 3 is in the presence of components 1 and 2. Thus 
the notation jo

F;1 = xf2 jΔ2;1,3 + xf3 jΔ3;1,2 indicates that, F is composed of components 2 and 3, which are 
interacting in a medium (component 1). On the other hand, jo

2;1 and jo
3;1 indicate that component 2 is 

alone in component 1 and that component 3 is alone in component 1. Therefore, if we write  
jo

F;1 = xf2 jo
2;1 + xf3 jo

3;1 we assume that fraction F is composed of components 2 and 3, which are not 
interacting. 

This is the case for Equation (90), where fraction F is composed of a fraction of constant 
composition (with partial property jo

F;1(xc
f3)) and an amount of component 3 (with partial property 

jo
3;1) and these components are not interacting. In other words [5,6], in a region of saturation of 

interactions, component 2 is interacting with a part of component 3 to form a fraction with constant 
composition. A fraction with constant composition is named a “pseudo-component [4–6].” This 
pseudo-component, composed of 2 and a part of 3, does not interact with the rest of component 3. A 
saturation of interactions is related to the formation of pseudo-components. 

By substituting the equation for jo
F;1 in the region of saturation (Equation (90)) in the equation for 

calculating jo
3;1,2 from jo

F;1 (Equation (117)) and bearing in mind that: 
o o
F;1 F;1 f 3

f 3 f 3 f 3

dj dj dX
dx dX dx

=  (92)

we obtain that: 
o o o

3;2,1 3;2,1 3;1 3;1 3;1j j j j j 0Δ ΔΔ = − = − =  (93) 

Substituting this result into Equation (86) we obtained that in the region of saturation of 
interactions: 

3;1,2
s
3

dq
0

dn
=  

(94) 

Another interesting problem in isothermal titration calorimetry is the following: is there a 
relationship between the experiments carried out when component 3 is the titrant and when component 
2 is the titrant? We can answer this question as follows: the heat generated when component 3 is the 
titrant can be obtained from (86), dq3;1,2/dns

3. In the same way, the heat obtained when component 2 is 
the titrant can be written as: 

2;1,3
2;1,3 1 1 2;1,3s

2

dq
h h v

dn
Δ Δ= Δ −ρ Δ  (95)
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Figure 6. Specific partial volume at infinite dilution a) and specific partial adiabatic 
compressibility coefficient b) at infinite dilution in water at 30 °C, of a fraction F 
composed of non-charged polymeric particles (component 2) and decyltrimethyl-
ammnonium bromide (component 3) as function of the mass fraction of component 3 in the 
fraction F. The solid line represents the region in which the interactions are saturated (data 
taken from ref. [5]). 

 
Next we can derivate dq3;1,2/dns

3 in Equation (86) with respect to xf3 and multiply by xf2, and we can 
also derivate dq2;1,3/dns

2 with respect to xf3 and multiply by xf3. By adding the results and using 
Equation (123) (in Appendix 1: “Limits at infinite dilution in multicomponent systems”) for enthalpies 
and volumes: 

2;1,3 3;1,2
f 2 f 3

f 3 f 3

d h d h
x x 0

dx dx

Δ ΔΔ Δ
+ =  (96)

2;1,3 3;1,2
f 2 f 3

f 3 f 3

d v dv
x x 0

dx dx

Δ ΔΔ
+ =  (97)

we obtain: 

2;1,3 3;1,2
f 2 f 3

f 3 f 3 f 3 f 3

dq dqd dx x 0
dx dx dx dx

⎛ ⎞ ⎛ ⎞
+ =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 (98)

This is an equation of the Gibbs-Duhem type that relates the heats of interaction obtained when 
components 2 and 3 are the titrant components. 
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Figure 7. Partial volumes at infinite dilution of non-charged polymeric particles, vΔ2;1,3, 
and a cationic surfactant (C10-TAB) , vΔ3;1,2, as function tf3 (data taken from ref. [5]). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
From equation ΔH = Q it is commonly assumed the heat measured by an ITC can be related to the 

variation of enthalpy; many papers and books in biochemistry and biophysics have reported results on 
this link. In this work, we have demonstrated that the equation ΔH = Q does not hold for isothermal 
titration calorimetry and that the true equation is ΔH = Winj + Q, which involves a term of work. In 
addition, we have found that the heat obtained from the usual protocol employed in the determination 
of the heat of interaction dq3;1,2/dns

3 between two components (Equation (86)) involves both a 
variation of enthalpy and a variation of volume. In general ΔvΔ3;1,2 is not zero. As example of this, 
Figure 7 shows the case of the interaction between non-charged polymeric particles and a surfactant. 
On the other hand, if there were no link between the variation of enthalpy and the heat of interaction 
measured by ITC this would affect the results of heats of interaction obtained with the technique, 
particularly in biophysical applications. This paradox can be solved as follows: models have been 
proposed [9–11] that indicate that the variation in volume for protein unfolding is very small. In 
addition it has been found experimentally that the variation in volume during the denaturation of 
lysozyme by a strong denaturant is very close to zero [12]. In our case, we have found that ΔvΔF;1 can 
be neglected in the process of binding deciltrimethylammonium bromide to lysozyme [5] (see  
Figure 8). Supposing ΔvΔF;1 ≈ 0 in Equation (125) (in Appendix 1: “Limits at infinite dilution in 
multicomponent systems”), then: 

3;1,2v 0ΔΔ ≈  (99)

Considering that Equation (99) holds in general for a process involving protein unfolding, 
substituting this result into the equation of dq3;1,2/dns

3 (Equation (86)) yields for this type of processes: 

3;1,2
3;1,2s

3

dq
h

dn
Δ≈ Δ  (100)
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Another possibility is that for processes of biophysical interest, the approximation ⏐ρ1h1ΔvΔ3;1,2⏐<< 
⏐ΔhΔ3;1,2⏐ holds. 

Figure 8. Specific partial volume at infinite dilution in water at 30 °C, of the fraction F 
composed of Lysozyme (component 2) and decyltrimethylammnonium bromide 
(component 3) as function of the mass fraction of component 3 in fraction F. Because the 
behavior of vo

F;1 is very close to linear, the interaction term Δvo
F;1 can be neglected (data 

taken from ref. [5]). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5. Conclusions 

 
In this work we have studied in detail the thermodynamics of the titration process in isothermal 

titration calorimeters with full cells. We have shown that the equation ΔH = Q does not hold for this 
type of calorimeters because it cannot explain the heat obtained when a liquid is titrated with itself. In 
its place, we propose the equation ΔH = Winj + Q. The heat of interaction between two components is 
usually determined from a protocol composed of a number of simple titration experiments. Using the 
equation ΔH = Winj + Q and the thermodynamic tools developed in our previous works for 
multicomponent systems at infinite dilution, we show that in an infinitesimal titration, the heat of 
interaction per mole of titrant component is related to the partial enthalpy of interaction at infinite 
dilution and to the partial volume of interaction of the titrant component also at infinite dilution. This 
information can be essential in order to link theoretical models to experimental measurements. 
Another interesting conclusion is that for this type of calorimeters the variation in enthalpy equals the 
variation in internal energy. 
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Appendix 1. Fraction of a System and Fraction Variables  

 
An extensive thermodynamic property J at constant temperature and pressure can be written in a 

“description by components” as: 

1 2 3J J(n ,n ,n )=  (101)

where n1, n2 and n3 are the number of moles of the components 1, 2 and 3, respectively. The Gibbs 
Equation [13] for J takes the form: 

1;2,3 1 2;1,3 2 3;1,2 3dJ j dn j dn j dn= + +  (102)

where the partial properties j1;2,3, j2;1,3 and j3;1,2 are the partial properties of components 1, 2 and 3, 
respectively, defined as: 

2 3

1 3

1 2

1 2 3
1;2,3 2 3

1 n ,n

1 2 3
2;1,3 2 3

2 n ,n

1 2 3
3;1,2 2 3

3 n ,n

J(n ,n ,n )j (x , x )
n

J(n ,n ,n )j (x , x )
n

J(n ,n ,n )j (x , x )
n

⎛ ⎞∂
= ⎜ ⎟∂⎝ ⎠

⎛ ⎞∂
= ⎜ ⎟∂⎝ ⎠

⎛ ⎞∂
= ⎜ ⎟∂⎝ ⎠

 (103)

where x2 and x3 are the molar fraction of components 2 and 3, respectively. By notation, we 
understand that j1;2,3 means “the partial property of component 1 in the presence of components 2 and 
3”. The notations j2;1,3 and j3;1,2 are interpreted in the same way. 

A fraction of a system [4–6] is defined as a thermodynamic entity with an internal composition that 
groups several components. If we suppose a fraction F is composed of components 2 and 3, the 
property J can be written as a “description by fractions” as: 

1 F f 3J J(n ,n , x )=  (104)

where the new variables (fraction variables) are the total number of moles of the fraction F,  
nF = n2 + n3, and xf3 = n3/(n2 + n3), which are related to the composition of F. The Gibbs equation for 
Equation (104) takes the form: 

1 F

1;F 1 F;1 F f 3
f 3 n ,n

JdJ j dn j dn dx
x

⎛ ⎞∂
= + + ⎜ ⎟∂⎝ ⎠

 (105)

where j1;F and jF;1 are respectively: 
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F f 3

1 f 3

1 F f 3
1;F F f 3

1 n ,x

1 F f 3
F;1 F f 3

F n ,x

J(n , n , x )j (x , x )
n

J(n ,n , x )j (x , x )
n

⎛ ⎞∂
= ⎜ ⎟∂⎝ ⎠

⎛ ⎞∂
= ⎜ ⎟∂⎝ ⎠

 (106)

Again, by notation j1;F means “the partial property of component 1 in the presence of fraction F” 
and in the same way, jF;1 means “the partial property of the fraction F in the presence of component 1”. 
By the technique of change of variable [14] we can write the partial properties j1;F and jF;1 as function 
of the partial properties j1;2,3, j2;1,3, j3;1,2. The change of variable is: 

1 1 2 f 3 1

2 1 F f 3 f 3 F

3 1 F f 3 f 3 F

n (n ,n , x ) n
n (n ,n , x ) (1 x )n
n (n ,n , x ) x n

=
= −
=

 (107)

By calculating the differentials of n1, n2 and n3 in (107), substituting dn1, dn2 and dn3 in (102), 
equaling the result to (105) and regrouping similar terms keeping in mind that n1, n2 and n3 are 
independent variables, we have: 

1;F 1;2,3j j=  (108)

F;1 f 2 2;1,3 f 3 3;1,2j x j x j= +  (109)

1 F

F 3;1,2 2;1,3
f 3 n ,n

J n ( j j )
x

⎛ ⎞∂
= −⎜ ⎟∂⎝ ⎠

 (110)

Appendix 2. Limits at Infinite Dilution in Multicomponent Systems 
 
The limit of jF;1 at infinite dilution is defined as: 

F
f 3

o
x 0 F;1 F f 3 F;1 f 3 F;1
x  constant

lim j (x , x ) j (0, x ) j→ = ≡  (111)

The limit in (111) is taken when the concentration of the fraction tends to zero while its 
composition is kept constant. Under these conditions, the limits at infinite dilution of j2;1,3 and j3;1,2 are 
defined as: 

F
f3

x 0 2;1,3 F f 3 2;1,3 f 3 2;1,3 f 3
x  constant

lim j (x ,x ) j (0, x ) j (x )Δ
→ = =  (112)

F
f3

x 0 3;1,2 F f 3 3;1,2 f 3 3;1,2 f 3
x  constant

lim j (x ,x ) j (0, x ) j (x )Δ
→ = =  (113)

Taking the limit at infinite dilution on both sides of (109) and substituting Equations (111)–(113) 
we obtain that: 

o
F;1 f 2 2;1,3 f 3 3;1,2j x j x jΔ Δ= +  (114)

In our previous work we showed that: 
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2;1,3 3;1,2
f 2 f 3

f 3 f 3

dj dj
x x 0

dx dx

Δ Δ

+ =  (115)

Derivating in (114) with respect to xf3 and combining the result with Equations (114) and (115) 
yields: 

o
F;1o

2;1,3 F;1 f 3
f 3

dj
j j x

dx
Δ = −  (116)

o
F;1o

3;1,2 F;1 f 3
f 3

dj
j j (1 x )

dx
Δ = + −  (117)

The partial properties of 2 and 3 contribute due to their interaction. This effect can be measured as 
the effect on the partial property of a component due to the presence of the other component. In this 
way, we define the terms of interaction as: 

o
2;1,3 f 3 2;1,3 f 3 2;1j (x ) j (x ) jΔ ΔΔ = −  (118)

o
3;1,2 f 3 3;1,2 f 3 3;1j (x ) j (x ) jΔ ΔΔ = −  (119)

Reorganizing (118) and (119) and substituting the values of jΔ2;1,3 and jΔ3;1,2 in (114) we have: 
o o
F;1 F;1 F;1j j j∅= Δ +  (120)

where: 
o
F;1 f 2 2;1,3 f 3 3;1,2j x j x jΔ ΔΔ = Δ + Δ  (121)

and  
o o

F;1 f 2 2;1 f 3 3;1j x j x j∅ = +  (122)

Thus, from Equation (120) there are two contributions to the partial property of fraction F: j∅F;1, 
which does not consider the interaction between components 2 and 3, and Δjo

F;1, which contains all 
contributions from the interaction between 2 and 3. 

It is possible to see that terms of interaction also hold in a Gibbs-Duhem type equation. 
Reorganizing in (118) and (119) and substituting the values of jΔ2;1,3 and jΔ3;12 in the Gibbs-Duhem 
type equation for the partial properties (Equation (115)) we have: 

2;1,3 3;1,2
f 2 f 3

f 3 f 3

d j d j
x x 0

dx dx

Δ ΔΔ Δ
+ =  (123)

As in the case of the partial properties, derivating (121) with respect to xf3 and combining with 
Equations (121) and (123) yields: 

o
F;1o

2;1,3 F;1 f 3
f 3

d j
j j x

dx
Δ Δ

Δ = Δ −  (124)
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o
F;1o

3;1,2 F;1 f 3
f 3

d j
j j (1 x )

dx
Δ Δ

Δ = Δ + −  (125)

Appendix 3. The Region of High Dilution 
 
Let a 3-component be. The Euler equation of the system in the description of fractions  

[Equation (104)] is: 

1 1;F F F;1J n j n j= +  (126)

Dividing both sides of (126) by the total mass of the systems and defining the intensive 
thermodynamic property j associate to the extensive thermodynamic property J as: 

1 F f 3

1 F

J(n ,n , x )j
n n

=
+

 (127)

we obtain that: 

1 1;F F F;1j x j x j= +  (128)

where xF = nF/(n1 + nF), and x1 = 1 - xF. The Taylor’s expansion of first order of j = j(xF,xf3) with xF 
close to zero is: 

f 3

f 3
F f 3 f 3 F

F x

j(0, x )j(x , x ) j(0, x ) x
x

⎛ ⎞∂
= + ⎜ ⎟∂⎝ ⎠

 (129)

Using Equations (111) and (128): 

Ff 3 x 0 1;F F f 3 1j(0, x ) lim j (x , x ) j→= =  (130)

where j1 is the molar property of component 1 in the pure state. Using (128), we obtain: 

f 3 f 3 f 3

1;F F;1F f 3
F;1 1;F 1 F

F F Fx x x

j jj(x , t ) j j x x
x x x

⎡ ⎤∂ ∂⎛ ⎞ ⎛ ⎞ ⎛ ⎞∂
⎢ ⎥= − + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦

 (131)

In our previous paper [6] we showed that: 

f 3 f 3

1;F F;1
1 F

F Fx x

j j
x x 0

x x
∂ ∂⎛ ⎞ ⎛ ⎞

+ =⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠
 (132)

Taking the limit of xF tending to zero in (131) and including (130) and (132) we obtain: 

F

f 3

of 3
x 0 F;1 1;F F;1 1

F t

j(0, x ) lim j j j j
x →

⎛ ⎞∂
⎡ ⎤= − = −⎜ ⎟ ⎣ ⎦∂⎝ ⎠

 (133)

The substitution of (129) and (133) in (129) yields: 

( )o
F f 3 1 F;1 f 3 1 Fj(x , x ) j j (x ) j x= + −  (134)

or using Equation (114): 
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( )F f 3 1 f 2 2;1,3 f 3 f 3 3;1,2 f 3 1 Fj(x , x ) j x j (x ) x j (x ) j xΔ Δ= + + −  (135)

The effect of work in the high dilution region of j with respect to the variable xF is to replace the 
partial properties as follows: 

1;2,3 F f 3 1;F F f 3 1

2;1,3 F f 3 2;1,3 f 3

3;1,2 F f 3 3;1,2 f 3

o
F;1 F f 3 F;1 f 3

j (x , x ) j (x , x ) j

                       j (x , x ) j (x )

                       j (x , x ) j (x )

                         j (x , x ) j (x )

Δ

Δ

= ⎯⎯→

⎯⎯→

⎯⎯→

⎯⎯→

 (136)

In the more simple case of a 2-component system, it is easy to see that Equation (134) takes the 
form: 

( )o
2 1 2;1 1 2j(x ) j j j x= + −  (137)

In the high dilution region of j, the partial properties are replaced as: 

1;2 2 1

o
2;1 2 2;1

j (x ) j

j (x ) j

⎯⎯→

⎯⎯→
 (138)

Appendix 4. Basic Equations  
 
In 3-component systems the enthalpy H is written as: 

1 2 3H H(n ,n ,n )=  (139)

where its Euler’s equation takes the form: 

1 1;2,3 2 2;1,3 3 3;1,2H n h n h n h= + +  (140)

with h1;2,3, h2;1,3 and h3;1,2 being the partial molar properties of components 1, 2 and 3, respectively, 
defined as: 

2 3

1 3

2 3

1;2,3
1 n ,n

2;1,3
2 n ,n

3;1,2
3 n ,n

Hh
n

Hh
n

Hh
n

⎛ ⎞∂
= ⎜ ⎟∂⎝ ⎠

⎛ ⎞∂
= ⎜ ⎟∂⎝ ⎠

⎛ ⎞∂
= ⎜ ⎟∂⎝ ⎠

 (141)

Using the new variables cF, xf3 and V, the enthalpy takes the form: 

F f 3H H(c , x ,V)=  (142)

With the application of the Euler equation we have: 

v F f 3H h (c , x )V=  (143)

with: 
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F f 3

v F f 3
c ,x

Hh (c , x )
V
∂⎛ ⎞= ⎜ ⎟∂⎝ ⎠

 (144)

Setting (140) and (143) equal to each other and, considering the following relationship between the 
variables n1, n2 and n3 and cF, xf3 and V: 

[ ]
( )

1 F f 3 F

2 F f 3

3 F f 3

n V (c , x ) c

n Vc 1 x
n Vc x

= ρ −

= −

=

 (145)

where ρ is the density of the system, we obtain: 

( ) ( )v F f 3 F 1;2,3 F f 3 2;1,3 F f 3 3;1,2h (c , x ) c h c 1 x h c x h= ρ− + − +  (146)

If instead we consider the system as to be composed of component 1 and the fraction F (composed 
of the component 2 and 3), then (146) takes the form: 

( )v F f 3 F 1;F F F;1h (c , x ) c h c h= ρ− +  (147)

Now we obtain an equation for (146) in the region of high dilution. For the specific partial 
enthalpies of 1, 2 and 3 we can make the following replacement by: 

1;F F f 3 1

o
F;1 F f 3 F;1 f 3

h (x , x ) h

h (x , x ) h (x )

⎯⎯→

⎯⎯→
 (148)

The density can be written in terms of the molar volume: 

1
v

ρ =  (149)

Using Equation (134) it is possible to write an equation for the specific volume in the high dilution 
region: 

( )o
F f 3 1 F;1 f 3 1 Fv(x , x ) j v (x ) v x= + −  (150)

Substituting (150) in (149) and considering that cF = xF ρ: 

( )o
F f 3 1 1 F;1 f 3 F(c , x ) 1 v (x ) cρ = ρ + −ρ  (151)

The equation for hv in the high dilution region can be obtained by substituting Equations (151) and 
(148) in (147): 

( )o o
v F f 3 1 1 F;1 f 3 1 F;1 f 3 Fh (c , x ) h h (x ) v (x ) c= ρ + −ρ  (152)

In the more simple case of a 2-component system the enthalpy can be written as: 

2 v 2H(c ,V) h (c )V=  (153)

where hv can be written as: 

( )v 2 1;2 2 2 2;1 2h (c ) h (c ) c h c= ρ − +  (154)
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In the high dilution region Equation (154) takes the form: 

( )o o
v 2 1 1 2;1 1 1 2;1 2h (x ) h h h v c= ρ + −ρ  (155)
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