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Abstract: Borane–trimethylamine complex (Me3N·BH3; BTM) is the most stable of the amine–borane
complexes that are commercially available, and it is cost-effective. It is a valuable reagent in organic
chemistry with applications in the reduction of carbonyl groups and carbon–nitrogen double bond
reduction, with considerable examples in the reduction of oximes, hydrazones and azines. The
transfer hydrogenation of aromatic N-heterocycles and the selective N-monomethylation of primary
anilines are further examples of recent applications, whereas the reduction of nitrobenzenes to anilines
and the reductive deprotection of N-tritylamines are useful tools in the organic synthesis. Moreover,
BTM is the main reagent in the regioselective cleavage of cyclic acetals, a reaction of great importance
for carbohydrate chemistry. Recent innovative applications of BTM, such as CO2 utilization as
feedstock and radical chemistry by photocatalysis, have extended their usefulness in new reactions.
The present review is focused on the applications of borane–trimethylamine complex as a reagent in
organic synthesis and has not been covered in previous reviews regarding amine–borane complexes.
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1. Introduction

Boron-based reagents play an important role in modern organic synthesis and espe-
cially borane carriers have reached a predominant position in the synthesis of pharma-
ceutics and natural products. Boranes form complexes with Lewis bases, such as amines
and pyridines, that are stable, safer and easier to handle. There are few reviews in the
literature concerning the use of amine–borane complexes in organic synthesis [1–8], but
in some of them, the part describing the reactivity is quite limited. An early review [2] is
the most representative in the description of the reactivity of several amine–borane com-
plexes with examples of practical application in organic synthesis covering literature up
to 1984; it is also the only one that describes some applications of borane–trimethylamine
complex (Me3N·BH3; BTM) while the subsequent reviews report either single reactions
with this reagent or deal with different amine–boranes. A review on the chemistry of
amine and phosphine–boranes was published [3] in 1999, whereas reductive amination
was the topic of two reviews, one focused on amine–boranes [5] and the other with several
boron reagents [4]. Amine–boranes forming frustrated Lewis pairs was the subject of a
chapter in a book [6], whereas two recent reviews dealt with the reactivity of ammonia-
borane complex [7,8]. This review aims to focus on the use of borane–trimethylamine
complex as a reagent, mainly after 1984 and not covered in previous reviews regarding
amine–borane complexes.

Of the various known complexes, BTM is the most stable [9], less sensitive to hydroly-
sis, even under acidic conditions [2], and does not require any special storage conditions. It
is thermally stable up to 120 ◦C and can be purified by vacuum sublimation; conversely,
ammonia–borane complex explodes when heated, and an attempted distillation of borane–
pyridine complex at reduced pressure resulted in violent decomposition [1]. BTM is very
soluble in a wide variety of solvents [1], and its stability significantly increases with increas-
ing solvent polarity [10]. It is relatively inexpensive compared with the other amine–borane
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complexes commercially available and considering the low molecular weight. Contrarily
to borane complexes of ammonia, primary and secondary alkylamines, the inert nature of
trimethylamine in BTM was a further advantage in avoiding the side reactions observed
with the more reactive amines. Its reactivity can be opportunely activated in the reaction
medium, and it is considered a valuable reagent in organic synthesis for laboratory as well
as industrial scale. Since 1937, when it was synthesized for the first time, its applications
have grown steadily, with some innovative ones in recent years.

2. Reductive Transformations with Carbon–Oxygen Double Bond
2.1. Reduction of Ketones

BTM is a weak hydride donor more reactive than trialkylsilanes and trialkylgermanes,
comparable with that of trialkylstannanes [11]. The greater stability of BTM in the presence
of Lewis or Brønsted acid allows the activation of the substrate by acid catalysis [2]; from
kinetic studies, the rate of reduction of aldehydes and ketones increases with increasing
acidity of the medium suggesting the formation of a protonated carbonyl species in rapid
equilibrium, followed by the rate-determining step of the reduction. BTM was the reagent of
choice for the selective reduction of steroidal diones, such as 1, in the presence of wet silica
gel impregnated with FeCl3 (Scheme 1): C-3 carbonyl group was reduced preferentially to
the alcohol 2 [12].
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Scheme 1. Regioselective reduction of dione 1 on a silica gel surface.

The formation of a chelate between the Lewis acid and substrates 3 and 5 proved to be
effective for the completely diastereoselective reduction to the corresponding alcohols 4
and 6 (Scheme 2) [13].
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In a similar way, in the enantioselective total synthesis of analogs of griseusins [14],
ketone 7 was reduced by BTM in good diastereoselectivity using TFA as acid (Scheme 3).
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2.2. Reductive Bromation of Aromatic Carbonyl Compounds

Bromine was an effective activator in the reduction of both aldehydes and ketones
by BTM [15], but in the case of aromatic compounds 9, the reaction proceeded beyond the
reduction to alcohol, leading to bromide derivative 10 in good yields (Scheme 4) with the
exception of a product obtained in low yield after recrystallization.
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Some useful exploitations of the synthetic method were (Scheme 5) the synthesis of
the 14C labeled benzylbromide 12, intermediate in the synthesis of CX3CR1 antagonist
13 [16], and the synthesis of the dibromide derivative 15, intermediate in the synthesis of
crownophanes [17].
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2.3. Reduction of Carboxylic Acids

At room temperature, carboxylic acids are inert in presence of BTM and can be used
as solvent in the reduction reactions; on the other hand, refluxing a xylene solution of
BTM and carboxylic acid 16 in molar ratio of 1.5:2, ester 17 was isolated in 87% yield [18]
(Scheme 6); the reaction was suitable both to aliphatic and aromatic acids with moderate to
good yields (28–87%).
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A plausible reaction mechanism could be the presence of two concurrent reactions:
the reduction of the acid 18 to alcohol 19, isolated in every reaction, and the formation of
the triacyloxyborane complex 20, a known acylating compound; finally, the reaction of the
two intermediates leads to the ester 21 (Scheme 7).
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Scheme 7. Reaction mechanism of the acid reduction.

By adding either primary or secondary amine 22 to the previous reaction mixture and
changing the ratio of the reagents, a different result was obtained (Scheme 8) [19]: with
the molar ratio BTM:amine 22:acid 18 = 1:1:3 led to amide 23, seemingly by the action of
acylating complex 20; instead, the molar ratio 1:2:2 led to the tertiary amine 24, likely by
reduction of the acid 18 to an aldehyde equivalent (boryl acetal) followed by the reductive
alkylation of amine 22.
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2.4. Reductive Methylation with CO2

Recently, the reduction of CO2 has emerged as a topic of great interest connected
with global climate change and the urgent necessity to reduce the concentration of CO2
in the atmosphere through sequestration and its utilization in the synthesis of useful
compounds. An early study [20] reported the reduction of CO2 to formate by BTM weakly
bonded to the bulkier Lewis acid Al(C6F5)3; then, the reaction mechanism was studied
by quantum chemical calculations [21]. Subsequently, the reduction of CO2 was exploited
for the selective monomethylation of 2-arylacetonitriles 25 [22]; as shown in Scheme 9, the
optimized reaction conditions involved the reaction, in a sealed tube, of a DME solution of
nitrile 25, tBuOK and 1,5,7-triazabicyclo[4.4.0]dec-5-ene (TBD) in an atmosphere of CO2,
obtaining selectively the monomethyl derivative 26, with yields around 80% in almost
all examples.
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Scheme 9. Selective monomethylation of 2-arylacetonitriles 25.

By using 13CO2, the corresponding 13C methyl derivative was obtained, confirming
that the methyl group comes from CO2. In the reaction, TBD has the role of activator of
the CO2 forming the adduct 27 (Scheme 10), and tBuOK of a strong base in deprotonation
of 2-arylacetonitriles 25. The reaction, shown in Scheme 9, performed without nitrile 25,
led to methyl borate 29 as the major product, which suggests that CO2 undergoes a six-
electron reduction with the formatoborohydride 28 as an intermediate. Differently from
BTM, borane–ammonia complex reduced CO2 to the formyl group; conversely, with the
borane dimethylamine complex (BDM), the two-electron reduction product 28 reacted with
dimethylamine, derived from BDM, leading to amide 30 and blocking further reduction
(Scheme 10). In the presence of tBuOK, methyl borate 29 proved to be an effective methylat-
ing agent of nitrile 25, obtaining the methylated product 26 in 75% yield; in a similar way,
two different nucleophiles, such as aniline 31 and thiophenol 33, were methylated in the
same reaction condition.
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Recently, the selective methylation of amines with CO2 was examined [23] by com-
bining the organocatalyst 6-amino-2-picoline 36 and BTM (Scheme 11) to form a stable
intramolecular frustrated Lewis pairs catalyst (Scheme 12), most of the secondary amines 35
used were N-alkyl or N-aryl anilines, with only two examples of alkyl heterocyclic amines,
affording methylation products 37 in moderate to good yields.
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On the basis of a series of control experiments, NMR and high-resolution mass spec-
trometry (HRMS) analyses, a possible reaction mechanism was proposed (Scheme 12). The
first step is the reaction of 6-amino-2-picoline 36 and excess BTM leading to aminoborane
38, with the quantitative evolution of H2, followed by the CO2 activation with zwitterionic
intermediate 39. The next steps are less evident, and the authors speculate the formation of
intermediate 40 that is further reduced to product 37.

Without a catalyst, halving the equivalents of BTM and with DMF as solvent (Scheme 13),
the reduction afforded the corresponding monoformylation products 41, an intermediate
hypothesized in the reduction from 40 to product 37 (Scheme 12); most of the amines 35
used were primary anilines and yields were generally good.
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Finally, a tandem four-component reductive methylation of primary amines 42 was
realized, coupling a reductive amination to secondary amines 45, with the reduction of
CO2 to a methyl group, synthesizing tertiary N-methylamines 46 [24] (Scheme 14).
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Scheme 14. Four-component reductive methylation of primary amines with CO2.

On the contrary of catalyst 36, 2-aminothiazole 44 catalyzed the reaction with higher
efficiency, whereas BTM was the best choice in the screening of different types of boron-
based reducing agents. The study of the scope of the reaction involved a large number of
amines 42, aldehydes and ketones 43, leading to products in mostly good yields; the gram-
scale synthesis of the antifungal agent butenafine 49 was an example of the potentiality of
the present synthetic method (Scheme 15).
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3. Carbon–Nitrogen Double Bond Reduction
3.1. Reduction of Hydrazones and Azines

Although the reduction of hydrazones and azines is hampered by opposite conjugation
effects, the presence of an acid in the reaction medium can activate the C=N bond to the
attack of nucleophiles [25,26]. The improved stability of BTM in a strong acidic medium
enabled the efficient reduction of both hydrazones 50 and azines 52 (Scheme 16), affording
a wide range of highly functionalized mono-, di- and trialkyl hydrazines as stable and safe
hydrochlorides and in excellent yields for most of the compounds.
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Scheme 16. Reduction of hydrazones and azines.

The work-up operationally simple was another credit of the method, as the byproduct
of reduction 56 (Scheme 17) was soluble in toluene, contrary to products 51 or 53, which
are completely insoluble (except for two compounds) and easily separated by filtration.
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Byproduct 56 was exploited in the “one pot” synthesis of hydrazides by adding
carboxylic acid 57 at the end of the reduction step and producing, in situ, a mixture of
acyloxyboranes 58 (Scheme 17) that proved to be an effective acylating agent of both
alkylhydrazine hydrochloride 51 and 53 (Scheme 18); the yields were susceptible to the
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bulkiness of both carboxylic acids and alkylhydrazines limiting the reaction to less hindered
hydrazones and azines derived from aldehydes. The tight steric requirement for the
acylation by the acyloxyboranes made the synthesis of hydrazides 60 completely selective
without the formation of the related diacyl hydrazines side-product, generally observed
with common acylating agents.
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3.2. Reduction of Oximes

Early studies on the reduction of oximes by BTM and HCl were directed to the
synthesis of N-hydroxy derivatives of tryptophan 62 (Scheme 19), useful intermediates
for the synthesis of β-Carbolines [27–30], fungal metabolites Neoechinulins [31,32] and
recently the marine fungal metabolite raistrickindole A [33] (Scheme 20); with some oximes
the reduction of indole to indoline (see Section 3.3) was observed [32].
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Subsequently, the synthetic method was extended to the synthesis of a new type
of pseudopeptides, the N-hydroxy dipeptides 66 [34], as a diastereoisomeric mixture
(Scheme 21).
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functional dyspepsia; the work-up step was simplified by fluorous solid-phase extraction 
(F-SPE), relative with this strategy (Scheme 24). 

Scheme 21. Synthesis of N-hydroxy dipeptides.

Reduction of oximes was the easiest method of synthesis of the N-alkyl-hydroxylamines
68 [35], requisite for the neoglycosylation reaction optimization in the synthesis of glycosy-
lated 69 (Scheme 22); the yields were mediocre to moderate, likely due to the use of diluted
HCl aqueous solution.
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Similarly, the betulinic derivative 71 [36] and 9-amino doxycycline derivative 73 [37],
suitable substrates for the neoglycosylation reaction, were synthesized from the corre-
sponding oximes in good yields, making use of HCl in ethanol and large excess of BTM
(Scheme 23).
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Scheme 23. Synthesis of N-alkyl-hydroxylamines 71 and 73.

Finally, a new fluorous-tagged hydroxylamine [38], as an ammonia equivalent, was
successfully exploited in the synthesis of itopride, a drug used for the treatment of func-
tional dyspepsia; the work-up step was simplified by fluorous solid-phase extraction
(F-SPE), relative with this strategy (Scheme 24).
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leading to salts with an immonium substructure that can be reduced by BTM similarly to 
the reduction of imines activated with protic acid [2]; reduction of indoles to indolines 
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3.3. Transfer Hydrogenation of Aromatic N-Heterocycles

Several aromatic N-heterocycles can react with protic acid or acylating agents, leading
to salts with an immonium substructure that can be reduced by BTM similarly to the
reduction of imines activated with protic acid [2]; reduction of indoles to indolines was
reported in a previous review [2].

BTM reduced pyridines 76 (Scheme 25), activated by reaction with phenyl chlorofor-
mate, to 1,4 dihydropyridine 77 (majority product) and 1,2 dihydropyridine 78 (minority
product) [39]; the use of triflic anhydride improved the regioselectivity toward dihydropy-
ridine 77 reaching, in the best case, the 99:1 regioselectivity and 76:24 for the worst case.
Substituents in the 4-position completely inverted the selectivity in favor of regioisomer
78. The reaction could also be applied for the synthesis of other N-heterocycles, such as
dihydroquinolines 79, dihydroisoquinolines 80 and benzothiazoline 81, among others.
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Trifluoroacetic acid (TFA), as an acidic activator, offered several opportunities; both in-
doles 82 and quinoxalines 84 [40] were reduced to indolines 83 and tetrahydroquinoxalines
85, respectively, in water as solvent (Scheme 26).
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Tuning the reaction condition and the equivalents of BTM and TFA, as shown in
Scheme 27, to go beyond the reduction, obtaining a different product [41]. A reduced
amount of BTM, increased equivalents of TFA and the use of an aprotic solvent brought
to the N-trifluoroacetylated indolines 86, while the increase of BTM brought to the N-
trifluoroethylated indolines 87, similarly to the reduction, by BTM, of carboxylic acid in the
presence of amines (Section 2.3, Scheme 8).
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The synthetic method was successfully extended to the synthesis of N-trifluoroethylated
tetrahydroquinoline 89 and N-trifluoroethylated tetrahydroquinoxalines 91 (Scheme 28) [42].
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3.4. Selective N-Monomethylation of Primary Anilines

Primary anilines 92 were selectively monomethylated [43] by reaction with BTM and
NaH in DMF (Scheme 29).
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In the proposed reaction mechanism (Scheme 30), the first step is the reaction of
aniline 92 with NaH and DMF obtaining amidine 94 that, likewise, the reduction of imines
by BTM [2], is reduced to aminal 95; subsequent elimination of dimethylamine generated
an imine that is easily reduced to the final product.
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The sources of the hydrogens of the methyl group in monomethyl anilines 93 (in red
and green in Scheme 30) and the easy synthesis of BTM-D3 (Me3N·BD3) by deuterium
exchange in acidic D2O [2] were exploited in the synthesis of products with specific num-
bers of deuterium atoms into the methyl groups (Scheme 31) and excellent deuterium
incorporation ratio, based on which deuterated reagent was used for the reaction.
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4. Reduction of Nitrobenzenes to Anilines

BTM is hydrolytically stable in alcohols, but it can be activated in situ through pal-
ladium catalysis [44], and the reaction can be coupled with the reduction of nitroaryls
94 to anilines 95 (Scheme 32). Measuring the kinetic of the reaction pointed out that the
reduction was faster than hydrogen liberation: BTM acted as hydrogen-transfer reagent
and palladium hydride likely as the transient species; indeed, the reaction was an open
vessel reduction, even performed at reflux, without concomitant loss of hydrogen.
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Credits of the reaction were excellent yield and operationally simple work-up pro-
cedure as both byproducts 96 and 97 were removed by simple concentration, and BTM
surplus was completely consumed by methanolysis.

A practical use of this procedure was the “one pot” multigram synthesis of pyridine
99 (Scheme 33), a key intermediate in the synthesis of quinolone 100, a subtype-selective
GABA-A receptor inverse agonist [45].

Molecules 2024, 29, 2017 13 of 23 
 

 

Credits of the reaction were excellent yield and operationally simple work-up 
procedure as both byproducts 96 and 97 were removed by simple concentration, and BTM 
surplus was completely consumed by methanolysis. 

A practical use of this procedure was the “one pot” multigram synthesis of pyridine 
99 (Scheme 33), a key intermediate in the synthesis of quinolone 100, a subtype-selective 
GABA-A receptor inverse agonist [45]. 

 
Scheme 33. Synthesis of the pyridine 99. 

5. Reductive Deprotection of N-Tritylamines 
BTM reacts with some carbenium ions [11] by hydride abstraction; this reaction was 

exploited for the trapping of trityl cation in the deprotection of N-tritylamines, especially 
for sensitive substrates such as N-tritylaziridine 101 (Scheme 34) [46,47], an intermediate 
in the synthesis of aziridinomitosenes. 

 
Scheme 34. Reductive deprotection of N-tritylamines. 

In addition, the method was tested for the deprotection of the aziridines 103 and 104 
[48] with a low yield in the latter case due to problems with aziridine ring opening; in the 
absence of potential complications, the yields were excellent as for the protected serine 
105 [48] and intermediate 106 in the synthesis of phytosphingosines [49]. 

6. Photocatalytic Difluoromethylation of Unactivated Alkenes 
Ligated boryl radicals, with the general formula LB+-R2B•−, are intermediates in the 

activation of halogenated compounds by a reaction of halogen atom transfer (XAT) owing 
to the nucleophilic character of boryl radicals. Exploiting this process, BTM was utilized 
for the photocatalytic trifluoromethylation [50] of unactivated alkenes 107 by activation of 
Freon-22 108, an inexpensive feedstock, under 456 nm blue LED light irradiation (Scheme 
35). 

Scheme 33. Synthesis of the pyridine 99.

5. Reductive Deprotection of N-Tritylamines

BTM reacts with some carbenium ions [11] by hydride abstraction; this reaction was
exploited for the trapping of trityl cation in the deprotection of N-tritylamines, especially
for sensitive substrates such as N-tritylaziridine 101 (Scheme 34) [46,47], an intermediate in
the synthesis of aziridinomitosenes.
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In addition, the method was tested for the deprotection of the aziridines 103 and
104 [48] with a low yield in the latter case due to problems with aziridine ring opening; in
the absence of potential complications, the yields were excellent as for the protected serine
105 [48] and intermediate 106 in the synthesis of phytosphingosines [49].

6. Photocatalytic Difluoromethylation of Unactivated Alkenes

Ligated boryl radicals, with the general formula LB
+-R2B•−, are intermediates in the

activation of halogenated compounds by a reaction of halogen atom transfer (XAT) owing to
the nucleophilic character of boryl radicals. Exploiting this process, BTM was utilized for the
photocatalytic trifluoromethylation [50] of unactivated alkenes 107 by activation of Freon-22
108, an inexpensive feedstock, under 456 nm blue LED light irradiation (Scheme 35).

Difluoromethylated product 110 is of enormous interest in pharmaceutical and agro-
chemical science owing to the properties of the group CF2H, bioisostere of hydroxyl, thiol,
and amine groups. Alkenes suitable for the reaction protocol were extremely broad with
the limitation of sterically encumbered tetra-substituted alkenes, unreactive, styrenes and
electron-deficient alkenes where the reduction was a competitive reaction. The tolerance of
various functional groups was also proved in the late-stage functionalization of complex
pharmaceutical molecules and natural products; the yields were generally good, with
limited examples with low yields. Supported by experimental and calculation results, the
proposed mechanism of the reaction is shown in Scheme 36.
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Scheme 36. Proposed mechanism of the reaction.

Aryl thiyl radical 116 is generated from disulfide homolysis under blue light irradiation
and subsequently reduced to thiolate 116 by the excited state of 109; the produced oxidized
form 109.+ is reduced back by BTM generating the amine-boryl radical 114 that undergoes
a XAT reaction with Freon-22 108 to generate the transient radical 111. Subsequently, the
intermolecular radical addition with the alkene substrate 107 and the quench of the radical
adduct 113 by thiol 117 completed the reaction.

7. Reductive Cleavage of Acetals

Regioselective cleavage of cyclic acetals in the presence of a Lewis acid is the main
application of BTM in the field of organic synthesis, and it is almost completely related
to carbohydrate chemistry. Carbohydrates protected as 4,6-O-benzylidene acetals were
regioselectively reduced by BTM in the presence of AlCl3 [51–102], forming a free alcohol
at one position and a benzyl ether protection at the other, useful for further modifications;
Scheme 37 shows an example [93].
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eral model compounds, kinetic experiments, 11B NMR spectroscopy, computational calcu-
lations, deuterium labeling, alternative reducing reagents and solvents were used [151–
154], bringing to the proposed mechanism for the reaction in THF, where the Lewis acid 
is complexed to the solvent (Scheme 40). In the first step, BTM is activated by AlCl3, mak-
ing the borane the most electrophilic species and leading to the interaction with the most 
electron-rich oxygen in intermediate 126, whilst the driving force is the formation of the 
highly stabilized AlCl3·NMe3 125; the opening of the acetal is obtained by the action of a 
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Alternative acidic activators were BF3·Et2O [103–118], Me2BBr [119] and methanesul-
fonic acid [120]. Five-membered cyclic benzylidene acetals were suitable reactants for the
synthetic protocol as well [121–134]; Scheme 38 shows a recent example [134].
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Scheme 38. Regioselective cleavage of benzylidene acetal 121.

Acetals 122 (Scheme 39) with R different from the phenyl group allowed us to obtain
the reduced product 123 with a hydroxyl protected with a different protecting group instead
of the benzyl group, allowing more flexibility in the synthesis. Several examples were
reported in the literature for R = pMeOPh (for six [135–138] and five [139] membered cyclic
acetals), 2-naphthyl (for six- [140–145] and five- [146–148] membered cyclic acetals) and
vinyl (five-membered cyclic acetals [149]).
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The reaction was extensively investigated, and an early study [150] showed that the
addition of two equivalents of water to the reaction mixture (four equivalents of BTM
and six equivalents of AlCl3) improved the efficiency of benzylidene reductive cleavage
without the observation of products of benzylidene acetal hydrolysis and rate enhance-
ment of approximately four times. In order to decipher the mechanistic details of the
reaction, several model compounds, kinetic experiments, 11B NMR spectroscopy, computa-
tional calculations, deuterium labeling, alternative reducing reagents and solvents were
used [151–154], bringing to the proposed mechanism for the reaction in THF, where the
Lewis acid is complexed to the solvent (Scheme 40). In the first step, BTM is activated by
AlCl3, making the borane the most electrophilic species and leading to the interaction with
the most electron-rich oxygen in intermediate 126, whilst the driving force is the formation
of the highly stabilized AlCl3·NMe3 125; the opening of the acetal is obtained by the action
of a second Lewis acid molecule with the formation of an oxocarbenium ion 127 as the
rate-controlling step; finally, oxocarbenium ion is then reduced with low stereoselectivity
to give product 128.

The reaction in toluene had different regioselectivity and usually gave low yields due
to degradation. In this case, in the proposed mechanism (Scheme 41), the strongest Lewis
acid is AlCl3, which reacts very fast to give the oxocarbenium ion 130 that is then reduced
by BTM, with low stereoselectivity to give product 131.
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8. Conclusions

In conclusion, BTM has several credits as a reagent in modern organic synthesis. It is
relatively inexpensive, and considering its low molecular weight, it has a low price per mole.
It is a stable solid with a good safety profile linked with its relative inertness. Its reactivity
can be opportunely activated in the reaction medium, generally in the presence of Lewis
or Brønsted acids. BTM undergoes rapid deuterium exchange in acidic D2O, allowing
easy conversion to BTM-D3, an effective reagent for the synthesis of deuterium-labeled
compounds. BTM is very soluble in a wide variety of solvents, offering more versatility in
the reaction options. The tolerance of various functional groups was a well-substantiated
feature of this reagent. The main application of BTM is the regioselective cleavage of
cyclic acetals, a reaction of great importance for carbohydrate chemistry. Carbon–nitrogen
double bond reduction is another class of reactions where the activation by acids plays
an important role in the BTM reactivity. Finally, recent findings in organocatalysis have
contributed to develop some innovative applications of BTM, such as the CO2 utilization
as feedstock and the radical chemistry by photocatalysis.

Funding: This research received no external funding.



Molecules 2024, 29, 2017 17 of 22

Data Availability Statement: Not applicable.

Conflicts of Interest: The author declares no conflicts of interest.

References
1. Lane, C.F. The borane.amine complexes. Aldrichimica Acta 1973, 6, 51–58.
2. Hutchins, R.O.; Learn, K.; Nazer, B.; Pytlewski, D.; Pelter, A. Amine boranes as selective reducing and hydroborating agents. A

review. Org. Prep. Proced. Int. 1984, 16, 335–372. [CrossRef]
3. Carboni, B.; Monnier, B. Recent developments in the chemistry of amine- and phosphine-boranes. Tetrahedron 1999, 55, 1197–1248.

[CrossRef]
4. Matos, K.; Pichlmair, S.; Burkhardt, E.R. Boron reagents for reductive amination. Chim. Oggi 2007, 25, 17–20.
5. Matos, K.; Burkhardt, E.R. Direct reductive amination with amine boranes. In Pharmaceutical Process Chemistry, 1st ed.; Shioiri, T.,

Izawa, K., Konoike, T., Eds.; Wiley: New York, NY, USA, 2010; pp. 127–143. [CrossRef]
6. Sumerin, V.; Chernichenko, K.; Schulz, F.; Lesleka, M.; Rieger, B.; Repo, T. Amine-borane mediated metal-free hydrogen activation

and catalytic hydrogenation. In Frustrated Lewis Pairs I; Erker, G., Douglas, W.S., Eds.; Topics in Current Chemistry; Springer:
Berlin/Heidelberg, Germany, 2012; Volume 332, pp. 111–155. [CrossRef]

7. Lau, S.; Gasperini, D.; Webster, R.L. Amine–boranes as transfer hydrogenation and hydrogenation reagents: A mechanistic
perspective». Angew. Chem. Int. Ed. 2021, 60, 14272–14294. [CrossRef]

8. Faverio, C.; Boselli, M.F.; Medici, F.; Benaglia, M. Ammonia borane as a reducing agent in organic synthesis. Bioinorg. Chem. Appl.
2020, 18, 7789–7813. [CrossRef]

9. Karthikeyan, S.; Sedlak, R.; Hobza, P. On the nature of stabilization in weak, medium, and strong charge-transfer complexes:
CCSD(T)/CBS and SAPT calculations. J. Phys. Chem. A 2011, 115, 9422–9428. [CrossRef]
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