Next Article in Journal
Absorption and Fluorescence Emission Investigations on Supramolecular Assemblies of Tetrakis-(4-sulfonatophenyl)porphyrin and Graphene Quantum Dots
Previous Article in Journal
Total Content and Composition of Phenolic Compounds from Filipendula Genus Plants and Their Potential Health-Promoting Properties
Previous Article in Special Issue
The Perfect Cup? Coffee-Derived Polyphenols and Their Roles in Mitigating Factors Affecting Type 2 Diabetes Pathogenesis
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Review

Polyphenols of the Inuleae-Inulinae and Their Biological Activities: A Review

Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna Street 12, 31-343 Kraków, Poland
*
Author to whom correspondence should be addressed.
Submission received: 25 March 2024 / Revised: 22 April 2024 / Accepted: 24 April 2024 / Published: 27 April 2024
(This article belongs to the Special Issue Natural Polyphenols in Human Health (Volume II))

Abstract

:
Polyphenols are ubiquitous plant metabolites that demonstrate biological activities essential to plant–environment interactions. They are of interest to plant food consumers, as well as to the food, pharmaceutical and cosmetic industry. The class of the plant metabolites comprises both widespread (chlorogenic acids, luteolin, quercetin) and unique compounds of diverse chemical structures but of the common biosynthetic origin. Polyphenols next to sesquiterpenoids are regarded as the major class of the Inuleae-Inulinae metabolites responsible for the pharmacological activity of medicinal plants from the subtribe (Blumea spp., Dittrichia spp., Inula spp., Pulicaria spp. and others). Recent decades have brought a rapid development of molecular and analytical techniques which resulted in better understanding of the taxonomic relationships within the Inuleae tribe and in a plethora of data concerning the chemical constituents of the Inuleae-Inulinae. The current taxonomical classification has introduced changes in the well-established botanical names and rearranged the genera based on molecular plant genetic studies. The newly created chemical data together with the earlier phytochemical studies may provide some complementary information on biochemical relationships within the subtribe. Moreover, they may at least partly explain pharmacological activities of the plant preparations traditionally used in therapy. The current review aimed to systematize the knowledge on the polyphenols of the Inulae-Inulinae.

Graphical Abstract

1. Introduction

The Inuleae-Inulinae subtribe of the Asteraceae encompasses 28 genera and over 400 species of flowering plants. Majority of the species are native to Africa, Asia and the Mediterranean Basin [1]. The biggest genera of the tribe (Blumea, Inula and Pulicaria) that inhabit mainly Africa and Asia (Blumea), or Asia, Africa and Europe (Inula, Pulicaria) have been extensively chemically and pharmacologically studied due to their long history of use as traditional medicines, spices and insecticides [2,3,4,5,6,7,8].
Terpenoids (especially sesquiterpene lactones) and flavonoids are regarded as the active constituents responsible for the numerous biological effects exerted by the preparations from the plants of the Inuleae-Inulinae. A recent review on the cytotoxic activity of sesquiterpenoids and flavonoids from the selected genera of the Asteraceae described the cytotoxic effects demonstrated by the metabolites synthesized by Blumea spp., Carpesium spp. and Inula spp. [9] and emphasized the potent activity of sesquiterpenoids against the cancer cells in vitro. Except for the cytotoxic or antiproliferative action, the preparations from the plants of the subtribe are often investigated for their anti-inflammatory [10,11,12], antidiabetic [13,14,15], antilipidemic [16,17,18], vasorelaxant/antihypertensive [19,20], anti-oxidative stress [21,22,23] and hepatoprotective [24,25,26] activities in vivo. Recently, their efficacy in the prevention of depression-like behavior in rodents has been also explored [27,28]. The results of the studies have suggested that the polyphenolic metabolites are, at least in part, responsible for the observed pharmacological effects.
Flavonoids are the largest and the most extensively studied class of polyphenolics produced by the plants of the Inuleae-Inulinae. Together with hydroxycinnamates and hydroxybenzoates, they are the most frequently reported constituents of the plant infusions and alcoholic extracts. Their structural classification and biosynthesis have been recently summarized in a review paper by Chen and coworkers [29]. Other classes of polyphenolic metabolites from the Inuleae-Inulinae plants, including flavonolignans, lignans, coumarins and other compounds, have been found and characterized much less frequently.
Taxonomic investigations supported by the results of DNA sequencing caused the recent systematic rearrangements within the Inuleae tribe and, consequently, have led to some nomenclatural changes [30,31]. In the current review, the plant names that have the “accepted” status in the WFO database [32] are used. They are not always in accordance with the names commonly found in the literature. A list of the traditionally used plant binominal names and their counterparts that complies with the current classification is shown in Table 1.
The present review is based on the experimental results concerning the isolation and description of polyphenolic constituents from the Inuleae-Inulinae plants, qualitative analysis of the plant extracts using the hyphenated analytical techniques and pharmacological in vitro and in vivo studies on isolated polyphenolic plant metabolites that were published before January 2024 in the journals covered by two databases: Web of Science and Scopus. The majority of the papers that dealt with the polar (aqueous or alcoholic) extracts from the Inulae-Inulinae plants described their in vitro antioxidant and radical scavenging effects with the use of simple colorimetric assays. A large part of the literature contains either very limited or no chemical data on polyphenolic constituents of the investigated plant material. The chemical examination of the plant preparations is often limited to the ”total phenolics”, ”total tannins” and ”total flavonoids” assessments that are based on simple but rough spectrophotometric methods. This part of the literature is not covered by the current review.

2. Polyphenolic Metabolites of Inuleae-Inulinae

Flavonoids and derivatives of hydroxycinnamic acids are two classes of polyphenolic compounds that are common in Inuleae-Inulinae. They are often identified as the active constituents of plant extracts used in the traditional medicine. The most popular representatives of the group of plant constituents (quercetin, kaempferol, luteolin, chlorogenic acids) are widespread in the plant kingdom and are ubiquitous components of the human diet. Their putative role in the prevention of neurodegenerative and lifestyle diseases is still debatable but has found support in recent research [33,34,35] including clinical trials [36]. A substantial increase in a number of publications devoted to polyphenolics of Inuleae-Inulinae has taken place in the last decade. Application of the modern hyphenated analytical techniques speeded up the process of revealing the polyphenolic constituents present in the formerly uninvestigated or poorly described plant species. The techniques, however, have their limitations. Except for the well-studied plant metabolites of known mass fragmentation patterns, compound identification using different variants of high-performance liquid chromatography–mass spectrometry (HPLC-MS) is often incomplete (or doubtful). Likewise, the results obtained with simple chromatographic analytical techniques, like thin-layer chromatography (TLC) or HPLC with single wavelength detection, should be treated with caution, unless they are properly verified.
In addition to flavonoids of different structural types and hydroxycinnamic acid derivatives (with the best-known chlorogenic acids) the plants of the Inuleae-Inulinae subtribe accumulate flavonolignans, lignans, stilbenoids, coumarins and other phenolic constituents (see Figure 1) which, although not abundant, may contribute to the biological activity of the parent plant.

2.1. Structural Diversity of Flavonoids

Data in the literature on the flavonoids from the Inulae sensu lato, published until the beginning of the current century, have been summarized by Bohm and coworkers [37] in Chapter 12 of their comprehensive work: “Flavonoids of the Sunflower Family (Asteraceae)”. Since then, however, a large amount of data has been published and some changes in the taxonomic classification within the Inuleae tribe have been introduced. Flavonoids, next to sesquiterpenoids, have been the most often studied metabolites of the plants included in the tribe. Their structural diversity, particularly noticeable in such genera as Blumea and Dittrichia, along with their occurrence and distribution in the species of Inuleae-Inulinae has been summarized in Table 2, Table 3, Table 4 and Table 5. Dihydroderivatives of flavones (flavanones: naringenin, eriodictyol, hesperetin) and flavonols (flavanonols: taxifolin, aromadendrin), as well as the flavonoids oxygenated at C-6 of the A ring, seem to be characteristic of the described plant genera. The presence of multiple polymethoxylated flavonols, derivatives of quercetin and quercetagetin in the plants of the subtribe has also been frequently reported.

2.1.1. Flavones of the Inuleae-Inulinae

Apigenin and luteolin derivatives are the most frequently detected flavones in the plants of the subtribe. Chrysin, the flavone with the unsubstituted B ring and flavones with the substituents at C-3′, C-4′ and C-5′ (like tricin) are much less common (Table 2).
Table 2. Flavones of the Inuleae-Inulinae.
Table 2. Flavones of the Inuleae-Inulinae.
Trivial Name of the CompoundSubstitution PatternPlant SpeciesReference
Chrysin (CID: 5281607)
Synonyms: Chrysine; Crysin
5,7-DihydroxyflavoneChiliadenus glutinosus
Inula helenium; I. inuloides
[38]
[39,40]
Chrysin 5-methyl ether
(CID: 5490127)
7-Hydroxy-5-methoxyflavoneRhanterium adpressum[41]
(CID: 5282073)7,4′-DihydroxyflavoneInula salsoloides[42]
Apigenin (CID: 5280443)
Synonyms: Versulin; Apigenol; Chamomile; Spigenin
5,7,4′-TrihydroxyflavoneAsteriscus aquaticus; A. graveolens
Blumea riparia
Dittrichia viscosa
Duhaldea cappa
Inula anatolica; I. aucheriana; I. discoidea; I. inuloides; I. japonica; I. peacockiana; I. salsoloides; I. sarana; I. sechmenii; I. thapsoides; I. viscidula
Pallenis hierochuntica; P. spinosa
Pentanema aschersonianum; P. britannicum; P. ensifolium; P. mariae; P. oculus-christi; P. salicinum; P. spiraeifolium
Rhanterium suaveolens
Telekia speciosa
[43,44]
[45]
[46,47]
[48,49]
[40,42,50,51,52,53]



[54,55]
[40,56,57,58,59]


[60,61]
[62]
Apigenin 7-O-glucoside (CID: 5280704)
Synonyms: Apigetrin; Cosmosiin
Blumea riparia
Carpesium faberi
Chrysophthalmum montanum
Duhaldea cappa; D. cuspidata
Inula anatolica; I. aucheriana; I. discoidea; I. inuloides; I. peacockiana; I. rhizocephala; I. royleana; I. sechmenii; I. stewartii; I. thapsoides; I. viscidula
Pallenis hierochuntica
Pentanema britannicum; P. mariae; P. oculus-christi
Pulicaria undulata
Rhanterium suaveolens
Telekia speciosa
Vicoa divaricata; Vicoa indica
[45]
[63]
[64]
[65,66]
[40,65]



[54]
[40]

[67]
[60]
[62]
[65]
Apigenin 5-O-glucoside (CID: 14730805)
Synonym: Salipurpin
Duhaldea cappa[68]
Apigenin glucoside Dittrichia viscosa
Pallenis spinosa
[69]
[55]
Apigenin glucoside malonate Dittrichia viscosa[70]
Apigenin 7-O-glucuronide (CID: 5319484)
Synonym: Scutellarin A
Inula japonica[71]
Apigenin O-hexuronide Telekia speciosa[62]
Apigenin dihexoside Pulicaria vulgaris[72]
Apigenin 8-C-glucoside
(CID: 5280441)
Synonym: Vitexin
Asteriscus graveolens
Duhaldea cappa; D. cuspidata; D. eupatorioides
Limbarda crithmoides
[44]
[65]

[73]
Apigenin 8-C-rhamnosylglucosyl Inula clarkei; I. koelzii; I. obtusifolia; I. rhizocephala; I. royleana[65]
Apigenin 6-C-glucoside (CID: 162350)
Synonyms: Isovitexin; Saponaretin; Homovitexin
Asteriscus graveolens
Duhaldea cappa; D. cuspidata; D. nervosa
[44]
[65,74]
Apigenin 6,8-di-C-glucoside (CID: 3084407)
Synonyms: Vicenin-2; Violantin
Chiliadenus glutinosus
Iphiona mucronata.
[75]
[76]
Apigenin 6-C-pentoside-8-C-hexoside Iphiona mucronata[76]
Apigenin 7-methyl ether (CID: 5281617)
Synonym: Genkwanin
5,4′-Dihydroxy-7-methoxyflavoneAsteriscus aquaticus
Dittrichia viscosa
[43]
[46,77]
Apigenin 4′-methyl ether (CID: 5280442)
Synonym: Acacetin
5,7-Dihydroxy-4′-methoxyflavoneDuhaldea cappa
Inula anatolica; I. peacockiana; I. salsoloides; I. sechmenii
Pentanema oculus-christi
Telekia speciosa
[78]
[40,42]

[40]
[62]
Apigenin 7,4′-dimethyl ether (CID: 5281601)5-Hydroxy-7,4′-dimethoxyflavoneDuhaldea nervosa[79]
6-Hydroxyapigenin (CID: 5281697)
Synonym: Scutellarein
5,6,7,4′-TetrahydroxyflavoneAnvillea garcinii
Dittrichia graveolens
Inula acuminata; I. japonica
Pentanema britannicum; P. caspicum
Pulicaria dysenterica
[80]
[65]
[52,65]
[65]
[81]
Scutellarein 7-methyl ether (CID: 3084390)
Synonym: Sorbifolin
5,6,4′-Trihydroxy-7-methoxyflavonePulicaria armena; P. vulgaris[82,83,84]
Ladanein (CID: 3084066)
Synonym: Scutellarein 7,4′-dimethyl ether
5,6-Dihydroxy-7,4′-dimethoxyflavonePulicaria paludosa; P. vulgaris[84,85]
Hispidulin (CID: 5281628)
Synonyms: Dinatin; Scutellarein 6-methyl ether; 6-Methoxyapigenin
5,7,4′-Trihydroxy-6-methoxyflavoneAnvillea garcinii subsp. radiata
Dittrichia graveolens; D. viscosa
Inula sarana
Iphiona grantioides; I. mucronata
Pentanema aschersonianum; P. britannicum; P. germanicum; P. montanum; P. oculus-christi
Pulicaria insignis; P. paludosa; P. vulgaris
Telekia speciosa
[86]
[46,47,87]
[53]
[76,88]
[56,57,89,90,91,92,93]


[94,95]
[62]
Hispidulin 7-sulfate (CID: 13831736) Iphiona scabra[96]
Hispidulin 7-O-glucoside (CID: 44258433) Pentanema britannicum; P. montanum[92,97]
Hispidulin hexoside Dittrichia viscosa[98]
Cirsimaritin (CID: 188323)
Synonyms: Scrophulein; Skrofulein; 7-Methylcapillarisin; 6-Methoxygenkwanin
5,4′-Dihydroxy-6,7-dimethoxyflavoneDittrichia viscosa
Inula sarana
Pentanema britannicum; P. montanum
Rhanterium adpressum
[99]
[53]
[57,92]
[41]
Cirsimaritin derivative Dittrichia viscosa[77]
Pectolinarigenin (CID: 5320438)
Synonyms: Scutellarein 6,4′-dimethyl ether; 6-Methoxyacacetin
5,7-Dihydroxy-6,4′-dimethoxyflavoneBlumea lacera[100]
Scutellarein dimethyl ether Pulicaria paludosa[95]
Salvigenin (CID: 161271)
Synonym: Scutellarein 6,7,4′-trimethyl ether
5-Hydroxy-6,7,4′-trimethoxyflavoneIphiona grantioides; I. mucronata; I. scabra
Pulicaria undulata
[76,88,96]
[101]
(CID: 44259724)5,6-Dihydroxy-3,7-dimethoxyflavonePentanema britannicum[102]
(CID 5322076)5,7,2′-Trihydroxy-6-methoxyflavoneChiliadenus glutinosus[38]
Grantionin (CID: 14861188)7-Hydroxy-6,3′,5′-trimethoxyflavoneIphiona grantioides[103]
Luteolin (CID: 5280445) Synonyms: Flacitran; Luteoline5,7,3′,4′-TetrahydroxyflavoneAsteriscus aquaticus; A. graveolens
Blumea aromatica; B. balsamifera; B. megacephala (Randeria); B. riparia
Carpesium faberi
Chiliadenus candicans; C. glutinosus
Dittrichia viscosa
Duhaldea cappa; D. nervosa; D. wissmanniana
Inula anatolica; I. aucheriana; I. discoidea; I grandiflora; I helenium; I. inuloides; I. japonica; I. montbretiana; I. peacockiana; I. salsoloides; I. sarana; I. sechmenii; I. thapsoides; I. viscidula
Pallenis hierochuntica
Pentanema aschersonianum; P. britannicum; P. mariae; P. montanum; P. oculus-christi
Pulicaria armena; P. gnaphalodes; P. incisa; P. salviifolia; P. schimperi; P. undulata; P. vulgaris
Rhanterium suaveolens Desf
Telekia speciosa (Schreb.) Baumg.
[43,44]
[45,104,105,106,107,108]

[63]
[38,109]
[47,110]
[48,111,112,113]

[40,42,50,51,53,114,115,116]




[54]
[40,43,56,57,59,90]


[82,117,118,119,120,121]


[60,61]
[62]
Luteolin 7-O-glucoside (CID: 5280637)
Synonym: Cynaroside
Asteriscus graveolens
Blumea megacephala (Randeria); Blumea riparia
Buphthalmum salicifolium
Carpesium cernuum
Duhaldea cappa
Inula anatolica; I. aucheriana; I. discoidea; I. helenium; I. inuloides; I. peacockiana; I. sarana; I. sechmenii; I. thapsoides; I. viscidula
Pallenis hierochuntica
Pentanema aschersonianum; P. britannicum; P. mariae; P. oculus-christi; P. orientale
Rhanterium suaveolens
Telekia speciosa

[122]
[45,123]

[124]
[125]
[126]
[39,40,53]



[54]
[40,56,65,127]


[60,61]
[62,128]
Caffeoyl cynaroside Blumea megacephala; B. riparia[123]
Luteolin malonyl-glucoside Pulicaria dysenterica[129]
Luteolin 7-O-glucuronide
(CID: 5280601)
Blumea megacephala (Randeria); B. riparia[123]
Luteolin O-hexuronide Telekia speciosa[62]
Luteolin 7-O-glucuronide ethyl ester Duhaldea cappa[66]
Luteolin O-acetylhexoside Pulicaria undulata[130]
Luteolin 7-O-rutinoside
(CID: 10461109)
Synonym: Scolimoside
Duhaldea cappa[66]
Luteolin 7-O-rutinoside/neohesperidoside Inula sarana[53]
Luteolin-3′-O-glucoside (CID: 12309350)
Synonym: Dracocephaloside
Duhaldea cappa[49]
Luteolin 4′-O-glucoside (CID: 5319116) Blumea sinuate; B. balsamifera
Duhaldea cappa
Pallenis hierochuntica
[131,132]
[68]
[54]
Luteolin 8-C-glucoside (CID: 5281675)
Synonym: Orientin
Asteriscus graveolens[44]
Luteolin 6-C-glucoside (CID: 114776)
Synonym: Isoorientin; Homoorientin
Asteriscus graveolens
Dittrichia viscosa
Duhaldea cappa; D. cuspidata
Inula clarkei; I. koelzii; I. racemosa; I. royleana; I. stewartii
[44]
[69]
[65]
[65]
Luteolin 7,4′-diglucoside (CID: 14769208) Pallenis hierochuntica[54]
Luteolin 7-methyl ether (CID: 5318214)
Synonym: Hydroxygenkwanin
Blumea balsamifera
Duhaldea nervosa
Pallenis hierochuntica
[105,106,133]
[112]
[54]
Chrysoeriol (CID: 5280666)
Synonyms: Luteolin 3′-methyl ether; 3′-Methoxyapigenin; 3′-O-Methylluteolin
5,7,4′-Trihydroxy-3′-methoxyflavoneBlumea aromatica; B. balsamifera; B. megacephala (Randeria); B. riparia
Dittrichia viscosa
Duhaldea cappa
Inula japonica; I. sarana
Pentanema aschersonianum; P. britannicum
Pulicaria incisa
Telekia speciosa
[104,108,123,134]

[135]
[68]
[53,116]
[56,57]

[25]
[62]
Chrysoeriol 7-O-glucoside (CID: 11294177)
Synonym: Thermopsoside
Blumea megacephala; B. riparia[123]
Caffeoyl thermopsoside Blumea megacephala; B. riparia[123]
Chrysoeriol 4′-O-glucoside Duhaldea cappa[68]
Chrysoeriol O-hexoside Inula sarana
Pulicaria undulata
[53]
[130]
Diosmetin (CID: 5281612)
Synonym: Luteolin 4′-methyl ether
5,7,3′-Trihydroxy-4′-methoxyflavoneBlumea balsamifera; B. megacephala
Dittrichia viscosa
Duhaldea cappa
Inula japonica
[108,136]
[77]
[78]
[116]
Diosmetin 7-rhamnoglucoside CID: 5281613)
Synonym: Diosmin
Anvillea garcinii subsp. radiata[137]
Luteolin 5-methyl ether (CID: 13964550) Inula salsoloides[42]
Velutin (CID: 5464381) Synonym: Luteolin 7,3′-dimethyl ether5,4′-Dihydroxy-7,3′-dimethoxyflavoneBlumea aromatica; B. balsamifera; B. lacera[100,105,133,138]
Luteolin 7,3′,4′-trimethyl ether5-Hydroxy-7,3′,4′-trimethoxyflavoneBlumea aromatica
Pulicaria salviifolia
[104,138]
[119]
(CID: 5487757)5,7,3′,5′-TetrahydroxyflavoneInula salsoloides[42]
8-Methoxyluteolin (CID: 5316843)
Synonym: Onopordin
5,7,3′,4′-Tetrahydroxy-8-methoxyflavoneInula japonica[51]
6-Hydroxyluteolin (CID: 5281642)5,6,7,3′,4′-PentahydroxyflavoneAnvillea garcinii
Pulicaria paludosa
[80]
[95]
Hydroxyluteolin hexoside Dittrichia viscosa[139]
Pedalitin (CID: 31161)
Synonym: 6-Hydroxyluteolin 7-methyl ether
5,6,3′,4′-Tetrahydroxy-7-methoxyflavonePulicaria paludosa[95]
6-Hydroxyluteolin 7,3′-dimethyl ether (CID: 10359254)5,6,4′-Trihydroxy-7,3′-dimethoxyflavoneBlumea lacera
Pulicaria vulgaris
Vicoa indica
[100]
[84]
[140,141]
6-Hydroxyluteolin 7,4′-dimethyl ether5,6,3′-Trihydroxy-7,4′-dimethoxyflavonePulicaria armena[82]
6-Hydroxyluteolin trimethyl ether Pulicaria paludosa[95]
6-Methoxyluteolin (CID: 5317284)
Synonyms: Nepetin; Eupafolin
5,7,3′,4′-Tetrahydroxy-6-methoxyflavoneAnvillea garcinii subsp. radiata
Dittrichia viscosa
Duhaldea nervosa
Inula japonica; I. sarana
Pentanema aschersonianum; P. britannicum; P. germanicum; P. montanum; P. salicinum
Pulicaria insignis; P. paludosa
Telekia speciosa
[86]
[47,77]
[111]
[51,53,116]
[43,56,57,90,92]


[94,95]
[62]
6-Methoxyluteolin hexoside Anvillea garcinii subsp. radiata
Telekia speciosa
[142]
[62]
6-Methoxyluteolin O-glucoside Anvillea garcinii subsp. radiata
Inula sarana
[142]
[53]
6-Methoxyluteolin 7-O-glucoside (CID: 120742)
Synonym: Nepitrin
Blumea megacephala; B. riparia
Inula japonica
Pentanema aschersonianum; P. britannicum; P. montanum
[45,123]
[51]
[56,92,97]
6-Methoxyluteolin O-rutinoside Inula sarana[53]
Jaceosidin (CID: 5379096)
Synonym: 6-Methoxyluteolin 3′-methyl ether
5,7,4′-Trihydroxy-6,3′-dimethoxyflavoneAnvillea garcinii subsp. radiata
Dittrichia viscosa
Inula sarana
Pentanema germanicum
[86,143]
[70]
[53]
[57]
Jaceoside (CID: 11179379)
Synonym: Jaceosidin 7-O-glucoside
Pentanema montanum
Telekia speciosa
[92]
[62]
Demethoxycentaureidin (CID: 5469524)
Synonyms: Desmethoxycentaureidin; 6-Methoxyluteolin 4′-methyl ether
5,7,3′-Trihydroxy-6,4′-dimethoxyflavoneBlumea lacera[100]
Cirsiliol (CID: 160237)
Synonym: 6-Methoxyluteolin 7-methyl ether
5,3′,4′-Trihydroxy-6,7-dimethoxyflavoneDittrichia viscosa
Inula sarana
Pentanema britannicum
[77]
[53]
[57]
Cirsiliol O-hexoside Inula sarana[53]
Cirsilineol (CID: 162464)
Synonyms: Eupatrin; Fastigenin
5,4′-Dihydroxy-6,7,3′-trimethoxyflavoneBlumea lacera[100,144]
Eupatilin (CID: 5273755)
Synonym: 6-Methoxyluteolin 3′,4′-dimethyl ether
5,7-Dihydroxy-6,3′,4′-trimethoxyflavoneBlumea lacera
Inula sarana
Pentanema britannicum
Pulicaria dysenterica
[100]
[53]
[57]
[129]
Sinensetin (CID: 145659)
Synonym: 6-Methoxyluteolin tetramethyl ether
5,6,7,3′,4′-PentamethoxyflavonePulicaria paludosa; P. sicula[95]
Xanthomicrol (CID: 73207)5,4′-Dihydroxy-6,7,8-trimethoxyflavoneChiliadenus iphionoides[145,146]
Tricin (CID: 5281702)5,7,4′-Trihydroxy-3′,5′-dimethoxyflavoneBlumea megacephala; B. riparia
Inula helenium
Pallenis spinosa
Pulicaria incisa
[45,123]
[147]
[148]
[25]
Tricin 7-O-glucoside (CID: 5322022) Blumea riparia
Pallenis spinosa
[45]
[148,149]
Tricin 7-O-malonylglucoside Blumea megacephala; B. riparia[123]
Tricin 5-O-glucoside (CID: 49800176) Iphiona aucheri; I. grantioides
Pallenis spinosa
[65]
[149]
Tricin O-hexoside Iphiona mucronata[76]
Feruloyl tricin Blumea megacephala; B. riparia[123]
Salcolin A (CID: 21575482)
Synonym: Tricin 4′-O-(threo-beta-guaiacylglyceryl) ether
Blumea megacephala; B. riparia[123]
Ageconyflavone C (CID: 44258535)4′-Hydroxy-5,6,7,3′,5′-pentamethoxyflavoneBlumea fistulosa[150]
CID: 1856705,6,7,3′,4′,5′-HexamethoxyflavoneBlumea fistulosa[150]
Nobiletin (CID: 72344)5,6,7,8,3′,4′-HexamethoxyflavoneBlumea fistulosa[150]
5′-Methoxynobiletin (CID: 72815)5,6,7,8,3′,4′,5′-HeptamethoxyflavoneBlumea fistulosa[150]
5,6,7,8,5′-Pentamethoxy-3′,4′-methylenedioxyflavoneBlumea fistulosa[150]
Flavone dimers
Amentoflavone 7,4′,4′′′-trimethyl ether (CID: 5281696)
Synonym: Sciadopitysin
BiflavonBlumea balsamifera[151]
3-O-7″-BiluteolinBiflavonBlumea balsamifera[152]
As can be seen in the table above, flavone dimers amentoflavone 7,4′,4′′′-trimethyl ether and 3-O-7″-biluteolin (Figure 2) were found solely in Blumea balsamifera [151,152]. Plants of the genera Asteriscus, Chiliadenus, Dittrichia, Duhaldea, Inula, Iphiona and Limbarda were found to synthesize flavone C-glycosides [44,65,69,73,74,75,76]. Nobiletin and its derivatives from B. fistulosa [150] and xanthomicrol from C. iphionoides [145,146] are the examples of the rare C-8 methoxylated flavones.

2.1.2. Flavonols of the Inuleae-Inulinae

Flavonols are the most numerous subclass of flavonoids synthesized by the Inuleae-Inulinae. Except for the most frequently found kaempferol and quercetin derivatives, the methyl ethers and glycosides of 6-hydroxykaempferol and 6-hydroxyquercetin (quercetagetin) were often isolated from the plants of the subtribe (see Table 3).
Table 3. Flavonols from the Inuleae-Inulinae.
Table 3. Flavonols from the Inuleae-Inulinae.
Trivial Name of the CompoundSubstitution PatternPlant SpeciesReference
Galangin (CID: 5281616)3,5,7-TrihydroxyflavoneLimbarda crithmoides[153]
Kaempferol (CID: 5280863)
Synonyms: Robigenin; Kaempherol; Kempferol; Populnetin; Rhamnolutein; Trifolitin
3,5,7,4′-TetrahydroxyflavoneAsteriscus aquaticus
Blumea aromatica; B. lacera; B. sinuata
Chiliadenus glutinosus; C. iphionoides
Chrysophthalmum montanum
Dittrichia graveolens; D. viscosa
Duhaldea nervosa
Inula anatolica; I. aucheriana; I. discoidea; I. helenium; I. inuloides; I. japonica; I. peacockiana; I. salsoloides; I. sarana; I. sechmenii; I. thapsoides; I. viscidula
Pallenis spinosa
Pentanema britannicum; P. mariae; P. oculus-christi
Pulicaria arabica; P. dysenterica; P. gnaphalodes; P. incisa; P. jaubertii; P. vulgaris
Rhanterium suaveolens
Telekia speciosa
[43]
[138,154]
[11,155]
[64]
[87,99]
[111]
[40,42,53,115,116,156,157]



[55,149]
[40,59,97]

[57,117,121,130,158,159,160,161]


[61]
[62]
Kaempferol 3-O-glucoside (CID: 5282102)
Synonym: Astragalin
Anvillea garcinii
Asteriscus graveolens
Buphthalmum salicifolium; B. speciosissimum
Carpesium cernuum
Chiliadenus glutinosus
Inula anatolica; I. aucheriana; I. discoidea; I. inuloides; I. peacockiana; I. sarana; I. sechmenii; I. thapsoides; I. viscidula
Pentanema britannicum; P. mariae
Pulicaria jaubertii; P. undulata
[162]
[122]
[124,163]

[125]
[38]
[40,53]


[40,97]
[160,164]
Kaempferol-3-O-(6″-O-acetyl)-glucoside (CID: 10435673)
Synonyms: 6″-O-Acetylastragalin; Kaempferol 3-O-acetyl-glucoside
Chiliadenus montanus[165,166]
Kaempferol 3-O-galactoside (CID: 5282149)
Synonyms: Trifolin; Trifolioside
Asteriscus graveolens
Pulicaria dysenterica; P. incisa; P. schimperi
[122]
[118,167,168]
Kaempferol 3-O-glucuronide (CID: 5318759) Chiliadenus glutinosus
Dittrichia viscosa
Telekia speciosa
[169]
[170]
[62]
Kaempferol 7-O-glucoside (CID: 10095180) Anvillea garcinii
Asteriscus graveolens
[162,171]
[122]
Kaempferol 3-O-pentoside Dittrichia viscosa[172]
Kaempferol O-pentoside Dittrichia viscosa[173]
Kaempferol 3-O-hexoside Iphiona mucronata[76]
Kaempferol O-hexoside Dittrichia viscosa[170,173]
Kaempferol O-(acetyl)-hexoside Dittrichia viscosa[172]
Kaempferol 3-O-(caffeoyl)-hexoside Dittrichia viscosa[172]
Kaempferol O-(p-coumaroyl)-hexoside Dittrichia viscosa[172]
Kaempferol O-(feruloyl)-hexoside Dittrichia viscosa[172]
Kaempferol 7-O-hexoside Dittrichia viscosa[172]
Kaempferol O-p-coumaroyl-O-hexoside Dittrichia viscosa[172]
Kaempferol 3-O-rutinoside (CID: 5318767)
Synonyms: Nicotiflorin; Nictoflorin; Nicotifloroside
Anvillea garcinii
Carpesium cernuum
Chiliadenus glutinosus
Dittrichia viscosa
Duhaldea nervosa
Inula anatolica; I. aucheriana; I. discoidea; I. inuloides; I. peacockiana; I. sarana; I. sechmenii; I. thapsoides; I. viscidula
Pentanema britannicum; P. mariae
Pulicaria undulata
Rhanterium suaveolens
[171]
[125]
[75]
[99]
[111]
[40,53]


[40]
[120]
[60]
Kaempferol 7-O-neohesperidoside Duhaldea nervosa[74]
Kaempferol 7-O-dipentoside Inula helenium; I. racemosa[21,174]
Kaempferol 3-O-rutinoside 7-O-glucuronide Dittrichia graveolens
Inula clarkei; I. obtusifolia
[65]
Kaempferol 3-O-sophoroside 7-O-rhamnoside Pentanema orientale[65]
Kaempferol 3-O-sophorotrioside 7-O-rhamnoside Dittrichia graveolens
Inula acuminata; I. koelzii; I. racemosa; I. royleana; I. stewartii
Pentanema caspicum
Vicoa glanduligera; V. divaricata
[65]
[65]

[65]
[65]
Kaempferol 3-O-lathyroside 7-O-rhamnoside Pentanema britannicum; P. orientale[65]
Isokaempferide (CID: 5280862)
Synonym: Kaempferol 3-methyl ether
5,7,4′-Trihydroxy-3-methoxyflavoneAllagopappus viscosissimus
Chiliadenus candicans; C. iphionoides
Dittrichia graveolens; D. viscosa
Inula hookeri
Pallenis spinosa
Pulicaria arabica; P. dysenterica; P. incisa; P. insignis; P. jaubertii; P. undulata
[175]
[109,176,177]
[46,47,87]
[178]
[149]
[57,94,158,159,168,179]
Kaempferol 3-methyl ether 6-O-glucoside Pulicaria dysenterica[81]
Kaempferide (CID: 5281666)
Synonym: Kaempferol 4′-methyl ether
3,5,7-Trihydroxy-4′-methoxyflavoneBlumea balsamifera
Dittrichia viscosa
Pentanema conyzae
[134]
[180]
[43]
Rhamnocitrin (CID: 5320946)
Synonym: Kaempferol 7-methyl ether
3,5,4′-Trihydroxy-7-methoxyflavoneBlumea riparia
Dittrichia viscosa
[181]
[46,47]
Kumatakenin (CID: 5318869)
Synonym: Kaempferol 3,7-dimethyl ether
Chiliadenus iphionoides
Pulicaria arabica; P. jaubertii
[145,146,176]
[158,159]
6-Hydroxykaempferol (CID: 5281638)3,5,6,7,4′-Pentahydroxyflavone
6-Hydroxykaempferol 3-sulfate Pentanema britannicum[182]
6-Hydroxykaempferol 7-O-glucoside (CID: 44259740) Buphthalmum salicifolium; B. speciosissimum[124,163]
6-Hydroxykaempferol 3-methyl ether 6-O-glucoside (CID: 44259742) Pulicaria undulata[183]
6-Hydroxykaempferol 3-methyl ether 6-O-glucosyl-(1->6)-glucoside Pulicaria undulata[183]
6-Hydroxykaempferol 3,7-dimethyl ether (CID: 13983730)5,6,4′-Trihydroxy-3,7-dimethoxyflavoneInula grandis
Pentanema montanum
Pulicaria dysenterica; P. inuloides
[184]
[90,92]
[57,81,185,186]
6-Hydroxykaempferol 7,4′-dimethyl ether3,5,6-Trihydroxy-7,4′-dimethoxyflavonePulicaria dysenterica[187]
6-Hydroxykaempferol 3,5,7-trimethyl ether (CID: 14376219)6,4′-Dihydroxy-3,5,7-trimethoxyflavoneChiliadenus candicans[109]
6-Hydroxykaempferol 3,7,4′-trimethyl ether (CID: 10043097)
Synonym: Tanetin
5,6-Dihydroxy-3,7,4′-trimethoxyflavonePentanema conyzae
Pulicaria dysenterica; P. odora
[43]
[95,187]
Hydroxykaempferol trimethyl ether Pulicaria vulgaris[72]
Hydroxykaempferol tetramethyl ether Pulicaria vulgaris[72]
6-Methoxykaempferol (CID: 5377945)3,5,7,4′-Tetrahydroxy-6-methoxyflavoneDittrichia viscosa
Inula sarana
Pulicaria odora; P. undulata
Telekia speciosa
[47]
[53]
[95,183,188]
[43,62]
6-Methoxykaempferol 3-O-glucoside (CID: 44259734) Anvillea garcinii subsp. radiata
Blumea lacera
Pulicaria undulata
[86]
[100]
[183]
6-Methoxykaempferol 7-O-glucoside (CID: 44259747) Pulicaria odora[95]
6-Methoxykaempferol 3-O-galactoside (CID: 44259725) Anvillea garcinii[80]
6-Methoxykaempferol 3-O-rhamnoglucoside Anvillea garcinii[80]
6-Methoxykaempferol 3-O-galactoside 7-methyl ether Anvillea garcinii[80]
Eupalitin (CID: 5748611)
Synonym: 6-Methoxykaempferol 7-methyl ether
3,5,4′-Trihydrox-6,7-dimethoxyflavonePulicaria dysenterica[129]
6-Methoxykaempferol 4′-methyl ether (CID: 5459196)
Synonym: Betuletol
3,5,7-Trihydroxy-6,4′-dimethoxyflavonePentanema conyzae[43]
6-Methoxykaempferol 3-methyl ether (CID: 5352032)
Synonym: 3,6-Dimethoxyapigenin
5,7,4′-Trihydroxy-3,6-dimethoxyflavoneChiliadenus candicans; C. iphionoides
Dittrichia graveolens
Pulicaria insignis; P. paludosa
Telekia speciosa
[109,176,177]
[87]
[85,94]
[43]
6-Methoxykaempferol 3,7-dimethyl ether (CID: 5320462)
Synonym: Penduletin
5,4′-Dihydroxy-3,6,7-trimethoxyflavoneChiliadenus candicans; C. montanus; C. iphionoides
Duhaldea wissmanniana
Pentanema spiraeifolium
Pulicaria dysenterica
[109,176,177,189,190]

[113]
[43]
[81]
6-Methoxykaempferol 3,4′-dimethyl ether (CID: 5281695)
Synonym: Santin
5,7-Dihydroxy-3,6,4′-trimethoxyflavonePulicaria insignis[94]
6-Methoxykaempferol 7,4′-dimethyl ether (CID: 15560536)
Synonym: Mikanin
3,5-Dihydroxy-6,7,4′-trimethoxyflavonePentanema conyzae[43]
Mikanin 3-O-galactoside (CID: 44259729) Anvillea garcinii[80]
6-Methoxykaempferol 3,7,4′-trimethyl ether
(CID: 5318355)
Synonym: Penduletin 4′-methyl ether
5-Hydroxy-3,6,7,4′-tetramethoxyflavoneBlumea malcolmii
Iphiona scabra
Pentanema conyzae
Pulicaria odora; P. sicula
[191]
[96]
[43]
[43,95]
6-Methoxykaempferol 3,5,7-trimethyl ether (CID: 13983731)4′-Hydroxy-3,5,6,7-tetramethoxyflavoneChiliadenus iphionoides[177]
6-Methoxykaempferol 3,5,7,4′-tetramethyl ether (CID: 521171)3,5,6,7,4′-PentamethoxyflavoneChiliadenus montanus; C. iphionoides
Pulicaria odora
[177,192]
[95]
3,6,8-Trihydroxy-7,4′-dimethoxyflavonePulicaria paludosa[85]
(CID: 44258717)3,5,2′-Trihydroxy-7,5′-dimethoxyflavoneBlumea balsamifera[193]
Quercetin (CID: 5280343
Synonyms: Meletin; Sophoretin; Quercetine; Xanthaurine; Quercetol; Quertine
3,5,7,3′,4′-PentahydroxyflavoneAnvillea garcinii subsp. radiata
Asteriscus graveolens
Blumea aromatica; B. balsamifera; B. lacera; B. megacephala; B. riparia; B. sinuata
Chiliadenus glutinosus; C. iphionoides; C. montanus
Chrysophthalmum montanum
Dittrichia graveolens; D. viscosa
Duhaldea nervosa
Inula anatolica; I. aucheriana; I. discoidea; I. grandiflora; I. helenium; I. inuloides; I. japonica; I. montbretiana; I. obtusifolia; I. peacockiana; I. racemosa; I. sarana; I. sechmenii; I. thapsoides; I. viscidula
Limbarda crithmoides
Pallenis hierochuntica; P. spinosa
Pentanema britannicum; P. conyzae; P. mariae; P. oculus-christi
Pulicaria arabica; P. armena; P. dysenterica; P. gnaphalodes; P. incisa; P. jaubertii; P. salviifolia; P. schimperi; P. sicula; P. undulata; P. vulgaris
Rhanterium adpressum; R. suaveolens
Telekia speciosa
Vicoa glanduligera
[194]
[122]
[104,105,106,107,108,154,195,196]

[11,75,155,190,197]

[64]
[180,198,199,200]
[201]
[40,51,53,65,114,115,116,202,203,204]




[205,206]
[54,148,207]
[40,43,58,127]

[43,57,67,72,82,117,118,119,121,129,130,158,159,160,208,209]

[41,60,61]
[62]
[65]
Quercetin dihydrate Dittrichia viscosa[98]
Quercetin 3,7-disulfate Iphiona scabra[96]
Quercetin 3,7,4′-trisulfate (CID: 21676176) Iphiona scabra[96]
Quercetin 3-O-glucoside (CID: 5280804)
Synonyms: Isoquercetin, Isoquercitrin
Anvillea garcinii subsp. radiata
Asteriscus graveolens
Blumea balsamifera; B. megacephala; B. riparia
Buphthalmum salicifolium; B. speciosissimum
Carpesium cernuum
Chiliadenus glutinosus; C. montanus
Dittrichia viscosa
Duhaldea cappa; D. nervosa
Inula anatolica; I. aucheriana; I. discoidea; I. helenium; I. inuloides; I. japonica; I. peacockiana; I. racemosa; I. sarana; I. sechmenii; I. thapsoides; I. viscidula
Iphiona scabra
Pentanema britannicum; P. ensifolium; P. mariae; P. oculus-christi
Pulicaria arabica; P. gnaphalodes; P. incisa; P. odora; P. paludosa; P. sicula; P. undulata; P. vulgaris
Rhanterium adpressum
[86,142]
[122]
[108,123,210,211]

[124,163]

[125]
[11,190,212]
[69,99]
[66,112,201]
[21,40,51,53,156,174]



[96]
[40,213]

[25,95,117,160,214,215]


[41]
Quercetin 3-O-acetylglucoside Blumea megacephala; B. riparia[123]
Quercetin 3-O-acetylhexoside Inula sarana.[53]
Caffeoyl isoquercetin Blumea megacephala; B. riparia[123]
Quercetin 7-O-glucoside (CID: 5282160)
Synonyms: Quercimeritrin; Quercimeritroside
Anvillea garcinii
Asteriscus graveolens
Buphthalmum speciosissimum
Chiliadenus glutinosus
Inula acuminata
Limbarda crithmoides
Pentanema caspicum
Pulicaria jaubertii; P. odora; P. paludosa; P. sicula
[171]
[122]
[163]
[212]
[65]
[216]
[65]
[95,164]
Quercetin 3′-O-glucoside (CID: 9934142) Pulicaria jaubertii[164,209]
Quercetin 4′-O-glucoside (CID: 5320844)
Synonym: Spiraeoside
Duhaldea cappa; D. cuspidata[65]
Quercetin 7,4′-di-O-glucoside (CID: 11968881) Inula acuminata
Pentanema caspicum
[65]
[65]
Quercetin 3-O-galactoside (CID: 5281643)
Synonym: Hyperoside
Asteriscus graveolens
Blumea balsamifera; B. megacephala
Chiliadenus glutinosus
Dittrichia graveolens; D. viscosa
Inula sarana
Iphiona scabra
Pallenis spinosa
Pentanema ensifolium; P. salicinum; P. spiraeifolium
Pulicaria gnaphalodes; P. incisa; P. paludosa; P. schimperi; P. sicula; P. undulata; P. vulgaris
Rhanterium suaveolens
[44,122]
[108,210]
[11,212]
[170,198]
[53]
[96]
[149]
[58,213]

[95,117,118,120,121,160,168]


[61,217]
Quercetin 3-O-(6″-caffeoylgalactopyranoside) Pentanema ensifolium[213]
Quercetin 7-O-galactoside (CID: 44259224) Inula helenium[174]
Quercetin 3-O-arabinoside (CID: 10252339)
Synonym: Guaiaverin
Blumea balsamifera
Dittrichia viscosa
[132]
[170]
Quercetin 3-O-rhamnoside (CID: 5280459)
Synonyms: Quercitrin; Quercitroside; Quercimelin; Thujin
Chiliadenus montanus
Inula japonica
Rhanterium suaveolens
[190]
[12]
[61]
Quercetin rhamnoside Dittrichia viscosa[77]
Quercetin 3-O-galacturonide Chiliadenus montanus
Pulicaria gnaphalodes
[190]
[218]
Quercetin 3-O-glucuronide (CID: 5274585)
Synonyms: Miquelianin; Quercituron
Chiliadenus glutinosus; C. montanus
Dittrichia viscosa
Inula discoidea
Pulicaria arabica; P. armena; P. dysenterica; P. gnaphalodes; P. odora; P. paludosa; P. vulgaris
[38,169,190]
[139,170]
[50]
[82,95,129,187,208,214,218]

Quercetin 3-O-glucuronide-6″-methyl ester (Artifact?) Chiliadenus glutinosus
Pulicaria armena
[169,219]
[82]
Quercetin 7-O-glucuronide (CID: 11641481) Pulicaria sicula[95]
Quercetin O-hexuronide Telekia speciosa[62]
Quercetin 3-O-xyloside (CID: 5321278) Dittrichia viscosa
Pulicaria jaubertii
[170]
[164]
Quercetin O-pentoside Rhanterium suaveolens[61,217]
Quercetin O-hexoside Dittrichia viscosa
Pulicaria incisa; P. undulata
[139]
[130]
Quercetin O-hexosyl malonate Pulicaria incisa[130]
Quercetin O-acetylhexoside Pulicaria undulata[130]
Quercetin 3-O-(6″-O-acetyl)-hexoside Dittrichia viscosa[172]
Quercetin O-(caffeoyl)-hexoside Dittrichia viscosa[172]
Quercetin O-(p-coumaroyl)-hexoside Dittrichia viscosa[172]
Quercetin O-(feruloyl)-hexoside Dittrichia viscosa[172]
Quercetin O-feruloyl-O-hexoside Dittrichia viscosa[172]
Quercetin O-p-coumaroyl-O-hexoside Dittrichia viscosa[172]
Quercetin 3-O-rhamnoglucoside (CID: 5280805)
Synonyms: Rutin; Rutoside; Phytomelin; Birutan; Quercetin 3-rutinoside; Myrticolorin
Anvillea garcinii
Anvillea garcinii subsp. radiata
Asteriscus graveolens
Blumea balsamifera; B. lacera; B. sinuata; B. megacephala; B. riparia
Chiliadenus glutinosus; C. iphionoides
Chrysophthalmum montanum
Dittrichia graveolens; D. viscosa
Duhaldea nervosa
Inula acuminata; I. anatolica; I. aucheriana; I. discoidea; I. grandiflora; I. helenium; I. inuloides; I. japonica; I. montbretiana; I. peacockiana; I. racemosa; I. sarana; I. stewartii; I. thapsoides; I. viscidula
Iphiona aucheri; I. grantioides
Limbarda crithmoides
Pallenis maritima subsp. maritima; P. spinosa
Pentanema britannicum; P. caspicum; P. mariae; P. oculus-christi; P. orientale
Pulicaria armena; P. gnaphalodes; P. paludosa; P. salviifolia; P. undulata
Rhanterium suaveolens
Vicoa divaricata; V. indica
[80,220]
[86]
[44]
[123,131,136,154,196,211,221]

[75,155]
[64]
[65,69,99,173]
[112]
[40,53,65,114,115,157,203,204]





[65]
[205,222]
[55,207,223]

[40,59,65]

[82,95,117,120,161,224]

[60,61]
[65]
Quercetin 7-O-rhamnoglucoside Inula sarana
Pulicaria paludosa
[53]
[95]
Quercetin 3-O-rhamnogalactoside Blumea balsamifera
Pulicaria gnaphalodes
[136]
[117]
Quercetin 3-O-diglucuronide Pulicaria paludosa; P. sicula[95]
Quercetin galactosylrhamnoside Dittrichia viscosa[69]
Quercetin 3-O-diglucoside 7-O-glucoside Anvillea garcinii subsp. radiata[86]
Quercetin 3-O-sophoroside 7-O-glucoside Inula clarkei; I. obtusifolia[65]
Quercetin 3-O-rutinoside 7-O-xyloside Dittrichia viscosa[69]
Quercetin 3-O-rutinoside 7-O-glucuronide Inula racemosa; I. stewartii[65]
Quercetin 3,7-di-O-rhamnoside Pulicaria undulata[120]
Quercetin dihexoside Dittrichia viscosa
Pulicaria incisa
[77]
[130]
Quercetin 7-O-triglucoside Inula helenium[202]
Quercetin 3-methyl ether (CID: 5280681)
Synonym: 3-O-Methylquercetin
5,7,3′,4′-Tetrahydroxy-3-methoxyflavoneAllagopappus viscosissimus
Blumea balsamifera
Dittrichia viscosa
Inula helenium
Pallenis hierochuntica; P. spinosa
Pentanema britannicum
Pulicaria arabica; P. incisa; P. jaubertii; P. schimperi; P. undulata
[175]
[210,225]
[47,200]
[200]
[54,149]
[43]
[118,158,159,168]
3-Methoxyquercetin 7-O-glucoside Dittrichia viscosa[46,200]
Rhamnetin (CID: 5281691)
Synonym: Quercetin 7-methyl ether
3,5,3′,4′-Tetrahydroxy-7-methoxyflavoneAsteriscus graveolens
Blumea balsamifera; B. riparia
Chiliadenus glutinosus
Dittrichia viscosa
Limbarda crithmoides
Pulicaria dysenterica; P. incisa; P. jaubertii; P. undulata
[226]
[105,106,107,134,195,211,225]
[38]
[47,77,227]
[73]
[25,57,101,130,228]
Rhamnetin 3-O-galactoside Pulicaria undulata[67]
Rhamnetin O-hexoside Telekia speciosa[62]
Isorhamnetin (CID: 5281654)
Synonyms: 3′-Methylquercetin; Isorhamnetol; Quercetin 3′-methyl ether; 3′-Methoxyquercetin; 3′-O-Methylquercetin; Isorhamnetine
3,5,7,4′-Tetrahydroxy-3′-methoxyflavoneAnvillea garcinii subsp. radiata
Blumea balsamifera
Chiliadenus glutinosus
Dittrichia viscosa
Inula japonica; I. sarana
Pentanema britannicum
Pulicaria dysenterica; P. incisa; P. jaubertii
[142,143,194]
[132]
[11,38]
[47,77,110]
[53,229]
[97]
[25,57,130,209,228]
Isorhamnetin 3-sulfate (CID: 5487766)
Synonym: Persicarin
Iphiona scabra[96]
Isorhamnetin 3,7-disulfate (CID: 15290611) Iphiona scabra[96]
Isorhamnetin 3,7,4′-trisulfate Iphiona scabra[96]
Isorhamnetin 3-O-glucoside (CID: 5318645) Anvillea garcinia
Anvillea garcinii subsp. radiata
Blumea balsamifera
Buphthalmum salicifolium
Dittrichia viscosa
Inula sarana
Iphiona scabra
Pulicaria paludosa
Telekia speciosa
[80]
[142]
[132,210]
[124]
[99]
[53]
[96]
[95]
[62]
Isorhamnetin-3-O-(6″-O-feruloyl)-glucoside Dittrichia viscosa[98,110]
Isorhamnetin 3-O-galactoside (CID: 5318644)
Synonym: Cacticin
Iphiona scabra
Pulicaria paludosa
[96]
[95]
Isorhamnetin 7-O-glucuronide Blumea megacephala; B. riparia[123]
Isorhamnetin O-glucuronide Chiliadenus glutinosus
Dittrichia viscosa
[75]
[69]
Isorhamnetin hexoside Anvillea garcinii subsp. radiata
Dittrichia viscosa
Pulicaria incisa; P. undulata; P. vulgaris
[142]
[98,110,170]
[72,130]
Isorhamnetin O-hexuronide Pulicaria undulata[130]
Isorhamnetin 7-O-malonylglucoside Blumea megacephala; B. riparia[123]
Isorhamnetin 7-O-protocatechuylrhamnoside Blumea megacephala; B. riparia[123]
Isorhamnetin 3-O-diglucoside Anvillea garcinii subsp. radiata[86,142]
Isorhamnetin 3-O-rhamnoglucoside (CID: 5481663)
Synonyms: Narcissin; Narcissoside; Isorhamnetin 3-O-rutinoside
Anvillea garcinii
Pulicaria paludosa
[80]
[95]
Isorhamnetin O-rhamnoglucoside Chiliadenus glutinosus
Dittrichia viscosa
[75]
[172]
Isorhamnetin 3-O-rhamnogalactoside Pulicaria paludosa[95]
Isorhamnetin O-pentosylhexoside Dittrichia viscosa
Pulicaria undulata
[172]
[130]
Isorhamnetin acetyl-diglucoside Anvillea garcinii subsp. radiata[142]
Tamarixetin (CID: 5281699)
Synonyms: 4′-Methoxyquercetin; 4′-O-Methylquercetin; Quercetin 4′-methyl ether
3,5,7,3′-Tetrahydroxy-4′-methoxyflavoneBlumea balsamifera; B. riparia
Inula japonica
[105,106,181,211,230]
[231]
Junsainoside A (CID: 275831051)
Synonym: Tamarixetin 3-O-caffeoylglucoside
Blumea megacephala; B. riparia[123]
Tamarixetin 3-O-robinobioside Asteriscus graveolens[122]
Quercetin 3,3′-dimethyl ether (CID: 5316900)5,7,4′-Trihydroxy-3,3′-dimethoxyflavoneAllagopappus canariensis
Blumea balsamifera
Chiliadenus iphionoides; C. montanus
Dittrichia viscosa
Pulicaria incisa; P. schimperi
[232]
[134,210]
[145,146,176,177,189,190,192]
[46,47,233]
[118,234]
Quercetin 3,4′-dimethyl ether (CID: 5380905)5,7,3′-Trihydroxy-3,4′-dimethoxyflavoneAsteriscus graveolens
Blumea balsamifera
Chiliadenus montanus
Laggera decurrens
[122]
[133]
[189]
[235]
Dillenetin (CID: 5487855)
Synonym: Quercetin 3′,4′-dimethyl ether
3,5,7-Trihydroxy-3′,4′-dimethoxyflavoneBlumea aromatica; B. balsamifera[104,134,210]
Ombuin (CID: 5320287)
Synonyms: 7,4′-Di-O-methylquercetin; Quercetin 7,4′-dimethyl ether
3,5,3′-Trihydroxy-7,4′-dimethoxyflavoneBlumea balsamifera; B. megacephala; B. riparia
Chiliadenus montanus
[105,108,134,195,210]

[190]
Rhamnazin (CID: 5320945)
Synonym: Quercetin 7,3′-dimethyl ether
3,5,4′-Trihydroxy-7,3′-dimethoxyflavonePerralderia coronopifolia
Pulicaria jaubertii
[236]
[209,228]
Quercetin 3,7-dimethyl ether (CID: 5280417)5,3′,4′-Trihydroxy-3,7-dimethoxyflavoneBlumea aromatica; B. balsamifera
Pulicaria arabica; P. dysenterica; P. incisa; P. schimperi; P. undulata
[104,133,211]
[57,118,158,160,168,179]
Quercetin 7,3′,4′-trimethyl ether (CID: 5748558)3,7-Dihydroxy-7,3′,4′-trimethoxyflavoneBlumea balsamifera; B. riparia[181,211,225]
Ayanin (CID: 5280682) Synonyms: 3,7,4′-Tri-O-methylquercetin; Quercetin 3,7,4′-trimethyl ether5,3′-Dihydroxy-3,7,4′-trimethoxyflavoneBlumea balsamifera
P. canariensis; P. dysenterica
[107,133]
[57,237]
Pachypodol (CID: 5281677)
Synonym: Quercetin 3,7,3′-trimethyl ether
5,4′-Dihydroxy-3,7,3′-trimethoxyflavoneBlumea balsamifera
Chiliadenus iphionoides; C. montanus
Pulicaria vulgaris
[133,136]
[176,177,189]
[84]
Quercetin 3,3′,4′-trimethyl ether (CID: 5383438)5,7-Dihydroxy-3,3′,4′-trimethoxyflavoneAllagopappus canariensis
Blumea balsamifera
Chiliadenus montanus
Inula japonica
Pulicaria canariensis; Pulicaria sicula
[232]
[107,134]
[190,192,238]
[52]
[43,237]
Quercetin 3,7,3′,4′-tetramethyl ether5-Hydroxy-3,7,3′,4′-tetramethoxyflavoneBlumea aromatica; B. riparia[104,195]
Morin (CID: 5281670)
Synonym: Aurantica
3,5,7,2′,4′-PentahydroxyflavoneAnvillea garcinii subsp. radiata[137]
CID: 442587173,5,2′-Trihydroxy-7,5′-dimethoxyflavoneBlumea balsamifera 1[193] 1
6-Hydroxyquercetin (CID: 5281680)
Synonyms: Quercetagetin, Quercetagenin
3,5,6,7,3′,4′-HexahydroxyflavoneDuhaldea cuspidata; D. eupatorioides
Inula acuminata; I. clarkei; I. obtusifolia; I. stewartii
Iphiona aucheri
Pentanema britannicum; P. caspicum
Pulicaria undulata
Vicoa divaricata
[65]
[65]

[65]
[65]
[130]
[65]
Quercetagetin 7-O-glucoside (CID: 44259796)
Synonym: Quercetagitrin
Buphthalmum salicifolium; B. speciosissimum[124,163,239]
Quercetagetin 7-O-(6″-O-isobutyrylglucoside) Buphthalmum salicifolium[124]
Quercetagetin 7-O-(6″-O-isovalerylglucoside) Buphthalmum salicifolium[124]
Quercetagetin 7-O-(6″-O-2-methylbutyrylglucoside) Buphthalmum salicifolium[124]
Quercetagetin-O-hexoside Pulicaria undulata[130]
Quercetagetin-O-acetylhexoside Pulicaria undulata[130]
Quercetagetin-O-hexosylacetate Pulicaria undulata[130]
Quercetagetin 6-methyl ether (CID: 5281678)
Synonyms: Patuletin; 6-O-Methylquercetagetin
3,5,7,3′,4′-Pentahydroxy-6-methoxyflavoneAnvillea garcinii subsp. radiata
Chiliadenus montanus
Dittrichia viscosa
Inula japonica; I. sarana
Pallenis spinosa
Pentanema britannicum
Pulicaria insignis; P. odora
Telekia speciosa
[142]
[189]
[98]
[51,53]
[149]
[97]
[94,95]
[43,62]
Patuletin glucoside Anvillea garcinii subsp. radiata[142]
Patuletin O-hexoside Inula sarana[53]
Patuletin 3-O-glucoside (CID: 44259782) Blumea lacera
Buphthalmum salicifolium
Chiliadenus glutinosus
Pulicaria undulata
[100]
[124]
[212]
[188]
Patuletin 3-O-galactoside (CID: 44259776) Pallenis spinosa[149]
Patulitrin (CID: 5320435)
Synonym: Patuletin 7-O-glucoside
Anvillea garcinii
Blumea lacera
Buphthalmum salicifolium
Chiliadenus glutinosus; Chiliadenus montanus
Pallenis maritima subsp. maritima
Pentanema aschersonianum; Pentanema britannicum
Pulicaria odora; Pulicaria undulata
Telekia speciosa
[220]
[100]
[124]
[190,219]

[223]
[56,97]

[95,188]
[240]
Patuletin O-hexoside Telekia speciosa[62]
Patuletin 7-O-(6″-acetyl)-glucopyranoside Pentanema aschersonianum[56]
Patuletin 7-O-(6″-isobutyryl)-glucoside Pentanema britannicum
Buphthalmum salicifolium
[97]
[124]
Patuletin 7-O-[6″-(2-methylbutyryl)]glucoside Pentanema britannicum[97]
Patuletin 7-O-(6″-isovaleryl)glucoside Pentanema britannicum[97]
Patuletin 7-(6″-O-caffeoyl)glucoside Pallenis maritima subsp. maritima[223]
Patuletin 7-[6″(3″′-hydroxy-2″′-methylpropanoyl)] glucoside Pallenis maritima subsp. maritima[223,241]
Patuletin-7-[6″-O-caffeoyl-2″-O-[(S)-3′′′-hydroxy-2′′′-methylpropanoyl]glucoside] (astermaritimoside) Pallenis maritima subsp. maritima[223]
Patuletin 7-O-galactoside (CID: 44259803) Pallenis spinosa[149]
Patuletin diglucoside Anvillea garcinii subsp. radiata[142]
Patuletin 3-diglucoside Anvillea garcinii subsp. radiata[86]
Patuletin O-rhamnoglucoside Inula sarana[53]
Patuletin 7-diglucoside Anvillea garcinii subsp. radiata[86]
Patuletin 3-O-rharnnopyranosyl (1->6)-galactopyranoside Pallenis spinosa[148,149,207]
Quercetagetin 3′-methyl ether (CID: 10735304)3,5,6,7,4′-Pentahydroxy-3′-methoxyflavoneLimbarda crithmoides[242]
Quercetagetin 3′-methyl ether 3-O-rhamnoglucoside Blumea megacephala; B. riparia[123]
Quercetagetin 4′-methyl ether 7-O-caffeoylglucoside Blumea megacephala; B. riparia[123]
Quercetagetin methyl ether-O-hexoside Pulicaria undulata[130]
Quercetagetin 3,4′-dimethyl ether (CID: 5320823)5,6,7,3′-Tetrahydroxy-3,4′-dimethoxyflavoneInula japonica[243,244]
Quercetagetin 3,7-dimethyl ether
Synonym: Tomentin
5,6,3′,4′-Tetrahydroxy-3,7-dimethoxyflavonePentanema britannicum; P. germanicum; P. spiraeifolium
Pulicaria arabica; P. dysenterica
[43,57]

[81,187,214]
Eupatolitin (CID: 5317291)
Synonym: Quercetagetin 6,7-dimethyl ether
3,5,3′,4′-Tetrahydroxy-6,7-dimethoxyflavonePulicaria dysenterica; P. undulata[129,188]
Quercetagetin 6,3′-dimethyl ether (CID: 5321435)
Synonyms: Spinacetin; Spinacetine; Quercetagetin 3′,6-dimethyl ether
3,5,7,4′-Tetrahydroxy-6,3′-dimethoxyflavoneAnvillea garcinii subsp. radiata
Dittrichia viscosa
Inula japonica; I. sarana
Pentanema britannicum
[86,142]
[47,77,98]
[52,53,116,229]
[102,245]
Spinacetin 3-O-glucoside (CID: 44259790) Asteriscus graveolens[226]
Spinacetin 7-O-glucoside (CID: 44259816) Anvillea garcinii subsp. radiata; A. garcinii[86,142,220]
Spinacetin 3-O-diglucoside Anvillea garcinii subsp. radiata[86,142]
Spinacetin 3-O-rhamnoglucoside Anvillea garcinia; A. graveolens[80,226]
Spinacetin 3-[rhamnosyl-(1->6)-glucoside] 7-rhamnopyranoside Anvillea garcinii[171]
Quercetagetin 3,6-dimethyl ether (CID: 5281603)
Synonym: Axillarin
5,7,3′,4′-Tetrahydroxy-3,6-dimethoxyflavoneAsteriscus sericeus
Chiliadenus montanus
Dittrichia viscosa
Inula japonica; I. sarana
Pentanema britannicum; P. germanicum; P. spiraeifolium
Pulicaria insignis; P. undulata
Telekia speciosa
[57]
[190]
[47]
[52,53]
[43,57,97]

[94,183,246]
[62]
Jaceidin (CID: 5464461)
Synonyms: Quercetagetin 3,6,3′-trimethyl ether; Jaceidine
5,7,4′-Trihydroxy-3,6,3′-trimethoxyflanoneAsteriscus graveolens; A. sericeus
Blumea lacera
Chiliadenus candicans; C. iphionoides; C. montanus
Dittrichia viscosa
Inula sarana
Pentanema britannicum
[57,122]
[100]
[109,145,146,189,190,238]

[70]
[53]
[43]
Centaureidin (CID: 5315773)
Synonym: Quercetagetin 3,6,4′-trimethyl ether
5,7,3′-Trihydroxy-3,6,4′-trimethoxyflavoneBlumea lacera
Chiliadenus montanus
Inula sarana
[100]
[189,190]
[53]
Oxyayanin B (CID: 442621)
Synonym: Quercetagetin 3,7,4′-trimethyl ether
Pulicaria dysenterica; P. sicula; P. wightiana[43,167,247]
Quercetagetin 6,7,3′-trimethyl ether (CID: 6453535)3,5,4′-Trihydroxy-6,7,3′-trimethoxyflavoneBlumea lacera
Pentanema britannicum
[144]
[102]
Eupatin (CID: 5317287)
Synonym: Quercetagetin 6,7,4′-trimethyl ether; Veronicafolin
3,5,3′-Trihydroxy-6,7,4′-trimethoxyflavoneInula helenium; I. japonica
Pulicaria dysenterica
[52,116,147,248]
[129]
Chrysosplenol C (CID: 189065)
Synonyms: 6-Hydroxyquercetin 3,7,3′-trimethyl ether; Quercetagetin 3,7,3′-trimethyl ether
5,6,4′-Trihydroxy-3,7,3′-trimethoxyflavoneAsteriscus sericeus
Blumea balsamifera; B. eriantha; B. lacera; B. megacephala
Chrysophthalmum montanum
Duhaldea cappa
Pentanema montanum
Pulicaria dysenterica; P. inuloides; P. paludosa; P. sicula; P. vulgaris
[57]
[100,108,211,249]

[250]
[68]
[92]
[43,84,95,185,186,187]
Chrysosplenol D (CID: 5280699)
Synonyms: Quercetagetin 3,6,7-trimethyl ether
5,3′,4′-Trihydroxy-3,6,7-trimethoxyflavoneBlumea lacera; B. malcolmii
Chiliadenus candicans; C. montanus
Pentanema britannicum; P. germanicum; P. spiraeifolium
Perralderia coronopifolia
Pulicaria arabica; P. sicula
[191,251]
[189,192,252,253]
[43,57]

[236]
[43,252]
Quercetagetin 3,5,7-trimethyl ether (CID: 14376221)6,3′,4′-Trihydroxy-3,5,7-trimethoxyflavonePulicaria arabica[214]
Quercetagetin 5,7,3′-trimethyl ether3,6,4′-Trihydroxy-5,7,3′-trimethoxyflavonePulicaria armena[82]
Quercetagetin 7,3′,4′-trimethyl ether (CID: 5322091)3,5,6-Trihydroxy-7,3′,4′-trimethoxyflavonePulicaria sicula[43]
Quercetagetin trimethyl ether Pulicaria incisa
Telekia speciosa
[130]
[62]
Bonanzin (CID: 5379563)
Synonym: Quercetagetin 3,6,3′,4′-tetramethyl ether
5,7-Dihydroxy-3,6,3′,4′-tetramethoxyflavoneBlumea lacera
Chiliadenus montanus
[100]
[190,192]
Chrysosplenol B (CID: 5281608)
Synonyms: Chrysosplenetin; Chrysosplenetin B; Quercetagetin 3,6,7,3′-tetramethyl ether
5,4′-Dihydroxy-3,6,7,3′-tetramethoxyflavoneBlumea lacera; B. malcolmii
Chiliadenus montanus
Duhaldea wissmanniana
Pentanema britannicum; P. spiraeifolium
Pulicaria gnaphalodes; P. salviifolia; P. sicula
[100,191]
[189,190]
[113]
[43,57]
[43,57,119]
Casticin (CID: 5315263)
Synonyms: Quercetagetin 3,6,7,4′-tetramethyl ether; Vitexicarpin
5,3′-Dihydroxy-3,6,7,4′-tetramethoxyflavoneChiliadenus montanus
Inula japonica; I. sarana
Pentanema spiraeifolium
Pulicaria gnaphalodes; P. salviifolia
[189]
[52,53]
[43]
[119,218]
Quercetagetin 3,5,7,4′-tetramethyl ether (CID: 389316)6,3′-Dihydroxy-3,5,7,4′-tetramethoxyflavoneChiliadenus candicans
Pulicaria salviifolia
[109]
[254]
Quercetagetin 3,5,7,3′-tetramethyl ether (CID: 14376220)6,4′-Dihydroxy-3,5,7,3′-tetramethoxyflavoneChiliadenus candicans
Pulicaria arabica; P. inuloides; P. paludosa; P. sicula
[109]
[95,186,214,255]
Quercetagetin 3,7,3′,4′-tetramethyl ether (CID: 14376225)5,6-Dihydroxy-3,7,3′,4′-tetramethoxyflavonePulicaria dysenterica; P. inuloides; P. sicula; P. vulgaris[43,57,84,95,186,187]
Quercetagetin tetramethyl ether Pulicaria incisa[130]
Quercetagetin 3,6,7,3′,4′-pentamethyl ether (CID: 5320351)
Synonyms: Artemetin; Artemisetin; Artemitin; Erianthin
5-Hydroxy-3,6,7,3′,4′-pentamethoxyflavoneBlumea eriantha; B. lacera; B. malcolmii
Chiliadenus montanus
Duhaldea cappa; D. wissmanniana
Iphiona scabra
Pentanema britannicum; P. spiraeifolium
Pulicaria sicula
[191,251,256,257]
[189,190]
[68,113]
[96]
[43,57]
[43]
Quercetagetin 3,5,6,7,3′-pentamethyl ether (CID: 14376231)4′-Hydroxy-3,5,6,7,3′-pentamethoxyflavoneChiliadenus montanus
Pallenis spinosa
[189]
[149]
Quercetagetin 3,5,7,3′,4′-pentamethyl ether6-Hydroxy-3,5,7,3′,4′-pentamethoxyflavonePulicaria arabica[258]
Quercetagetin pentamethyl ether Pulicaria odora[95]
Hexamethylquercetagetin (CID: 386331)3,5,6,7,3′,4′-HexamethoxyflavoneChiliadenus montanus
Pallenis spinosa
Pulicaria arabica; P. incisa; P. sicula
[189]
[149]
[43,95,130,258]
Myricetin (CID: 5281672)3,5,7,3′,4′,5′-HexahydroxyflavoneAsteriscus graveolens
Blumea lacera; B. sinuata
Dittrichia viscosa
Inula helenium; I. peacockiana
[44]
[154,196,221]
[135]
[115,156]
Myricitrin (CID: 5281673)
Synonym: Myricetin 3-rhamnoside
Blumea balsamifera
Carpesium nepalense
[136]
[259]
Myricetin O-glucuronide Dittrichia viscosa[69]
Myricetin glucoside Asteriscus graveolens[44]
Myricetin hexoside Dittrichia viscosa
Pallenis spinosa
[170]
[207]
Laricitrin (CID: 5282154)
Synonym: 3′-Methylmyricetin; Myricetin 3′-methyl ether
3,5,7,4′,5′-Pentahydroxy-3′-methoxyflavone
Laricitrin 3-glucuronide Dittrichia viscosa[170]
Mearnsetin (CID: 10359384)3,5,7,3′,5′-Pentahydroxy-4′-methoxyflavone
Mearnsetin O-hexoside Chiliadenus glutinosus[38,75]
Mearnsetin O-glucuronide Chiliadenus glutinosus[38,75]
Mearnsetin O-glucuronide O-hexoside Chiliadenus glutinosus[75]
Trimethylmyricetin Dittrichia viscosa[135]
3-Hydroxy-6,7,8,3′,4′-pentamethoxyflavoneBlumea eriantha[260]
3,3′,4′-Trihydroxy-6,7,8-trimethoxyflavoneBlumea eriantha[260]
3-Methoxytangeretin (CID: 11741814)3,5,6,7,8,4′-HexamethoxyflavoneChiliadenus iphionoides[176]
CID: 139156785,7,2′,5′-Tetrahydroxy-3,4′-dimethoxyflavoneLaggera decurrens[235]
CID: 139156795′-Acetoxy-5,7,2′-trihydroxy-3,4′-dimethoxyflavoneLaggera decurrens[235]
Inucrithmin (CID: 10569574)3,7,3′,4′-Tetrahydroxy-6,5′-dimethoxyflavoneLimbarda crithmoides[242]
Grantiodin (CID: 44259721)5-Hydroxy-3,6,7,2′,5′-pentamethoxyflavoneIphiona grantioides[261]
5-O-Demethylapulein (CID: 44259894)5,2′,5′-Trihydroxy-3,6,7,4′-tetramethoxyflavoneDuhaldea wissmanniana[113]
Brickellin (CID: 13871363)5,2′-Dihydroxy-3,6,7,4′,5′-pentamethoxyflavoneDuhaldea cappa; D. wissmanniana[68,113]
Brickellin 5-methyl ether2′-Hydroxy-3,5,6,7,4′,5′-hexamethoxyflavonePulicaria sicula[43]
Grantioidinin (CID: 14861189)5-Hydroxy-3,6,7,8,2′,5′-hexamethoxyflavoneIphiona grantioides[103]
1 Published as a metabolite of Inula cappa, corrected in 1984 by Goswami et al. [262].
Flavonols oxygenated at C-8 are rare in the Inuleae-Inulinae. Flavonols with a methoxyl group at C-8 were found in B. eriantha [260], C. iphionoides [176] and I. grantioides [103]. Other flavonols with unique structures were japonicins A and B (Figure 2), isolated from flowers of I. japonica [51].

2.1.3. Flavanols, Flavanones and Flavanonols of the Inuleae-Inulinae

The three subclasses of flavonoids are devoid of the C-2/C-3 double bond in the molecule. Derivatives of naringenin, eriodictyol and hesperetin (eriodictyol 4′-methyl ether) are representatives of the flavanone subclass that are often found in the Inuleae-Inulinae. Aromadendrin (dihydrokaempferol) and taxifolin (dihydroquercetin) together with its methyl ethers are the flavanonols most frequently detected in the plants of the subtribe (Table 4). Farrerol, a flavanone of an uncommon structure (6,8-dimethylflavanone) was tentatively identified in the extract from P. undulata [120].
Table 4. Flavanols, flavanones and flavanonols of the Inuleae-Inulinae.
Table 4. Flavanols, flavanones and flavanonols of the Inuleae-Inulinae.
Trivial Name of the CompoundSubstitution PatternPlant SpeciesReference
Flavanols
(+)-Catechin (CID: 9064)3,5,7,3′,4′-PentahydroxyflavanAnvillea garcinii subsp. radiata
Blumea balsamifera; B. lacera; B. sinuata
Chrysophthalmum montanum
Dittrichia graveolens; D. viscosa
Duhaldea nervosa
Inula helenium
Pallenis spinosa
Pulicaria incisa; P. undulata
[137]
[107,154,196,221]
[64]
[77,199]
[201]
[156]
[55]
[22,161]
Catechin hydrate Dittrichia viscosa[99]
Catechin hexoside Dittrichia viscosa[139]
Catechin gallate (CID: 6419835) Inula helenium; I. racemosa[21,174]
Methylcatechin Pulicaria vulgaris.[72]
(-)-Epicatechin (CID: 72276)3,5,7,3′,4′-PentahydroxyflavanBlumea lacera; B. sinuata
Duhaldea nervosa
Inula grandiflora; I. helenium; I. racemosa
Pallenis spinosa
Pulicaria vulgaris
Rhanterium suaveolens
[154,196,221]
[201]
[21,114,156,174]
[55]
[72]
[61]
(+)-Gallocatechin (CID: 65084)
Synonym: Gallocatechol
3,5,7,3′,4′,5′-HexahydroxyflavanChiliadenus glutinosus
Limbarda crithmoides
[38]
[73]
Gallocatechin derivative Limbarda crithmoides[73]
(-)-Epigallocatechin (CID: 72277) Pallenis spinosa
Pulicaria dysenterica
[55]
[129]
Gallocatechin/Epigallocatechin-3-gallate Dittrichia viscosa[77]
Epigallocatechin gallate Pentanema britannicum[263]
Flavanones/Flavanonols
Farrerol (CID: 91144)6,8-Dimethyl-5,7,4′-trihydroxyflavanonePulicaria undulata[120]
Naringenin (CID: 439246)
Synonym: Salipurpol
5,7,4′-TrihydroxyflavanoneAllagopappus viscosissimus; A. canariensis
Blumea balsamifera
Chrysophthalmum montanum
Dittrichia viscosa
Inula anatolica; I. aucheriana; I. discoidea; I. helenium; I. inuloides; I. peacockiana; I. sarana; I. sechmenii; I. thapsoides; I. viscidula
Pallenis spinosa
Pentanema britannicum; P. mariae; P. oculus-christi
Rhanterium suaveolens
[175,232]
[132]
[64]
[46,77]
[39,40,53]



[55]
[40]

[60]
Naringenin 7-O-hexoside Dittrichia viscosa[172]
Naringenin 7-rhamnoglucoside
Synonym: Naringin
Anvillea garcinii subsp. radiata
Chiliadenus iphionoides
Rhanterium suaveolens
[137]
[197]
[61]
Naringenin 6-C-glucoside
Synonym: Hemiphloin (CID: 160711)
Blumea balsamifera[132]
Naringenin 8-C-glucoside
Synonym: Isohemiphloin (CID: 42607891)
Blumea balsamifera[225,264]
Naringenin 7-methyl ether
Synonym: Sakuranetin (CID: 73571)
5,4′-Dihydroxy-7-methoxyflavanoneBlumea balsamifera; B. fistulosa
Dittrichia graveolens; D. viscosa
Pulicaria incisa
[132,150]
[46,47,65,87,265]
[215]
Naringenin 4′-methyl ether
Synonym: Ponciretin (CID: 25201019)
5,7-Dihydroxy-4′-methoxyflavanoneBlumea megacephala; B. riparia[123]
Ponciretin 7-O-glucoside (CID: 102004611)
Synonym: Isosakuranin
Pulicaria undulata[120]
Naringenin 7,4′-dimethyl ether (CID: 321346)5-Hydroxy-7,4′-dimethoxyflavanoneCarpesium lipskyi; C. longifolium[266,267]
Eriodictyol (CID: 440735)
Synonyms: Eriodictiol; Huazhongilexone
5,7,3′,4′-TetrahydroxyflavanoneAllagopappus viscosissimus
Blumea aromatica; B. balsamifera
Dittrichia viscosa
Pulicaria incisa; P. undulata
[175]
[132,138,225,230]
[47]
[130]
Eriodictyol 7-O-glucoside (CID: 134693055) Buphthalmum salicifolium[124]
Eriodictyol 3′-O-glucoside Buphthalmum salicifolium[124]
Eriodictyol O-rhamnoglucoside Inula sarana[53]
Homoeriodictyol (CID: 73635)
Synonym: Eriodictyol 3′-methyl ether
5,7,4′-Trihydroxy-3′-methoxyflavanoneBlumea aromatica.[104]
Hesperetin (CID: 72281)
Synonyms: Eriodictyol 4′-methyl ether; Hesperitin
5,7,3′-Trihydroxy-4′-methoxyflavanoneDittrichia graveolens; D. viscosa
Inula anatolica; I. aucheriana; I. discoidea; I. helenium; I. peacockiana; I. sechmenii; I. thapsoides; I. viscidula
Pentanema britannicum; P. mariae; P. oculus-christi
Pulicaria incisa
[77,198,268]
[39,40]


[40]

[130]
3-Acetoxyhesperitin Dittrichia viscosa[269]
Hesperetin 7-O-glucoside (CID: 147394) Inula stewartii[65]
Hesperidin (CID: 10621)
Synonyms: Cirantin; Hesperidoside; Hesperetin 7-rhamnoglucoside; Hesperetin 7-rutinoside
Chrysophthalmum montanum
Dittrichia graveolens
Duhaldea cuspidata; D. eupatorioides
Inula acuminata; I. anatolica; I. aucheriana; I. discoidea; I. inuloides; I. peacockiana; I. racemosa; I. rhizocephala; I. sechmenii; I. thapsoides; I. viscidula
Iphiona aucheri; I. grantioides
Pentanema britannicum; P. capsicum; P. mariae; P. oculus-christi
[64]
[65]
[65]
[40,65]



[65]

[40,65]
Sterubin (CID: 1268276)
Synonym: 7-Methyleriodictyol; Eriodictyol 7-methyl ether
5,3′,4′-Trihydroxy-7-methoxyflavanoneBlumea balsamifera; B. fistulosa; B. riparia
Dittrichia viscosa
Pulicaria undulata
[133,150,152,181,230]
[47]
[270]
Eriodictyol 7,3′-dimethyl ether (CID: 14235076) Blumea riparia[181]
Eriodictyol 7,4′-dimethyl ether Blumea riparia[181]
CID: 114830875,7,3′,5′-TetrahydroxyflavanoneBlumea balsamifera[105,106,107,211]
CID: 250737575,7,2′,5′-TetrahydroxyflavanoneBlumea balsamifera[133,193]
Blumeatin 1
(CID: 70696494)
5,3′,5′-Trihydroxy-7-methoxyflananoneBlumea balsamifera[105,106,107,230,271,272]
Pinobanksin (CID: 73202)3,5,7-Trihydroxyflavanone
Pinobanksin 5-methyl ether 3-O-acetate Limbarda crithmoides[73]
Aromadendrin (CID: 122850)
Synonym: Dihydrokaempferol
3,5,7,4′-TetrahydroxyflavanoneCarpesium macrocephalum
Dittrichia graveolens; D. viscosa
Pulicaria arabica; P. jaubertii; P. undulata
[273]
[87,172]
[158,159,179]
3-O-Acetylaromadendrin Dittrichia viscosa[46,47,98]
Aromadendrin 7-methyl ether (CID: 181132)
Synonym: 7-Methylaromadendrin
3,5,4′-Trihydroxy-7-methoxyflavanoneBlumea balsamifera
Dittrichia graveolens; D. viscosa
Pulicaria incisa; P. jaubertii; P. undulata
[132]
[46,47,87,265]
[179,234,270,274]
2R,3R-Dihydro-7-methoxykaempferol Dittrichia viscosa[233]
3-O-Acetyl-7-O-methylaromadendrin Dittrichia graveolens; D. viscosa[46,87]
3-epi-Acetyl-7-O-methylaromadendrin Dittrichia graveolens[87]
Aromadendrin 7,4′-dimethyl ether3,5-Dihydroxy-7,4′-dimethoxyflavanonePulicaria canariensis[275]
6-Methoxyaromadendrin3,5,7,4′-tetrahydroxy-6-methoxyflavanone
6-Methoxyaromadendrin 3-O-glucoside Pulicaria undulata[183]
(2R,3R)-5′-methoxy-3,5,7,2′-tetrahydroxyflavanone3,5,7,2′-Tetrahydroxy-5′-methoxyflavanoneBlumea balsamifera 2[193] 2
(2R,3R)-3,5,2′-Trihydroxy- 7,5′-dimethoxyflavanone3,5,2′-Trihydroxy-7,5′-dimethoxyflavanoneBlumea balsamifera[276]
(+)-Taxifolin (CID: 439533)
Synonym: (2R,3R)-Dihydroquercetin
3,5,7,3′,4′-PentahydroxyflavanoneBlumea balsamifera
Chiliadenus glutinosus
Dittrichia viscosa
Inula japonica
Pentanema britannicum
Perralderia coronopifolia
Pulicaria arabica; P. jaubertii; P. undulata
[132,230]
[38]
[69,268]
[244,248]
[102]
[236]
[158,179,209,274]
(-)-Taxifolin (CID: 712316)
Synonym: (2S,3S)-Dihydroquercetin
Pentanema britannicum[102]
Taxifolin hexoside Dittrichia viscosa[98,110]
Taxifolin O-pentoside Pulicaria incisa; P. undulata[130]
Taxifolin pentosyl-rutinoside Inula helenium[174]
3-O-Acetyltaxifolin Dittrichia graveolens; D. viscosa[46,47,87,265]
Taxifolin 7-methyl ether (CID: 12313900)
Synonyms: Blumeatin C, Padmatin
3,5,3′,4′-Tetrahydroxy-7-methoxyflavanoneBlumea balsamifera
Dittrichia graveolens; D. viscosa
Pulicaria incisa; P. jaubertii; P. undulata
[132,211,225,230]
[46,47,77,87]
[168,179,209,274]
3-epi-Padmatin (CID: 11472604) Dittrichia graveolens[87]
3-O-Acetylpadmatin (CID: 10406203) Dittrichia graveolens; D. viscosa[46,47,87,265]
Taxifolin 3′-methyl ether (CID: 56658060)
Synonym: Dihydroisorhamnetin
3,5,7,4′-Tetrahydroxy-3′-methoxyflavanonePulicaria jaubertii[209,274]
Taxifolin 4′-methyl ether (2R,3R)-Dihydroquercetin 4′-methyl ether3,5,7,3′-Tetrahydroxy-4′-methoxyflavanoneBlumea balsamifera; B. fistulosa

Pentanema britannicum
Pulicaria undulata
[105,106,107,133,150,211,225,230,277]
[102]
[101]
Taxifolin 7,3′-dimethyl ether (CID: 14353345) Synonym: Dihydroquercetin 7,3′-dimethyl ether3,5,4′-Trihydroxy-7,3′-dimethoxyflavanoneBlumea balsamifera
Pulicaria jaubertii
[152]
[209,274]
Taxifolin 7,4′-dimethyl ether (2R,3R)-Dihydroquercetin 7,4′-dimethyl ether3,5,3′-Trihydroxy-7,4′-dimethoxyflavanoneBlumea balsamifera; B. fistulosa
Pulicaria canariensis
[105,106,107,133,150,211,230,277]
[275]
Taxifolin 3,7-dimethyl ether5,3′,4′-Trihydroxy-3,7-dimethoxyflavanonePulicaria undulata[179]
Taxifolin 3′,4′-dimethyl ether3,5,7-Trihydroxy-3′,4′-dimethoxyflavanonePulicaria jaubertii[209]
Taxifolin 7,3′,4′-trimethyl ether3,5-Dihydroxy-7,3′,4′-trimethoxyflavanonePulicaria jaubertii[209]
2,3-Dihydroquercetagetin (CID: 25200634)3,5,6,7,3′,4′-Hexahydroxyflavanone
2,3-Dihydroquercetagetin 4′-methyl ether3,5,6,7,3′-Pentahydroxy-4′-methoxyflavanoneInula helenium[147]
Ampelopsin (CID: 161557)
Synonym: Dihydromyricetin
3,5,7,3′,4′,5′-Hexahydroxyflavanone
Ampelopsin O-glucuronide Dittrichia viscosa[69]
1 In some cases, sterubin was erroneously identified as blumeatin. The structure of “putative blumeatin” was corrected by Xia et al. 2023 [278]; 2 published as a metabolite of Inula cappa, corrected in 1984 by Goswami et al. [262].

2.1.4. Miscellaneous Flavonoids

Proanthocyanidins, chalcones and isoflavonoids are not common in the Inuleae-Inulinae (see Table 5). Except for davidigenin and davidioside from B. balsamifera [107], daidzein from D. nervosa [79], orobol 3′-methyl ether from I. japonica [51], pulichalconoids B and C from P. incisa [279] and 5,7,2′,3′,4′-pentahydroxyisoflavone 4′-O-glucopyranoside from P. undulata [160], chalcones and isoflavonoids (Figure 3 and Figure 4) were minor constituents of the analyzed plant materials and were detected in the plant extracts by TLC [65] or tentatively identified using different variants of liquid chromatography–mass spectrometry (LC-MS).
Table 5. Proanthocyanidins, chalcones and isoflavonoids from Inuleae-Inulinae.
Table 5. Proanthocyanidins, chalcones and isoflavonoids from Inuleae-Inulinae.
Trivial Name of the CompoundSubstitution PatternPlant SpeciesReference
Proanthocyanidins/Catechin oligomers
Proanthocyjanidin dimer Dittrichia viscosa[77]
Prodelphinidin B3 (CID: 13831068) Dittrichia viscosa[77]
Mahuannin G Inula helenium[280]
Chalcones
Davidigenin (CID: 442342)4,2′,4′-TrihydroxydihydrochalconeBlumea balsamifera[107]
Davidigenin 2′-O-glucoside
Synonym: Davidioside (CID: 42607667)
Blumea balsamifera[107]
Licuraside (CID: 14282455)
Synonym: Licraside; Davidigenin 4′-apiofuranosylglucoside
Inula helenium; I. racemosa[280]
Pulichalconoid B (CID: 102501335)3,4,7,8,4′,6′-Hexahydroxy-2′-methoxydihydrochalconePulicaria incisa[279]
Pulichalconoid C (CID: 102501334)4,7,8,4′,6′-Pentahydroxy-2′-methoxydihydrochalconePulicaria incisa[279]
Butein 4′-glucoside (CID: 12303942)3,4,2′,4′-Tetrahydroxychalcone 4′-glucosideInula acuminata, I. rhizocephala
Pentanema caspicum
[65]
[65]
Isoliquiritigenin 4′-glucoside (CID: 5320092)
Synonyms: Neoisoliquiritin; Isoneoliquiritin
4,2′,4′-Trihydroxychalcone 4′-glucosideDittrichia graveolens
Inula racemosa; I. royleana
Pentanema britannicum; P. orientale
Vicoa glanduligera; V. divaricata; V. indica
[65]
[65]
[65]
[65]
Isoflavonoids
Daidzein (CID: 5281708)7,4′-DihydroxyisoflavoneDuhaldea nervosa[79]
Genistein (CID: 5280961)
Synonyms: Prunetol, Sophoricol
5,7,4′-TrihydroxyisoflavoneDuhaldea nervosa
Inula aucheriana; I. anatolica; I. peacockiana; I. sechmenii
[112]
[40]
Genistin (CID: 5281377)
Synonym: Genistein 7-O-glucoside
Pulicaria undulata[120]
6″-O-Malonyl genistin Inula helenium; I. racemosa[21,174]
Calycosin (CID: 5280448)
Synonym: 3′-Hydroxyformononetin
7,3′-Dihydroxy-4′-methoxyisoflavoneChiliadenus glutinosus[38]
Orobol 3′-methyl ether (CID: 5319744)5,7,4′-Trihydroxy-3′-methoxyisoflavoneChiliadenus glutinosus
Inula japonica
[38]
[51]
5,7,2′,3′,4′-Pentahydroxyisoflavone-4′-O-glucopyranoside Pulicaria undulata[160]

2.2. Biological Activity of Flavonoids

2.2.1. Biological Activity of Flavanones and Flavanonols

Sakuranetin, 7-O-methylaromadendrin and 3-acetyl-7-O-methylaromadendrin, isolated from the dried flowering aerial parts of D. viscosa, demonstrated in vivo anti-inflammatory activity in 2 experimental models: phospholipase A2 (PLA2)-induced mouse paw oedema (ED50 = 18 mg/kg and 8 mg/kg for sakuranetin and 7-O-methylaromadendrin, respectively) and 12-O-tetradecanoylphorbol 13-acetate (TPA)-induced mouse ear oedema (ED50 = 205 μg/ear and 185 μg/ear for sakuranetin and 3-acetyl-7-O-methylaromadendrin, respectively). The in vitro experiments proved that sakuranetin and 3-acetyl-7-O-methylaromadendrin inhibited leukotriene B4 production by rat peritoneal neutrophils. Moreover, sakuranetin directly inhibited the activity of 5-lipoxygenase (5-LOX). 7-O-Methylaromadendrin was the only compound that inhibited the secretory PLA2 activity. The results of in vitro experiments may explain the anti-inflammatory effects exerted by the investigated compounds [281]. 7-O-Methylaromadendrin from aerial parts of D. viscosa at a concentration of 10 μM significantly stimulated insulin-induced glucose uptake in both differentiated 3T3-L1 adipocytes and human hepatocellular liver carcinoma (HepG2) cells. Adipocytes treated with the compound demonstrated increased gene expression for the adipocyte-specific fatty acid-binding protein (aP2) and peroxisome proliferator-activated receptor γ2 (PPARγ2). The PPARγ2 protein level and lipid accumulation were also increased in the 7-O-methylaromadendrin-treated cells. Moreover, the compound partly recovered sensitivity to insulin in the insulin-resistant HepG2 cells. The ability to stimulate glucose uptake via PPARγ2 activation and to improve insulin resistance suggests that 7-O-methylaromadendrin may be a potential candidate for the management of type 2 diabetes mellitus [282]. Sakuranetin may also be useful in maintaining glucose homeostasis [283]. Marín et al. [284] proved that 7-O-methylaromadendrin from D. viscosa prevented protein carbonylation in TPA-stimulated human polymorphonuclear leukocytes. The protein carbonylation, a non-enzymatic, post-translational modification of a protein structure is associated with several pathological conditions, including arthritis and asthma. In vivo experiments on rodents demonstrated that blumeatin, isolated from B. balsamifera, protected the liver against pathological changes induced by carbon tetrachloride or thioacetamide intoxication [285]. The anti-inflammatory activity of the compound was confirmed in vivo by ear-swelling experiments on mice [280]. (+)-Dihydroquercetin (taxifolin) isolated from flowers of I. japonica demonstrated inhibitory activity against topoisomerase I (IC50 = 55.7 μM) and II (IC50 = 3.0 μM) [244]. The compound, as well as its 4′-methyl ether and 7,4′-dimethyl ether, isolated from leaves of B. balsamifera, turned out to be a potent inhibitor of α-glucosidase [230].
Soluble epoxide hydrolase (sEH) inhibitors are regarded as potential drug candidates to treat inflammatory and neurodegenerative diseases. Epitaxifolin, isolated from P. britannicum, acted as an uncompetitive inhibitor of the enzyme (IC50 = 6.74 μM). (2R,3R)-Dihydroquercetin and (2S,3S)-dihydroquercetin demonstrated weaker inhibitory activity towards sEH with a half-maximal inhibitory concentration of 20.54 μM and 15.57 μM, respectively [102]. Taxifolin, 7,3′-di-O-methyltaxifolin, 3′-O-methyltaxifolin and 7-O-methyltaxifolin from P. jaubertii exhibited moderate antiproliferative activity against the HCT-116 cancer cell line (IC50 = 32–36 μg/mL). The expression of caspase-3 and caspase-9 genes increased in the HCT-116 cells treated with the flavanonols for 48 h. The viability of the noncancerous cell line HEK-293 was much less affected [286]. Dihydroquercetin 4′-methyl ether, from B. balsamifera was found to overcome tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) resistance in leukemia cells [287]. The compound was also active as a tyrosinase inhibitor (IC50 = 115 μM; arbutin: 233 μM). In the same experiment, dihydroquercetin 7,4′-dimethyl ether demonstrated weaker activity (IC50 = 162 μM) [288]. Taxifolin 4′-methyl ether, isolated from P. undulata herb, reduced the viability of the MCF-7 human breast cancer cells in vitro. The toxicity of the compound against the noncancerous Vero (African green monkey kidney) cell line was less pronounced. In vivo, the flavanonol significantly reduced the growth of Ehrlich ascites carcinoma in mice and significantly lowered the plasma level of the vascular endothelial growth factor (VEGF) in tumor-bearing animals [101]. (2R,3S)-(-)-4′-O-Methyldihydroquercetin, a compound isolated from Vietnamese B. balsamifera, was a more potent inhibitor of xanthine oxidase than allopurinol [289]. Several flavonoids isolated from D. viscosa were tested for their cytotoxic and antimicrobial activities. An acylated flavanonol 3-O-acetylpadmatin proved to be inactive against the cell lines and microbial strains used in the assays [290].

2.2.2. Biological Activity of Flavones

Hispidulin and nepetin, isolated from D. viscosa, markedly reduced the in vitro viability of human breast cancer (MCF-7) and human epithelial carcinoma (HEp-2) cell lines (IC50 = 5.87–19.50 μg/mL) whereas the growth of the Vero cell line was less affected (IC50 = 103.54–105.48 μg/mL). The compounds were inactive against Candida albicans and four strains of bacteria (including methicillin-resistant Staphylococcus aureus and Escherichia coli) [290]. Except for the Inuleae-Inulinae, hispidulin has been isolated from several different plant species (Centaurea spp., Onopordum spp. and others). Studies on the anticancer activity of the flavone in vitro against human cancer cell lines and in vivo in different animal models have been recently summarized by Ashaq and coworkers [291]. SARS-CoV-2 3C-like protease (3CLpro) has been regarded as a target enzyme for suppressing the proliferation of SARS-CoV-2. In a search for the antiviral compounds, a series of flavonoids isolated from flowers of P. britannicum was investigated for the potential 3CLpro inhibitory activity. Hispidulin and nepetin were found to be competitive inhibitors of the enzyme with IC50 = 42.0 μM and 31.7 μM, respectively [292]. Hispidulin, luteolin, nepetin, nepitrin, hispiduloside and jaceoside, isolated from flowers of P. montanum, inhibited NO production (IC50 = 0.34–3.04 μM) in murine macrophages (RAW 267.4) stimulated with lipopolysaccharide (LPS). The compounds, in the described assay, were more active than dexamethasone (IC50 = 3.89 μM) [92]. According to Başpınar and coworkers [82], luteolin and a mixture of 6-hydroxyapigenin 7-methyl ether and 6-hydroxyluteolin 7,4′-dimethyl ether, isolated from P. armena, were not active against Pseudomonas aeruginosa, S. aureus and C. albicans at concentrations up to 200 μg/mL. The compounds demonstrated moderate, nonselective cytotoxic activity against human cancer cells (lines A549 and HCT116) in vitro. Moreover, luteolin showed moderate anti-quorum sensing activity against biosensor strains Chromobacterium violaceum CV026 and Serratia marcescens ATCC 27117.
Nepetin is one of the major flavonoid constituents of Flos Inuleae, a remedy used in commercial traditional Chinese medicine (TCM) [229]. Pretreatment or post-treatment with nepetin (1–50 μM) protected rat cortical cells against glutamate-induced damage. The protection was also effective against toxicity induced by N-methyl-D-aspartate (NMDA) and kainic acid [293]. The flavone may have a therapeutic effect in mast cell-mediated inflammatory diseases. Nepetin, at concentrations of 1.6 and 3.1 μM, significantly reduced the generation of leukotriene C4 (LTC4) and prostaglandin D2 (PGD2) by the mouse bone marrow-derived mast cells stimulated with IgE/antigen in vitro. The antiallergic activity was confirmed in vivo using a passive cutaneous anaphylaxis (PCA) reaction model in mice [294]. Nepetin from P. insignis demonstrated cytotoxic activity towards HeLa and HepG2 human cancer cell lines (IC50: 3.61–3.98 μM) but was inactive against MGC803 and T24 human cancer cells [94].
Luteolin, the most frequently found flavone constituent of Inuleae-Inulinae and a ubiquitous dietary flavonoid has been studied for its biological activity in different in vitro and in vivo experimental models [295,296,297,298]. The compound, isolated from leaves of B. balsamifera, inhibited xanthine oxidase with IC50 = 2.38 μM (IC50 for allopurinol: 0.97 μM) [299] and was one of the most effective sEH inhibitors derived from P. britannicum flowers [102]. Due to the sEH inhibitory activity, luteolin protected lungs against particulate matter 2.5 (PM 2.5)-mediated injury in mice [300]. Luteolin, from flowers of I. japonica, demonstrated inhibitory activity towards topoisomerase I (IC50 = 37 μM; camptothecin: 24.5 μM) and topoisomerase II (IC50 = 9.9 μM; etoposide: 26.9 μM) [244]. Moreover, the flavone dose-dependently, starting from a concentration of 10 μM, inhibited differentiation of 3T3-L1 cells into adipocytes and enhanced differentiation of the mouse myoblast cells (C2C12) that may lead to obesity alleviation and enhancement of endurance [18].
Luteolin 3′-methyl ether (chrysoeriol) from P. britannicum, based on in silico studies, was selected as a potential inhibitor of dihydrofolate reductase (DHFR-1) and may be considered as a potential therapeutic agent in Shigella dysenteriae type 1 infections [301].
A C-8 methoxylated flavone from C. iphionoides, xanthomicrol, demonstrated antifungal activity [145] and inhibited aggregation of human blood platelets induced by collagen and ADP [146].

2.2.3. Biological Activity of Flavonols

Flavonols, ubiquitous constituents of plants and plant foods, have been extensively investigated with respect to their potential risks and benefits to human health. The best-known plant metabolites of this type are kaempferol, quercetin and their corresponding 3-O-glucosides: astragalin and isoquercetin. The pharmacological activities of flavonols and their role as components of the human diet were discussed in several review papers [302,303,304,305,306,307].
Antioxidant and α-glucosidase inhibitory activities of seven flavonol 3-methyl ethers from aerial parts of C. iphionoides were assayed in vitro by Al-Dabbas and coworkers [176]. Quercetin 3,3′-dimethyl ether and 6-methoxykaempferol 3-methyl ether were proved to be the best antioxidants among the investigated compounds, whereas kaempferol 3-methyl ether demonstrated the best α-glucosidase inhibitory activity. 6-Methoxykaempferol 3-methyl ether and quercetin 3,3′-dimethyl ether exerted moderate cytotoxic effects on human leukemia (HL-60) cells [177]. 6-Methoxykaempferol and quercetagetin 6,7-dimethyl ether, from aerial parts of P. undulata, significantly reduced the viability of MCF-7 and Hep G2 cancer cells (IC50: 23.5–40.2 μg/mL). The 2,2-Diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity of 6-methoxykaempferol was comparable to that of vitamin C [188]. 6-Hydroxykaempferol 3,7-dimethyl ether and chrysosplenol C from P. inuloides were moderately (IC50: 16.8–19.6 μg/mL) but selectively active against prostate cancer cell lines (PC3) resistant to doxorubicin [186]. 6-Methoxykaempferol 3,4′-dimethyl ether (santin), isolated from the inflorescences of P. insignis, exerted a cytotoxic effect on MGC-803, HeLa, Hep G2, and T24 human cancer cell lines (IC50: 3.71–4.78 μM) whereas the corresponding IC50 values for 6-methoxykaempferol 3-methyl ether and 6-methoxyquercetin 3-methyl ether, isolated from the same plant material, were higher than 40 μM [94].
Quercetin and tamarixetin (quercetin 4′-methyl ether), from leaves of B. balsamifera, showed inhibitory activity against xanthine oxidase (IC50: 2.92–3.16 μM; allopurinol: 0.97 μM) [299]. The activity was confirmed in the assay conducted using quercetin and quercetin 3,3′,4′-trimethyl ether isolated from B. balsamifera plants of Vietnamese origin (IC50: 1.28–1.91 μM; allopurinol: 2.50 μM) [289]. Quercetin and rhamnetin (quercetin 7-methyl ether) were competitive inhibitors of mushroom tyrosinase (IC50: 96–107 μM; arbutin: 233 μM) [288] and tamarixetin was a somewhat weaker inhibitor of the enzyme (IC50 = 144 μM) than the flavonols mentioned above.
Two quercetin glycosides, isoquercetin and quercimeritrin, isolated from P. jaubertii, suppressed mutant K-Ras/B-Raf protein expression and interaction in both human lung cancer (A549) and hepatocellular carcinoma (HepG2) cells. The compounds repressed IL-8 and TGF-β signaling in the treated cells, which may suggest their potential regulatory influence on the angiogenesis and metastatic ability of cancer cells [164]. Quercetin 3-methyl ether and quercetin 3,3′-dimethyl ether from D. viscosa demonstrated antiproliferative activity towards MCF-7 cells (IC50: 11.23 and 10.11 μg/mL, respectively; vincristine sulfate IC50 = 10.03 μg/mL) and HEp-2 cells (IC50: 26.12 and 28.01 μg/mL, respectively). The half-maximal inhibitory concentrations of the compounds against Vero cells were higher than 150 μg/mL. Moreover, the compounds showed moderate antibacterial activity (MIC: 62.5–125 μg/mL) against Bacillus cereus and Salmonella typhimurium [290]. Quercetin 7-methyl ether from P. undulata reduced the viability of MCF-7 cells in vitro (IC50: 18.50 μg/mL). The compound was less cytotoxic against Vero cells (IC50 > 50 μg/mL). In vivo, the flavonol significantly inhibited the growth of Ehrlich ascites carcinoma in mice and normalized the VEGF levels in the serum of the tumor-bearing animals [101]. An expression of the hematopoietic progenitor cell antigen CD34, a marker of angiogenesis, was also significantly reduced in the tumor tissue of the rhamnetin-treated mice [101].
The bio-guided fractionation of L. crithmoides flower extract led to the isolation of quercetin and quercimeritrin as constituents responsible for the antioxidative activity of the plant material [216]. Quercetin and its 3-O-galactoside from P. undulata demonstrated high DPPH radical scavenging activity (IC50: 7.5 and 11.4 μM, respectively). Quercetin and its 3,7-dimethyl ether, isolated from the same source, protected the hepatoma Hepa1c1c7 cell line against tert-butyl hydroperoxide (TBHP)-induced damage (EC50 for quercetin 3,7-dimethyl ether: 33.6 μM) [160]. Moreover, quercetin 3,7-dimethyl ether extracted from leaves of B. balsamifera inhibited plasmin activity (IC50: 1.5 μM) [133]. Tamarixetin from B. balsamifera turned out to be a potent DPPH scavenger (IC50 = 0.88 μg/mL) and inhibitor of α-glucosidase (IC50 = 28.0 μg/mL; acarbose 261.5 μg/mL). Quercetin 3,3′-dimethyl ether, isolated from the same plant material, had significantly lower radical scavenging activity and was less efficient in inhibiting α-glucosidase (IC50 = 76.85 μg/mL) than tamarixetin [230]. Pan and coworkers studied the effect of tamarixetin, isolated from flowers of I. japonica, on the production of inflammatory mediators by IgE/antigen-induced mouse bone marrow-derived mast cells. Flavonol decreased degranulation and the eicosanoid (LTC4 and PGD2) generation in the cells which may be useful in the prevention of allergic inflammatory diseases [231]. Ayanin (quercetin 3,7,4′-trimethyl ether), a constituent of B. balsamifera, D. viscosa and several other anti-inflammatory plant extracts, based on a virtual screening, was predicted to act as an inhibitor of human inhibitor NF-κB kinase 2 (hIKK-2) [308]. Another trimethyl ether of quercetin, pachypodol, at a concentration range of 1–5 μg/mL, completely suppressed replication of poliovirus type 1 in HeLa cells [309].
Quercetin, quercetin 3-O-glucoside, patuletin 3-O-glucoside and quercetagetin 7-O-glucoside (the latter compound isolated from flowers of B. salicifolium) scavenged reactive oxygen species (ROS) generated by the polymorphonuclear leukocytes stimulated by N-formyl-methionyl-leucyl-phenylalanine (FMLP) (72.3–81.4% inhibition at a concentration of 1 μM) or opsonized zymosan (18.1–24.7% inhibition; 1 μM) [239]. Patuletin and axillarin from flowers of P. britannicum, in a dose-dependent mode, protected in vitro cultured rat cortical neurons against glutamate-induced injury, when applied 1 h before or 30 min after the glutamate insult. The flavonols also provided an effective protection of the cells against both N-methyl-D-aspartate (NMDA) and kainic acid-induced neuronal damage [293]. Patuletin at a dose of 30 mg/kg (i.p.) demonstrated significant antinociceptive activity in mice, in several pharmacological tests (tail-flick test, writhing test, formalin-induced paw licking and glutamate-induced paw licking) [310]. Its mechanism of action, however, has remained unclear. Like the flavones nepetin and hispidulin, patuletin turned out to be a competitive inhibitor of SARS-CoV-2 3CLpro [292].
Quercetagetin 3,4′-dimethyl ether, obtained from the flowers of I. japonica, inhibited (conc. 2.9 and 29 μM) adriamycin-induced senescence and replicative senescence in human umbilical vein endothelial cells (HUVECs) in vitro [245]. The compound suppressed intracellular ROS generation triggered by adriamycin [245], inhibited topoisomerase II (IC50 = 6.9 μM) and was moderately cytotoxic against human lung carcinoma (A459; IC50 = 59.3 μM) and human colon adenocarcinoma (HT-29; IC50 = 30.9 μM) cell lines in vitro [244]. Another flavonol of the same origin, spinacetin, at a concentration range of 1–5 μM, significantly suppressed histamine release, Ca2+ mobilization, LTC4 generation, cPLA2 translocation and MAPKs phosphorylation and decreased IL-6 and COX-2 expression in bone marrow-derived mast cells activated by IgE/antigen. Peroral administration of spinacetin (25 and 50 mg/kg), dose-dependently attenuated an IgE/Ag-mediated passive cutaneous anaphylactic reaction in a mouse model [311]. Spinacetin and 3,5,4′-trihydroxy-6,7,3′-trimethoxyflavone demonstrated sEH inhibitory activity in vitro (IC50: 16.58 μM and 14.13 μM, respectively) that supported their role as anti-inflammatory agents [102]. Quercetagetin 3,7,3′-trimethyl ether (chrysosplenol C) from P. armena and P. inuloides demonstrated moderate cytotoxicity towards A549, HCT116 and PC3 human cancer cell lines in vitro (IC50: 16.8–20.0 μg/mL) [82,186]. According to Ayaz et al. [250], chrysosplenol C extracted from C. montanum, was cytotoxic against the human breast (MCF-7), cervical (HeLa) and lung (A549) cancer cell lines (conc. 20 μg/mL), but the activity was not clinically significant and not selective. The same compound, isolated from other plant sources, showed antiviral activity [312] and a positive inotropic effect in rat cardiac myocytes [313]. Elhady and coworkers investigated the antitumor activity of jaceidin (quercetagetin 3,6,3′-trimethyl ether) from aerial parts of C. montanus both in vitro and in vivo [238]. The flavonol was cytotoxic against the MCF-7 and HepG2 cancer cells (IC50: 9.3 and 9.7 μM, respectively) and seemed to be devoid of toxicity towards the normal human melanocytes (HFB-4) in vitro. In vivo, the compound was tested against Ehrlich’s ascites carcinoma solid tumors grown in female mice. At a dose of 50 mg/kg, jaceidin significantly reduced the tumor weight, the number of giant cells in the tumor tissue and lowered the serum level of VEGF-B. The compound, extracted from aerial parts of C. iphionoides, demonstrated significant antioxidant and radical scavenging activities, increased blood clotting time and exerted a thrombolytic effect in vitro [314]. Other flavonols from C. iphionoides, kaempferol 3,7-dimethyl ether (kumatakenin) and quercetin 3,3′-dimethyl ether demonstrated antifungal activity and inhibited aggregation of human blood platelets induced by both ADP and collagen [145,146]. Quercetagetin 6,7,4′-trimethyl ether, based on in silico studies on P. britannicum metabolites, was selected for further investigation as a potential inhibitor of dihydrofolate reductase that may find use in the therapy of shigellosis [301].
Bio-guided fractionation of a chloroform extract from aerial parts of P. inuloides led to the isolation of quercetagetin 3,5,7,3′-tetramethyl ether as a compound responsible for the leishmanicidal activity of the plant material [255]. Quercetagetin 3,5,7,4′-tetramethyl ether from aerial parts of P. salviifolia, at a dose of 50 mg/kg, lowered cholesterol levels (by c. 20%) in the blood serum of both healthy and hyperlipidemic rats [254].

2.2.4. Biological Activity of Chalcones

Data on the activity of chalcones isolated from the Inuleae-Inulinae are sparse. Only four compounds of this structural type: davidigenin, davidioside and pulichalconoides B and C have been isolated from the plants of the tribe [107,279]. Butein 4′-O-glucoside and isoliquiritigenin 4′-O-glucoside were identified in the plant extracts by TLC [65] and their presence in the analyzed plant materials needs confirmation by other analytical methods. Licuraside was tentatively identified in the extract from ‘tumuxiang’, a traditional Chinese medicine (TCM) preparation composed of I. helenium and I. racemosa dried roots [280]. Davidigenin and davidioside isolated from B. balsamifera [107] were not assayed for their biological activities, but the activity of davidigenin as an aldose reductase inhibitor, inhibitor of leukotriene release from the stimulated human polymorphonuclear leukocytes and antispasmodic agent has been reported in the literature [315,316,317].
Pulichalconoid B from P. incisa protected rat primary astrocytes against H2O2 cytotoxicity and inhibited H2O2-induced intracellular ROS production. Treatment with pulichalconoid B increased the level of glial-derived neurotrophic factor (GDNF) transcript in the cells [279]. Moreover, pulichalconoid B at a concentration of 63 μM and 125 μM significantly inhibited the secretion of cytokines (IL-2, IL-6, IL-10, IL-12, and IFN-γ) from the LPS-stimulated mouse splenocytes [318]. In the oxazolone model of cutaneous dermatitis in mice, pulichalconoid B (at a dose of 10 mg/kg) downregulated levels of the cytokines in the supernatants of ear homogenates from oxazolone-treated mice and reduced oxazolone-induced ear edema [318].

2.2.5. Biological Activity of Isoflavones

A majority of the isoflavonoids described as metabolites of Inulae-Inulinae was tentatively identified in the plant material using different variants of the HPLC-MS technique [21,38,40,51,112,120,174]. Daidzein was one of the compounds isolated from the aerial parts of D. nervosa of Chinese origin [79]. The isoflavone was assayed for anti-inflammatory activity in vitro by the measurement of the secretion of inflammatory cytokines (TNF-α, IL-6 and IL-1β) in the LPS-stimulated RAW 264.7 cells, pretreated with the compound, but was judged as inactive based on its IC50 values [79]. 5,7,2′,3′,4′-Pentahydroxyisoflavone 4′-O-glucoside extracted from the whole plant of P. undulata, turned out to be an excellent DPPH radical scavenger in vitro (IC50 = 3.9 μM; quercetin: 7.5 μM) but failed to protect Hepa1c1c7 murine hepatoma cells from the tert-butyl peroxide-induced oxidative damage [160].

2.3. Hydroxycinnamates

This group of phenolic compounds comprises numerous conjugates of hydroxycinnamic (caffeic, ferulic and p-coumaric) acids with quinic, shikimic, tartaric and aldaric acids. The most frequently isolated and identified hydroxycinnamates of the Inuleae-Inulinae are chlorogenic acids (CGAs), i.e., esters of trans hydroxycinnamic acids with 1L-(-)-quinic acid. The compounds were found in nearly all the examined species from the subtribe. One of the most common caffeoylquinic acids, chlorogenic acid, according to the current IUPAC rules denoted as 5-O-caffeoylquinic acid (5-CQA), was formerly known as 3-O-caffeoylquinic acid (3-CQA). In this review, the current IUPAC numbering rules have been applied but the numbering system used by the authors of papers cited herein was not always clear.
CGAs are ubiquitous plant metabolites and common constituents of food. They are present in coffee, potatoes, apples, artichokes, plums, cherries, prunes, tomatoes and carrots [319,320]. The questions concerning the chemistry, bioavailability and pharmacological activity of CGAs have been recently summarized by Clifford et al. [320] and Magaña et al. [321]. CGAs act as the antioxidative and anti-inflammatory agents that demonstrate neuroprotective effects, prevent hypoxia-induced retinal degeneration and counteract the formation of advanced glycation end products [320,322,323,324,325].
Danino and coworkers [326] proved in a series of experiments that 1,3-dicaffeoylquinic acid (1,3-DCQA), isolated from D. viscosa, is a potent antioxidant and may inhibit ROS generation in the growing cells. However, the IC50 values of 1,3-DCQA in different experimental models were lower when compared to those of the standard antioxidant compounds (caffeic acid, ferulic acid, ascorbic acid, Trolox). Fractionation of the root extract from L. crithmoides subsp. crithmoides, directed by the hepatoprotective activity, led to the isolation of 3,5-DCQA 1-methyl ether, 4,5-DCQA 1 methyl ether and 1,5-DCQA as the active metabolites of the plant [327]. Jallali et al. [216], in a search for potent antioxidants, conducted a bio-guided fractionation of the extract from flowers of L. crithmoides. As a result, 5-CQA, 1,5-DCQA and 3-p-coumaroyl-5-caffeoylquinic acid were isolated and identified, in addition to quercetin and quercimeritrin.
Methanol extract from the leaves of D. viscosa (40 mg/kg/day) counteracted hypertension induced by the N-Nitro-L-arginine methylester (L-NMAE) treatment in rats. A similar effect was achieved with enalapril (15 mg/kg/day). Fractions of the extract that demonstrated the best vasorelaxant effect contained 5-CQA and cynarine (1,3-DCQA). The vasorelaxant activity of the hydroxycinnamates was confirmed using the commercial standards of cynarin and chlorogenic acid [20].
5-CQA, 3,5-DCQA and 1,5-DCQA isolated from flowers of P. montanum inhibited NO release by the murine macrophages (RAW 267.4) stimulated with LPS (IC50: 31.5, 6.9 and 2.5 μM, respectively), which indicates the anti-inflammatory activity of the compounds [92]. The enzyme soluble epoxide hydrolase (sEH) has attracted some attention as a potential target for the treatment of inflammatory diseases. Zhao et al. [102] investigated the sEH inhibitory activity of 3,5-DCQA and 1,5-DCQA (although the figure shown in the paper suggested 1,3-DCQA according to IUPAC rules) in a cell-free experimental model. They proved that the studied hydroxycinnamates inhibited the target enzyme (IC50: 17.2 μM and 10.7 μM, respectively) as its uncompetitive inhibitors.
Murlanova and coworkers studied the antidepressant-like activity of the root extract from D. viscosa [27]. A fractionation of the crude extract led to the identification of fractions active against H2O2-induced damage in the rat pheochromocytoma (PC12) cells. The fraction that demonstrated the best cytoprotective effect, injected peritoneally (5–25 mg/kg), reduced immobility time in the forced swim test on mice and produced antidepressant-like effects similar to paroxetine (10 mg/kg). Moreover, the treatment with the active fraction caused neurochemical alterations comparable to the effects of paroxetine. Two major components of the active fraction from the root extract, which represented approximately 87% of the total content, were tentatively identified as 5-CQA (49%) and 1,3-DCQA (38%).
Except for the most frequently found caffeoylquinic acids, monoacyl-, diacyl- and triacylquinic acids (conjugates with ferulic, p-coumaric and caffeic acid) or caffeoylquinates substituted with short-chain organic acids (isobutyric, methylbutyric and others) were often identified in the extracts of Inuleae-Inulinae, mostly using HPLC-MS techniques [53,62,75,98,123,124,130,142,163,170,174,186,217,226,328,329,330,331,332]. Metabolomic studies, performed using the hyphenated methods, revealed the presence of conjugates of hydroxycinnamic acids with shikimic acid in D. cappa [329], D. nervosa [330] and D. viscosa [172] and conjugates of hydroxycinnamic acids with aldaric acids in B. megacephala, B. riparia [123], B. speciosissimum [163], C. divaricatum [328], C. glutinosus [75], D. viscosa [135,333], I. helenium [334], I. japonica [71], I. sarana [53], P. spinosa [207], P. vulgaris [72] and P. inuloides [186]. Caffeoyltartaric acid (caftaric acid) and 2,3-dicaffeoyltartaric acid (chicoric acid) were isolated from the roots of I. helenium [335]. The latter compound was also identified in the extract from C. montanum [64]. Another biologically active antioxidant from the hydroxycinnamate group, rosmarinic acid, was identified in B. lacera [154], B. sinuata [196], C. montanum [64], D. viscosa [77,268] and R. suaveolens [61]. Salvianolic acid A was tentatively identified in the extract from leaves of D. viscosa [173]. An analysis of the extract from I. helenium roots revealed the presence of galloyl-caffeoyl-hexose [174]. Caffeoyl-N-tryptophan-rhamnoside and caffeoyl-N-tryptophan were identified in the extracts from D. viscosa [69,172].

2.4. Flavonolignans

Except for silybin and isosilybin isolated as a mixture from C. faberi [63], anthelminthicol A from P. caspicum [336] and flavalignans cinchonain I and II, tentatively identified in the extract from leaves of D. viscosa, the occurrence of flavonolignans in the Inuleae-Inulinae seems to be limited to Duhaldea spp. [66,113,337,338]. (-)-Hydnocarpin-7-O-glucoside [337] and hydnocarpin D [66] were isolated from D. cappa. The compounds were not assayed for their biological activity but the protective role of hydnocarpin D in LPS-induced acute lung injury has been recently studied by Hong and coworkers [339]. The compound was also found to be active as a ferroptosis inducer in T-cell acute lymphoblastic leukemia cells [340].
Aerial parts of D. wissmanniana yielded 23-O-acetylsilychristin A, silychristin A, silychristin B, isosilychristin, isohydnocarpin, 2,3-dehydrosilychristin, silybin A, silybin B, isosilybin A, hydnocarpin and silydianin (see Figure 5) [113,338]. Silychristin A (CID: 441764) dominated the fraction of flavonolignans [338]. Anti-inflammatory activities of the isolated compounds were assessed by the measurement of the nitrite concentration in the culture supernatant from RAW 264.7 macrophage pretreated with the flavonolignans and stimulated with LPS. 2,3-Dehydrosilychristin and hydnocarpin demonstrated moderate anti-inflammatory effects (IC50: 19.6 μM and 23.3 μM, respectively) under the experimental conditions of the study. Chemistry, bioavailability and pharmacological activity of silymarin, a mixture of flavonolignans extracted from Silybum marianum (L.) Gaertn. (Asteraceae, Cardueae) containing silybin, isosilybin, silychristin, silydianin and 2,3-dehydrosilybin as major constituents, has been discussed by Křen and Valentová in their recent review [341].

2.5. Lignans

This group of polyphenols comprises monolignol (p-coumaroyl alcohol, coniferyl alcohol and sinapyl alcohol) dimers of diverse structures (Figure 6) and different biological activity profiles [342,343,344]. Furofuran-type lignans (pinoresinol, syringaresinol and medioresinol) were the most frequently isolated lignan constituents of the Inuleae-Inulinae. They were found in the genera Rhanterium (R. suaveolens) [345], Pulicaria (P. insignis) [94], Inula (I. helenium, I. hookeri, I. japonica) [147,178,244], Chrysophthalmum (C. montanum) [250] and Carpesium (C. cernuum, C. faberi) [63,125]. Moreover, their presence was tentatively confirmed in D. viscosa and C. glutinosus by HPLC-MS analyses [38,75,77]. Syringaresinol from the flowers of I. japonica inhibited topoisomerase II (IC50 = 28.9 μM) and demonstrated moderate cytotoxic activity against HepG2 and HT-29 cancer cell lines (IC50: 30.0 μM and 57.5 μM, respectively) [244].
Neoolivil 9′-O-glucoside from C. cernuum [125] and rhanteriol [345] are representatives of tetrahydrofuranoid-type lignans. Rhanteriol has been recently isolated from aerial parts of R. suaveolens. The compound inhibited α-amylase (IC50: 46.42 μM; reference acarbose IC50: 5.65 μM) and α-glucosidase (IC50: 26.76 μM; acarbose IC50: 241.32 μM), as well as butyrylcholinesterase (IC50: 10.41 μM; reference galanthamine IC50: 11.63 μM), which may suggest its potential usefulness to prevent type 2 diabetes mellitus and dementia. Its acetylcholinesterase (AChE) inhibitory activity, however, was surprisingly low (21% of inhibition at 100 μM).
Britanicafanins C-E, dibenzylbutane lignans were isolated from I. britannica in a search of the in vitro active sEH inhibitors. In the applied assay, britanicafanins C and E were moderately active against the enzyme (IC50: 26.67 μM and 20.66 μM, respectively), whereas structurally closely related britanicafanin D and ternifoliuslignan A (an aryltetralin-type lignan) turned out to be inactive [102]. Another dibenzylbutane lignan, secoisolariciresinol, was tentatively identified in the extract from Iphiona mucronata by Pecio et al. [76].
Ceplignan, a neolignan of dihydrobenzofuran type, was isolated from D. cappa by Wu et al. [49], and two other neolignans of the same structural type, derivatives of blechnic acid, were tentatively identified in the extract from leaves of D. viscosa [172]. Citrusin A and two more 8,4′-oxyneolignans, carpesides A and B, were obtained by Ma and coworkers from the aerial parts of C. cernuum [125]. A biphenyl neolignan, honokiol, was tentatively identified in the extract from C. glutinosus [38].

2.6. Coumarins

Like other plants of the Asteraceae family, Inuleae-Inulinae accumulated mainly simple coumarins (coumarin, umbelliferone, herniarin, esculetin, scopoletin, isoscopoletin, scoparone and others) (for structures, see Figure 7). The compounds may reduce the glucose absorption rate, increase the level of insulin, increase the cellular uptake of glucose or reduce the gluconeogenesis [346] and act as antitumor agents through different mechanisms [347]. Their pharmacological activity has been briefly summarized by Keri et al. [348] in their review of the anticonvulsant properties of coumarin derivatives.
Coumarins are usually minor constituents of the Inuleae-Inulinae. They were found in Blumea spp., Carpesium spp., Chiliadenus spp., Dittrichia spp., Duhaldea spp., Inula spp., Pentanema spp., Pulicaria spp. and Rhanterium spp. The most frequently isolated compound from this group was scopoletin [68,113,178,237,252,349,350,351]. Other coumarins were mostly detected in plant extracts by different analytical methods.
Ceylan et al. [40] detected coumarin in eight of the eleven extracts from different Inula and Pentanema species (I. anatolica, I. discoidea, I. inuloides, I. peacockiana, I. sechmenii, I. thapsoides, I. viscidula, P. britannicum). Coumarin was a minor component in the analyzed samples and its content did not exceed 0.018 mg per 1 g of the dry extract. In the roots of I. grandiflora, from a location in the Himalayas, the compound was one of the major phenolic metabolites detected (over 6 μg per 1 g of the dry root) [114]. Umbelliferone (7-hydroxycoumarin; hydrangin; skimmetin) was isolated from a chloroform fraction of the P. gnaphalodes extract [352] and tentatively identified in the extracts from roots and rhizomes of D. nervosa [201], I. helenium and I. racemosa [278]. Another simple coumarin, herniarin (7-methoxycoumarin), and its derivative 7-hydroxycoumarin-sesquiterpene ether (feshurin, see Figure 7) were the coumarins isolated from P. gnaphalodes in addition to umbelliferone [352]. Esculetin (6,7-dihydroxycoumarin; cichorigenin) was obtained from C. lipskyi [350], P. dysenterica [81] and P. insignis [94]. The compound and its 6-O-glucoside (aesculin) were also detected (by TLC) in I. koelzii, I. stewartii and I. rhizocephala [65]. Zhang et al. [178], from the whole plants of I. hookeri, isolated a derivative of esculetin, ayapin (6,7-methylenedioxycoumarin). Scopoletin (6-methoxyesculetin; gelsemic acid; 6-methoxy-7-hydroxycoumarin) was obtained from the plants of the genera Carpesium (C. lipskyi, C. macrocephalum) [349,350] Chiliadenus (C. candicans) [252], Duhaldea (D. cappa, D. wissmanniana) [68,113], Inula (I. hookeri) [178] and Pulicaria (P. burchardii) [237] and was identified (by GC-MS) in the extract from R. epapposum [351]. The compound (from C. macrocephalum) turned out to be devoid of antibacterial activity [349]. Scopolin (scopoletin 7-O-glucoside) was present in the extracts from D. cappa (0.13–0.22 mg/g) [68,126] and was tentatively identified in roots and rhizomes of D. nervosa [112,201], I. helenium and I. racemosa [278]. Isoscopoletin (6-hydroxy-7-methoxycoumarin; 7-methoxyesculetin) was found in D. cappa [68] and D. nervosa [112]. Scoparone (6,7-dimethoxycoumarin; 6,7-dimethylesculetin) was isolated from C. candicans [252] and identified in P. undulata (LC-MS) [120] and P. glutinosa (GC-MS) [353]. Hydrangetin (7-hydroxy-8-methoxycoumarin) was tentatively identified in B. balsamifera by Pang and coworkers [136]. Aerial parts of P. wightiana yielded 7,8-dihydroxy-6-methoxycoumarin (fraxetin) [247]. The compound was also provisionally identified in B. balsamifera [132] and D. nervosa [201]. Brahmi-Chendouh and coworkers [172] tentatively identified 3,7-dihydroxycoumarin during the LC-MS analysis of the deterpenated and defatted D. viscosa leaves.
Derivatives of simple coumarins with a higher molecular weight rarely occur in Inuleae-Inulinae. Cleomiscosin C (aquillochin), a derivative of fraxetin, was isolated from flowers of D. cappa [78] and a coumarin dimer carpesilipskyin was extracted from the aerial parts of C. lipskyi [350].
A compound of unusual structure, 6-hydroxycoumarin lauryl ether, isolated from P. britannicum proved to be inactive as an sEH inhibitor in contrast to 6,8-dihydroxycoumarin (IC50 = 26.93 μM), investigated in the same study [102].

2.7. Stilbenoids

Derivatives of stilbene may exert positive effects on the cardiovascular system and blood glucose levels. Their pharmacological properties, potential use in the therapy and mechanisms of action have been summarized by Dvorakova and Landa [354], Koh et al. [355] and Duta-Bratu et al. [356]. Only one compound from this class, pinosylvin (trans-3,5-dihydroxystilbene, see Figure 8) was isolated from the plants of the Inuleae-Inulinae. The stilbenoid was found in the aerial parts of P. germanicum by Bohlmann and coworkers [357]. Ceylan et al. [40] detected 3,4,5-trihydroxystilbene-3-O-glucoside (piceid) in three species from the genus Inula (I. viscidula, I. inuloides and I. peacockiana). The highest content of the compound was found in I. viscidula (0.07 mg per 1 g of the dry extract) [40]. 3,5,3′,5′-Tetramethoxy-trans-stilbene was tentatively identified in the extracts from roots and rhizomes of I. helenium and I. racemosa, ingredients of “tumuxiang”, a preparation used by TCM practitioners [280]. Traces of resveratrol were detected in the root extract from C. montanum [64].

2.8. Miscellaneous Compounds

Only three papers described phenylethanoids as metabolites of the Inuleae-Inulinae. Olennikov and Thankhaeva [335] isolated echinacoside from the roots of I. helenium. Chelly and coworkers [60] quantified phenolic metabolites, including phenylethanoids, in the methanol extract (yield 26.1%) from aerial parts of R. suaveolens. The extract contained verbascoside (1095 mg/100 g), oleuropein (260 mg/100 g), tyrosol (390 mg/100 g) and hydroxytyrosol (65 mg/100 g). For the comparison, the content of the major phenolic constituents of the extract, p-coumaric acid and apigenin 7-O-glucoside, reached 4540 mg/100 g and 4055 mg/100 g, respectively. Tubuloside A was tentatively identified in the extracts from the roots of I. helenium and I. royleana [280].
Traces of ellagic acid were detected in the extracts from the roots of C. montanum [64]. Tannic acid was found in four out of eleven Inula and Pentanema species investigated by Ceylan et al. [40]. Its content in the dry extracts ranged from 0.008 mg/g in I. peacockiana to 0.647 mg/g in I. sechmenii. Tannic acid was also detected and quantified in the leaves of D. graveolens [198]. However, the measured content of the compound was low (45 μg/kg of the dry extract).
Two enantiomers of britanicafanin A and britanicafanin B, polyphenols of the atypical structure, were isolated from P. britannicum as the active sEH inhibitors (IC50: 16.12 μM-24.05 μM) [102]. Gao et al., in the samples of “tumuxiang”, a preparation containing roots of I. helenium and/or I. racemosa, tentatively identified isomucronustyrene (CID: 10423261) and mulberrofuran A (CID: 5281332) [280].

3. Conclusions

Recently, a significant growth in the number of publications concerning phenolic metabolites of Inuleae-Inulinae has been observed. Introduction and popularization of the hyphenated analytical techniques (especially diverse variants of HPLC-MS) speeded up the process of uncovering compositions of plant extracts. However, the quality of the results obtained by the modern methods depends both on the quality of equipment and on the expertise of researchers. The published results were sometimes below the expectations. Our knowledge of the polyphenols produced and accumulated by the plants expanded rapidly thanks to the new methods, but there are still a lot of gaps to fill. Replacement of the time-consuming process of the isolation and spectroscopic analysis of plant metabolites by a single-step chromatographic analysis of the plant extract is tempting but still impossible because some structural details can not be resolved using LC-MS. The hyphenated methods, however, are indispensable as dereplication tools and may reveal the presence of compounds that are lost during the traditional analysis. Their potential to quantify the components of the pharmacologically active plant preparations seems to be underutilized.
Flavonoids are the most frequently investigated polyphenolic metabolites of the Inuleae-Inulinae. The compounds, however, do not dominate the polyphenolic metabolite fraction of every species included in the subtribe. Blumea balsamifera and Dittrichia viscosa seem to be especially rich in flavonoids of diverse structural types whereas only nine flavonoids were described as metabolites of Carpesium spp. Some of the flavonoids isolated from the Inuleae-Inulinae demonstrated cytotoxic activity towards human cancer cell lines in vitro. The anticancer activity in some instances was confirmed in vivo, using transplantable tumor systems. The molecular mechanisms behind the selective cytotoxicity of the plant constituents against the cancer cells have only in part been elucidated.
Hydroxycinnamates are the second most frequently studied group of polyphenols synthesized by the plants of the subtribe. Both flavonoids and hydroxycinnamates have been frequently tested in vitro for their antioxidative and anti-inflammatory properties with positive outcomes. Moreover, pharmacological research on the Inuleae-Inulinae polyphenols brought some interesting results, including those concerning blood glucose level and blood pressure lowering, adipogenesis regulation and counteracting depressive-like behavior. The results supported the concept that polyphenols participate in pharmacological effects exerted by the examined plant extracts. Studies on the hepatoprotective activity of the polyphenols and their lung injury protective effect are also worth noting. Taking into consideration the results achieved in vitro, the inhibitory activity of polyphenols towards the soluble epoxide hydrolase in living cells may be an interesting area to explore.
To sum up, the Inuleae-Inulinae subtribe of the Asteraceae comprises the plants that are producers of structurally diverse pharmacologically active polyphenols. Their therapeutic potential and molecular mechanisms of action have not yet been fully explored. To improve the quality of research and applicability of the results, pharmacological investigations of the plant extracts should be accompanied by the qualitative and quantitative analysis of the plant preparation used.

Author Contributions

Conceptualization, A.S. and J.M.; methodology, A.S., K.M. and J.M..; resources, A.S.; data curation, A.S. and J.M.; writing—original draft preparation, A.S., K.M. and J.M.; writing—review and editing, A.S. and J.M.; visualization, J.M.; supervision, A.S. All authors have read and agreed to the published version of the manuscript.

Funding

This research received no external funding.

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

Not applicable.

Acknowledgments

The authors would like to thank all the colleagues who decided to share their research results.

Conflicts of Interest

The authors declare no conflicts of interest.

References

  1. Anderberg, A.A. Inuleae. In Systematics, Evolution, and Biogeography of Compositae; Funk, V.A., Susanna, A., Stuessy, T.F., Bayer, R.J., Eds.; International Association for Plant Taxonomy: Vienna, Austria, 2009; pp. 667–680. [Google Scholar]
  2. Seca, A.M.L.; Grigore, A.; Pinto, D.C.G.A.; Silva, A.M.S. The genus Inula and their metabolites: From ethnopharmacological to medicinal uses. J. Ethnopharmacol. 2014, 154, 286–310. [Google Scholar] [CrossRef] [PubMed]
  3. Yang, L.; Wang, X.; Hou, A.; Zhang, J.; Wang, S.; Man, W.; Yu, H.; Zheng, S.; Wang, Q.; Jiang, H.; et al. A review of the botany, traditional uses, phytochemistry, and pharmacology of the Flos Inulae. J. Ethnopharmacol. 2021, 276, 114–125. [Google Scholar] [CrossRef] [PubMed]
  4. Grauso, L.; Cesarano, G.; Zotti, M.; Ranesi, M.; Sun, W.; Bonanomi, G.; Lanzotti, V. Exploring Dittrichia viscosa (L.) Greuter phytochemical diversity to explain its antimicrobial, nematicidal and insecticidal activity. Phytochem. Rev. 2020, 19, 659–689. [Google Scholar] [CrossRef]
  5. Pang, Y.; Wang, D.; Fan, Z.; Chen, X.; Yu, F.; Hu, X.; Wang, K.; Yuan, L. Blumea balsamifera—A Phytochemical and Pharmacological Review. Molecules 2014, 19, 9453–9477. [Google Scholar] [CrossRef] [PubMed]
  6. Mohd, K.S.; Mohd Razali, N.A. Blumea balsamifera Linn DC: A review on traditional uses, phytochemical composition and pharmacological properties. Biosci. Res. 2020, 17, 71–80. Available online: https://www.isisn.org/BR17(SI-1)2020/71-80-17(SI-1)2020BR20-08.pdf (accessed on 31 October 2023).
  7. Widhiantara, I.G.; Jawi, I.M. Phytochemical composition and health properties of Sembung plant (Blumea balsamifera): A review. Vet. World 2021, 14, 1185–1196. [Google Scholar] [CrossRef] [PubMed]
  8. Liu, L.-L.; Yang, J.-L.; Shi, Y.-P. Phytochemicals and biological activities of Pulicaria species. Chem. Biodiv. 2010, 7, 327–349. [Google Scholar] [CrossRef] [PubMed]
  9. Butala, S.; Suvarna, V.; Mallya, R.; Khan, T. An insight into cytotoxic activity of flavonoids and sesquiterpenoids from selected plants of Asteraceae species. Chem. Biol. Drug Des. 2021, 98, 1116–1130. [Google Scholar] [CrossRef] [PubMed]
  10. Elmann, A.; Beit-Yannai, E.; Telerman, A.; Ofir, R.; Mordechay, S.; Erlank, H.; Borochov-Neori, H. Pulicaria incisa infusion attenuates inflammatory responses of brain microglial cells. J. Funct. Foods 2016, 25, 110–122. [Google Scholar] [CrossRef]
  11. Valero, M.S.; González, M.; Ramón-Gimenez, M.; Andrade, P.B.; Moreo, E.; Les, F.; Fernandes, F.; Gómez-Rincón, C.; Berzosa, C.; García de Jalón, J.A.; et al. Jasonia glutinosa (L.) DC., a traditional herbal medicine, reduces inflammation, oxidative stress and protects the intestinal barrier in a murine model of colitis. Inflammopharmacology 2020, 28, 1717–1734. [Google Scholar] [CrossRef]
  12. Zhang, J.; Zhang, M.; Zhang, W.-H.; Zhu, Q.-M.; Huo, X.-K.; Sun, C.-P.; Ma, X.-C.; Xiao, H.-T. Total flavonoids of Inula japonica alleviated the inflammatory response and oxidative stress in LPS-induced acute lung injury via inhibiting the sEH activity: Insights from lipid metabolomics. Phytomedicine 2022, 107, 154380. [Google Scholar] [CrossRef] [PubMed]
  13. Zeggwagh, N.-A.; Ouahidi, M.-L.; Lemhadri, A.; Eddouks, M. Study of hypoglycaemic and hypolipidemic effects of Inula viscosa L. aqueous extract in normal and diabetic rats. J. Ethnopharm. 2006, 108, 223–227. [Google Scholar] [CrossRef] [PubMed]
  14. Shan, J.-J.; Yang, M.; Ren, J.-W. Anti-diabetic and hypolipidemic effects of aqueous-extract from the flower of Inula japonica in alloxan-induced diabetic mice. Biol. Pharm. Bull. 2006, 29, 455–459. [Google Scholar] [CrossRef] [PubMed]
  15. Daradka, H.M.; Aldhilan, A.M.; Eskandrani, A.A.; Bataineh, Y.; Alzoubi, K.H. The effect of Pulicaria crispa ethanolic extract on haematological and biochemical parameters in alloxan-induced diabetic rats. Adv. Trad. Med. 2021, 21, 65–72. [Google Scholar] [CrossRef]
  16. Al-Naqeb, G.; Rousová, J.; Kubátová, A.; Picklo Sr, M.J. Pulicaria jaubertii E. Gamal-Eldin reduces triacylglyceride content and modifies cellular antioxidant pathways in 3T3-L1 adipocytes. Chem. Biol. Interact. 2016, 253, 48–59. [Google Scholar] [CrossRef] [PubMed]
  17. Les, F.; Cásedas, G.; Valero, M.S.; Arbonés-Mainar, J.M.; López, V. Rock tea (Jasonia glutinosa (L.) DC.) polyphenolic extract inhibits triglyceride accumulation in 3T3-L1 adipocyte-like cells and obesity related enzymes in vitro. Food Funct. 2020, 11, 8931–8938. [Google Scholar] [CrossRef] [PubMed]
  18. Park, S.-H.; Lee, D.-H.; Kim, M.J.; Ahn, J.; Jang, Y.-J.; Ha, T.-Y.; Jung, C.H. Inula japonica Thunb. flower ethanol extract improves obesity and exercise endurance in mice fed a high-fat diet. Nutrients 2019, 11, 17. [Google Scholar] [CrossRef] [PubMed]
  19. Valero, M.S.; Oliván-Viguera, A.; Garrido, I.; Langa, E.; Berzosa, C.; López, V.; Gómez-Rincón, C.; Murillo, M.D.; Köhler, R. Rock Tea extract (Jasonia glutinosa) relaxes rat aortic smooth muscle by inhibition of L-type Ca2+ channels. J. Physiol. Biochem. 2015, 71, 785–793. [Google Scholar] [CrossRef] [PubMed]
  20. Hakkou, Z.; Maciuk, A.; Leblaisc, V.; Bouanani, N.E.; Mekhfi, H.; Bnouham, M.; Aziz, M.; Ziyyat, A.; Rauf, A.; Ben Hadda, T.; et al. Antihypertensive and vasodilator effects of methanolic extract of Inula viscosa: Biological evaluation and POM analysis of cynarin, chlorogenic acid as potential hypertensive. Biomed. Pharmacother. 2017, 93, 62–69. [Google Scholar] [CrossRef]
  21. Wang, Z.; Geng, L.; Chen, Z.; Lin, B.; Zhang, M.; Zheng, S. In vivo therapeutic potential of Inula racemosa in hepatic ischemia–reperfusion injury following orthotopic liver transplantation in male albino rats. AMB Expr. 2017, 7, 211. [Google Scholar] [CrossRef]
  22. Barak, T.; Miller, O.; Melamed, S.; Tietel, Z.; Harari, M.; Belausov, E.; Elmann, A. Neuroprotective effects of Pulicaria incisa infusion on human neuroblastoma cells and hippocampal neurons. Antioxidants 2023, 12, 32. [Google Scholar] [CrossRef] [PubMed]
  23. Hossen, M.A.; Reza, A.S.M.A.; Abu Ahmed, A.M.; Islam, M.K.; Jahan, I.; Hossain, R.; Khan, M.F.; Maruf, M.R.A.; Haque, M.A.; Rahman, M.A. Pretreatment of Blumea lacera leaves ameliorate acute ulcer and oxidative stress in ethanol-induced Long-Evan rat: A combined experimental and chemico-biological interaction. Biomed. Pharmacother. 2021, 135, 111211. [Google Scholar] [CrossRef] [PubMed]
  24. Bekhouche, K.; Ozen, T.; Boussaha, S.; Demirtas, I.; Kout, M.; Yildirim, K.; Zama, D.; Benayache, F.; Benayache, S. Hepatoprotective effects of the n-butanol extract from Perralderia coronopifolia Coss. against PCP-induced toxicity in Wistar albino rats. Environ. Sci. Pollut. Res. 2019, 26, 31215–31224. [Google Scholar] [CrossRef] [PubMed]
  25. Bakr, R.O.; Shahat, E.A.; Elissawy, A.E.; Fayez, A.M.; Eldahshan, O.A. Evaluation of the hepatoprotective activity of Pulicaria incisa subspecies candolleana and in silico screening of its isolated phenolics. J. Ethnopharmacol. 2021, 271, 113767. [Google Scholar] [CrossRef]
  26. Ahmed, N.; El-Agamy, D.S.; Mohammed, G.A.; Abo-Haded, H.; Elkablawy, M.; Ibrahim, S.R.M. Suppression of LPS-induced hepato- and cardiotoxic effects by Pulicaria petiolaris via NF-κB dependent mechanism. Cardiovasc. Toxicol. 2020, 20, 121–129. [Google Scholar] [CrossRef] [PubMed]
  27. Murlanova, K.; Cohen, N.; Pinkus, A.; Vinnikova, L.; Pletnikov, M.; Kirby, M.; Gorelick, J.; Drori, E.; Pinhasov, A. Antidepressant-like effects of a chlorogenic acid- and cynarine-enriched fraction from Dittrichia viscosa root extract. Sci. Rep. 2022, 12, 3647. [Google Scholar] [CrossRef] [PubMed]
  28. Hossen, M.A.; Reza, A.S.M.A.; Amin, M.B.; Nasrin, M.S.; Khan, T.A.; Rajib, M.H.R.; Tareq, A.M.; Haque, M.A.; Rahman, M.A.; Haque, M.A. Bioactive metabolites of Blumea lacera attenuate anxiety and depression in rodents and computer-aided model. Food Sci. Nutr. 2021, 9, 3836–3851. [Google Scholar] [CrossRef]
  29. Chen, S.; Wang, X.; Cheng, Y.; Gao, H.; Chen, X. A review of classification, biosynthesis, biological activities and potential applications of flavonoids. Molecules 2023, 28, 4982. [Google Scholar] [CrossRef]
  30. Gutiérrez-Larruscain, D.; Santos-Vicente, M.; Anderberg, A.A.; Rico, E.; Martínez-Ortega, M.M. Phylogeny of the Inula group (Asteraceae: Inuleae): Evidence from nuclear and plastid genomes and a recircumscription of Pentanema. Taxon 2018, 67, 149–164. [Google Scholar] [CrossRef]
  31. Anderberg, A.A.; Bengtson, A. Taxonomic novelties in the Asteraceae-Inuleae with the description of a new genus, Galgera separate from Laggera. Willdenowia 2022, 52, 373–386. [Google Scholar] [CrossRef]
  32. WFO. World Flora Online. Published on the Internet. 2024. Available online: http://www.worldfloraonline.org (accessed on 26 February 2024).
  33. Wróbel-Biedrawa, D.; Grabowska, K.; Galanty, A.; Sobolewska, D.; Podolak, I. A Flavonoid on the brain: Quercetin as a potential therapeutic agent in central nervous system disorders. Life 2022, 12, 591. [Google Scholar] [CrossRef] [PubMed]
  34. Vauzour, D.; Camprubi-Robles, M.; Miquel-Kergoat, S.; Andres-Lacueva, C.; Bánáti, D.; Barberger-Gateau, P.; Bowman, G.L.; Caberlotto, L.; Clarke, R.; Hogervorst, E.; et al. Nutrition for the ageing brain: Towards evidence for an optimal diet. Ageing Res. Rev. 2017, 35, 222–240. [Google Scholar] [CrossRef] [PubMed]
  35. Dong, X.; Zhou, S.; Nao, J. Kaempferol as a therapeutic agent in Alzheimer’s disease: Evidence from preclinical studies. Ageing Res. Rev. 2023, 87, 101910. [Google Scholar] [CrossRef] [PubMed]
  36. Rodrigo-Gonzalo, M.J.; González-Manzano, S.; Mendez-Sánchez, R.; Santos-Buelga, C.; Recio-Rodríguez, J.I. Effect of polyphenolic complements on cognitive function in the elderly: A systematic review. Antioxidants 2022, 11, 1549. [Google Scholar] [CrossRef] [PubMed]
  37. Bohm, B.A.; Stuessy, T.F. Flavonoids of the Sunflower Family (Asteraceae), 1st ed.; Springer: Wien, Vienna; New York, NY, USA, 2001. [Google Scholar] [CrossRef]
  38. Mohammed, H.A.; Abdulkarim, A.K.; Alamami, A.D.; Elshibani, F.A. Phytochemical constituents and biological activities of Jasonia glutinosa L.: The first report for the plant growing in North Africa. J. Chem. 2022, 2022, 4510176. [Google Scholar] [CrossRef]
  39. Buza, V.; Niculae, M.; Hanganu, D.; Pall, E.; Burtescu, R.F.; Olah, N.-K.; Matei-Laţiu, M.-C.; Vlasiuc, I.; Iozon, I.; Szakacs, A.R.; et al. Biological activities and chemical profile of Gentiana asclepiadea and Inula helenium ethanolic extracts. Molecules 2022, 27, 3560. [Google Scholar] [CrossRef] [PubMed]
  40. Ceylan, R.; Zengin, G.; Mahomoodally, M.F.; Sinan, K.I.; Ak, G.; Jugreet, S.; Cakır, O.; Ouelbani, R.; Paksoy, M.Y.; Yılmaz, M.A. Enzyme inhibition and antioxidant functionality of eleven Inula species based on chemical components and chemometric insights. Biochem. Syst. Ecol. 2021, 95, 104225. [Google Scholar] [CrossRef]
  41. Boussoussa, H.; Benabed, K.H.; Khacheba, I.; Surmont, P.; Lynen, F.; Yousfi, M. HPLC-UV-ESI-MS phyto-analysis and biological activities of Rhanterium adpressum extracts (Asteraceae) from southern Algeria. S. Afr. J. Bot. 2022, 150, 886–892. [Google Scholar] [CrossRef]
  42. Hu, X.-J.; Jin, H.-Z.; Liu, X.-H.; Zhang, W.-D. Two new sesquiterpenes from Inula salsoloides and their inhibitory activities against NO production. Helv. Chim. Acta 2011, 94, 306–312. [Google Scholar] [CrossRef]
  43. Wollenweber, E.; Christ, M.; Dunstan, H.; Roitman, J.N.; Stevens, J.F. Exudate flavonoids in some Gnaphalieae and Inuleae (Asteraceae). Z. Naturforsch. 2005, 60, 671–678. [Google Scholar] [CrossRef]
  44. Belhadi, F.; Ouafi, S.; Bouguedoura, N. Phytochemical composition and pharmacological assessment of callus and parent plant of Asteriscus graveolens (Forssk.) Less. from Algerian Sahara. Trop. J. Pharm. Res. 2020, 19, 1895–1901. [Google Scholar] [CrossRef]
  45. Zheng, D.; Zhang, X.-Q.; Wang, Y.; Ye, W.-C. Chemical constituents of the aerial parts of Blumea riparia. Chin. J. Nat. Med. 2007, 5, 421–424. [Google Scholar]
  46. Grande, M.; Piera, F.; Cuenca, A.; Torres, P.; Bellido, I.S. Flavonoids from Inula viscosa. Planta Med. 1985, 51, 414–419. [Google Scholar] [CrossRef] [PubMed]
  47. Wollenweber, E.; Mayer, K.; Roitman, J.N. Exudate flavonoids of Inula viscosa. Phytochemistry 1991, 30, 2445–2446. [Google Scholar] [CrossRef]
  48. Xie, H.-G.; Zhang, H.-W.; Zhang, J.; Xu, L.-Z.; Zou, Z.-M. Chemical constituents from Inula cappa. Chin. J. Nat. Med. 2007, 5, 193–196. [Google Scholar]
  49. Wu, Z.-J.; Shan, L.; Lu, M.; Shen, Y.-H.; Tang, J.; Zhang, W.-D. Chemical constituents from Inula cappa. Chem. Nat. Compd. 2010, 46, 298–300. [Google Scholar] [CrossRef]
  50. Bursal, E.; Yılmaz, M.A.; Izol, E.; Türkan, F.; Atalar, M.N.; Murahari, M.; Aras, A.; Ahmad, M. Enzyme inhibitory function and phytochemical profile of Inula discoidea using in vitro and in silico methods. Biophys. Chem. 2021, 277, 106629. [Google Scholar] [CrossRef] [PubMed]
  51. Yu, N.-J.; Zhao, Y.-M.; Zhang, Y.-Z.; Li, Y.-F. Japonicins A and B from the flowers of Inula japonica. J. Asian Nat. Prod. Res. 2006, 8, 385–390. [Google Scholar] [CrossRef]
  52. Qin, J.-J.; Zhu, J.-X.; Zhu, Y.; Jin, H.-Z.; Lv, Y.-H.; Zhang, W.-D. Flavonoids from the Aerial Parts of Inula japonica. Chin. J. Nat. Med. 2010, 8, 257–259. [Google Scholar] [CrossRef]
  53. Zengin, G.; Nilofar; Yildiztugay, E.; Bouyahya, A.; Cavusoglu, H.; Gevrenova, R.; Zheleva-Dimitrova, D. A Comparative study on UHPLC-HRMS profiles and biological activities of Inula sarana different extracts and its beta-cyclodextrin complex: Effective insights for novel applications. Antioxidants 2023, 12, 1842. [Google Scholar] [CrossRef]
  54. Youssef, S.A.; Ibraheim, Z.Z.; Attia, A.A. Flavonoids from Asteriscus pygmaeus (DC.) Coss and Dr grown in Egypt. Bull. Pharm. Sci. Assiut University 1995, 18, 33–38. [Google Scholar] [CrossRef]
  55. Amrani-Allalou, H.; Boulekbache-Makhlouf, L.; Izzo, L.; Arkoub-Djermoune, L.; Freidja, M.L.; Mouhoubi, K.; Madani, K.; Tenore, G.C. Phenolic compounds from an Algerian medicinal plant (Pallenis spinosa): Simulated gastrointestinal digestion, characterization, and biological and enzymatic activities. Food Funct. 2021, 12, 1291–1304. [Google Scholar] [CrossRef] [PubMed]
  56. Ivanova, V.; Todorova, M.; Nedialkov, P.; Trendafilova, A. A new flavonol acylglucoside from Inula aschersoniana Janka var. aschersoniana. C. R. Acad. Bulg. Sci. 2021, 74, 514–520. [Google Scholar] [CrossRef]
  57. Wollenweber, E.; Dörr, M.; Fritz, H.; Valant-Vetschera, K.M. Exudate Flavonoids in Several Asteroideae and Cichorioideae (Asteraceae). Z. Naturforsch. 1997, 52, 137–143. [Google Scholar] [CrossRef]
  58. Péter, A.; Dósa, G. Detection of phenoloids in some Hungarian Inula and Centaurea species. Acta Bot. Hung. 2002, 44, 129–135. [Google Scholar] [CrossRef]
  59. Saltan, N.; Köse, Y.B.; Göger, F.; İşcan, G. Phenolic profile, antioxidant and anticandidal activities of Inula oculus-christi L. from Turkey. J. Res. Pharm. 2022, 26, 799–808. [Google Scholar] [CrossRef]
  60. Chelly, S.; Chelly, M.; Ben Salah, H.; Athmouni, K.; Bitto, A.; Sellami, H.; Kallel, C.; Bouaziz-Ketata, H. HPLC-DAD analysis, antioxidant and protective effects of Tunisian Rhanterium suaveolens against acetamiprid induced oxidative stress on mice erythrocytes. Chem. Biodivers. 2019, 16, e1900428. [Google Scholar] [CrossRef]
  61. Hitana, M.; Dupas, C.; Oulahal, N.; Degraeve, P.; Najaa, H.; Bouhamda, T.; Fattouch, S.; Neffati, M. Assessment of antioxidant activities of an endemic species from Tunisia: Rhanterium sueaveolens Desf related to its phenolic composition. Biocatal. Agric. Biotechnol. 2019, 22, 101355. [Google Scholar] [CrossRef]
  62. Gevrenova, R.; Zheleva-Dimitrova, D.; Balabanova, V.; Voynikov, Y.; Sinanc, K.I.; Mahomoodally, M.F.; Zengin, G. Integrated phytochemistry, bio-functional potential and multivariate analysis of Tanacetum macrophyllum (Waldst. and Kit.) Sch.Bip. and Telekia speciosa (Schreb.) Baumg. (Asteraceae). Ind. Crops Prod. 2020, 155, 112817. [Google Scholar] [CrossRef]
  63. Yang, Y.-X.; Zhang, J.-P.; Wang, Q.; Li, H.-L. Study on chemical constituents from Carpesium faberi. Zhong Cao Yao 2017, 15, 3037–3041. [Google Scholar]
  64. Gecibesler, I.H.; Yaglıoglu, A.S.; Gul, F.; Temirturk, M.; Demirtas, I. Phytochemicals of Chrysophthalmum montanum (DC.) Boiss. roots and their antiproliferative activities against HeLa and C6 Cell lines. Proc. Natl. Acad. Sci. USA India Sect. B Biol. Sci. 2019, 89, 145–154. [Google Scholar] [CrossRef]
  65. Abid, R.; Qaiser, M. Chemotaxonomic study of Inula L. (s.str.) and its allied genera (Inuleae–Compositae) from Pakistan and Kashmir. Pak. J. Bot. 2003, 35, 127–140. [Google Scholar]
  66. Zhou, W.; Wang, X.; Fu, S.-H.; Sun, X.; Chen, S.-Y.; Lan, Y.-Y.; Han, Y.; Li, Y.-J. Chemical constituents of Inula cappa. Chin. Pharm. J. 2017, 52, 25–30. [Google Scholar]
  67. Rizk, A.M.; Ismail, S.I. Flavonoids of Francoeuria crispa. Planta Med. 1982, 45, 146. [Google Scholar] [CrossRef] [PubMed]
  68. Zheng, L.-H.; Hao, X.-J.; Yuan, C.-M.; Huang, L.-J.; Zhang, J.-X.; Dong, F.; Fan, T.-Y.; Wu, G.-H.; Chen, Y.; Ma, Y.; et al. Study on chemical constituents of Inula cappa. Zhongguo Zhong Yao Za Zhi 2015, 40, 672–678. [Google Scholar] [PubMed]
  69. Rhimi, W.; Hlel, R.; Ben Salem, I.; Boulila, A.; Rejeb, A.; Saidi, M. Dittrichia viscosa L. ethanolic extract based ointment with antiradical, antioxidant, and healing wound activities. Biomed Res. Int. 2019, 2019, 4081253. [Google Scholar] [CrossRef]
  70. Trimech, I.; Weiss, E.K.; Chedea, V.S.; Marin, D.; Detsi, A.; Ioannou, E.; Roussis, V.; Kefalas, P. Evaluation of anti-oxidant and acetylcholinesterase activity and identification of polyphenolics of the invasive weed Dittrichia viscosa. Phytochem. Anal. 2014, 25, 421–428. [Google Scholar] [CrossRef]
  71. Jung, S.-H.; Chung, K.-S.; Na, C.-S.; Ahn, H.-S.; Shin, Y.-K.; Lee, K.-T. Ethanol extracts from the aerial parts of Inula japonica and Potentilla chinensis alleviate airway inflammation in mice that inhaled particulate matter 10 and Diesel particulate matter. Nutrients 2023, 15, 4599. [Google Scholar] [CrossRef]
  72. Jlizi, S.; Lazrag, H.; El Majdoub, Y.O.; Zardi-Bergaoui, A.; Cacciola, F.; Mondello, L.; Harrath, A.H.; Ben Jannet, H. Phenolic constituents, antioxidant and α-amylase inhibitory activities of Pulicaria vulgaris growing in Tunisia: An in vitro and in silico study. Plant Biosyst. 2023, 157, 61–70. [Google Scholar] [CrossRef]
  73. Oliveira-Alves, S.C.; Andrade, F.; Sousa, J.; Bento-Silva, A.; Duarte, B.; Caçador, I.; Salazar, M.; Mecha, E.; Serra, A.T.; Bronze, M.R. Soilless cultivated halophyte plants: Volatile, nutritional, phytochemical, and biological differences. Antioxidants 2023, 12, 1161. [Google Scholar] [CrossRef]
  74. Cheng, X.; Zhao, W.; Dong, W.; Le, G. Chemical space charting of different parts of Inula nervosa Wall.: Upregulation of expression of Nrf2 and correlated antioxidants enzymes. Molecules 2020, 25, 4789. [Google Scholar] [CrossRef] [PubMed]
  75. Ortega-Vidal, J.; Ruiz-Riaguas, A.; Fernández-de Córdova, M.L.; Ortega-Barrales, P.; Llorent-Martínez, E.J. Phenolic profile and antioxidant activity of Jasonia glutinosa herbal tea. Influence of simulated gastrointestinal in vitro digestion. Food Chem. 2019, 287, 258–264. [Google Scholar] [CrossRef] [PubMed]
  76. Pecio, Ł.; Otify, A.M.; Saber, F.R.; El-Amier, Y.A.; Shalaby, M.E.; Kozachok, S.; Elmotayam, A.K.; Świątek, Ł.; Skiba, A.; Skalicka-Woźniak, K. Iphiona mucronata (Forssk.) Asch. and Schweinf. A comprehensive phytochemical study via UPLC-Q-TOF-MS in the context of the embryo- and cytotoxicity profiles. Molecules 2022, 27, 7529. [Google Scholar] [CrossRef]
  77. Kheyar-Kraouche, N.; da Silva, A.B.; Serra, A.T.; Bedjou, F.; Bronze, M.R. Characterization by liquid chromatography–mass spectrometry and antioxidant activity of an ethanolic extract of Inula viscosa leaves. J.Pharm. Biomed. Anal. 2018, 156, 297–306. [Google Scholar] [CrossRef] [PubMed]
  78. Yang, Y.; Wang, Y.-F.; Zhao, L.; Dong, M.; Huo, C.-H.; Gu, Y.-C.; Shi, Q.-W. Chemical constituents of Inula cappa flowers. Zhong Cao Yao 2011, 42, 1083–1086. [Google Scholar]
  79. Li, W.; Yang, Y.; Wu, J.; Jiang, S.; Yang, Y.; Guo, T.; Wang, W.; Jian, Y. A new labdane diterpenoid glycoside and other constituents from Inula nervosa (Asteraceae) and their chemotaxonomic importance. Biochem. Syst. Ecol. 2023, 109, 104662. [Google Scholar] [CrossRef]
  80. Ulubelen, A.; Mabry, T.J.; Aynehchi, Y. Flavonoids of Anvillea garcinii. J. Nat. Prod. 1979, 42, 624–626. [Google Scholar] [CrossRef]
  81. Pares, J.O.; Oksuz, S.; Ulubelen, A.; Mabry, T.J. 6-Hydroxyflavonoids from Pulicaria dysenterica (Compositae). Phytochemistry 1981, 20, 2057. [Google Scholar] [CrossRef]
  82. Başpınar, Y.; Gürbüz, P.; Doğan, Ş.D.; Gündüz, M.G.; Aleksic, I.; Vojnovic, S.; Nikodinovic-Runic, J.; Paksoyf, M.Y. Investigation of antimicrobial, anti-quorum sensing, and cytotoxic activities of flavonoids isolated from Pulicaria armena Boiss. and Kotschy ex Boiss. (Asteraceae). Chem. Biodivers. 2023, 20, e202300134. [Google Scholar] [CrossRef]
  83. Éshbakova, K.A.; Sagitdinova, G.V.; Malikov, V.M.; Melibaev, S. Flavone sorbifolin from Pulicaria uliginosa. Chem. Nat. Compd. 1996, 32, 82. [Google Scholar] [CrossRef]
  84. Zhanzhaxina, A.S.; Seiilgazy, M.; Jalmakhanbetova, R.I.; Ishmuratova, M.Y.; Seilkhanov, T.M.; Oyama, M.; Sarmurzina, Z.S.; Tekebayeva, Z.B.; Suleimen, Y.M. Flavonoids from Pulicaria vulgaris and their antimicrobial activity. Chem. Nat. Compd. 2020, 56, 915–917. [Google Scholar] [CrossRef]
  85. San Feliciano, A.; Medarde, M.; Gordaliza, M.; Del Olmo, E.; Miguel del Corral, J.M. Sesquiterpenoids and phenolics of Pulicaria paludosa. Phytochemistry 1989, 28, 2717–2721. [Google Scholar] [CrossRef]
  86. Dendougui, H.; Jay, M.; Benayache, F.; Benayache, S. Flavonoids from Anvillea radiata Coss. and Dur. (Asteraceae). Bioch. Syst. Ecol. 2006, 34, 718–720. [Google Scholar] [CrossRef]
  87. Öksüz, S.; Topçu, G. A eudesmanolide and other constituents from Inula graveolens. Phytochemistry 1992, 31, 195–197. [Google Scholar] [CrossRef]
  88. Ahmad, V.U.; Ismail, N. Chemical constituents of Inula grantioides. Fitoterapia 1993, 64, 381. [Google Scholar]
  89. Qi, S.; Li, Y.; Wu, S.; Chen, X.; Hu, Z. Novel nonaqueous capillary electrophoresis separation and determination of bioactive flavone derivatives in Chinese herbs. J. Sep. Sci. 2005, 28, 2180–2186. [Google Scholar] [CrossRef] [PubMed]
  90. Reynaud, J.; Lussignol, M. Free flavonoid aglycones from Inula montana. Pharm. Biol. 1999, 37, 163–164. [Google Scholar] [CrossRef]
  91. Garayev, E.; Herbette, G.; Di Giorgio, C.; Chiffolleau, P.; Roux, D.; Sallanon, H.; Ollivier, E.; Elias, R.; Baghdikian, B. New sesquiterpene acid and inositol derivatives from Inula montana L. Fitoterapia 2017, 120, 79–84. [Google Scholar] [CrossRef] [PubMed]
  92. Garayev, E.; Di Giorgio, C.; Herbette, G.; Mabrouki, F.; Chiffolleau, P.; Roux, D.; Sallanon, H.; Ollivier, E.; Elias, R.; Baghdikian, B. Bioassay-guided isolation and UHPLC-DAD-ESI-MS/MS quantification of potential anti-inflammatory phenolic compounds from flowers of Inula montana L. J. Ethnopharmacol. 2018, 226, 176–184. [Google Scholar] [CrossRef]
  93. Vajs, V.; Nevešćanin, M.; Macura, S.; Juranić, N.; Menković, N.; Milosavljević, S. Sesquiterpene lactones from the aerial parts of Inula oculus-christi. Fitoterapia 2003, 74, 508–510. [Google Scholar] [CrossRef]
  94. Wang, X.; Hou, P.; Qu, Y.; Huang, R.; Feng, Y.; Zhao, S.; Ding, Y.; Liao, Z. Chemical constituents of Tibetan herbal medicine Pulicaria insignis and their in vitro cytotoxic activities. Rec. Nat. Prod. 2021, 15, 91–102. [Google Scholar] [CrossRef]
  95. Williams, C.A.; Harborne, J.B.; Greenham, J.R.; Grayer, R.J.; Kite, G.C.; Eagles, J. Variations in lipophilic and vacuolar flavonoids among European Pulicaria species. Phytochemistry 2003, 64, 275–283. [Google Scholar] [CrossRef]
  96. Ahmed, A.A.; Mabry, T.J. Flavonoids of Iphiona scabra. Phytochemistry 1987, 26, 1517–1518. [Google Scholar] [CrossRef]
  97. Park, E.J.; Kim, Y.; Kim, J. Acylated Flavonol Glycosides from the flower of Inula britannica. J. Nat. Prod. 2000, 63, 34–36. [Google Scholar] [CrossRef] [PubMed]
  98. Mohti, H.; Taviano, M.F.; Cacciola, F.; Dugo, P.; Mondello, L.; Marino, A.; Crisafi, G.; Benameur, Q.; Zaid, A.; Miceli, N. Inula viscosa (L.) Aiton leaves and flower buds: Effect of extraction solvent/technique on their antioxidant ability, antimicrobial properties and phenolic profile. Nat. Prod. Res. 2020, 34, 46–52. [Google Scholar] [CrossRef]
  99. Sriti Eljazi, J.; Selmi, S.; Zarroug, Y.; Wesleti, I.; Aouini, B.; Jalloulia, S.; Limam, F. Essential oil composition, phenolic compound, and antioxidant potential of Inula viscosa as affected by extraction process. Int. J. Food Prop. 2018, 21, 2309–2319. [Google Scholar] [CrossRef]
  100. Manome, T.; Hara, Y.; Ishibashi, M. Isolation of various flavonoids with TRAIL resistance-overcoming activity from Blumea lacera. Molecules 2023, 28, 264. [Google Scholar] [CrossRef]
  101. Elhady, S.S.; Abdelhameed, R.F.A.; Zekry, S.H.; Ibrahim, A.K.; Habib, E.S.; Darwish, K.M.; Hazem, R.M.; Mohammad, K.A.; Hassanean, H.A.; Ahmed, S.A. VEGFR-mediated cytotoxic activity of Pulicaria undulata isolated metabolites: A biological evaluation and in silico study. Life 2021, 11, 759. [Google Scholar] [CrossRef] [PubMed]
  102. Zhao, W.-Y.; Yan, J.-J.; Zhang, M.; Wang, C.; Feng, L.; Lv, X.; Huo, X.-K.; Sun, C.-P.; Chen, L.-X.; Ma, X.-C. Natural soluble epoxide hydrolase inhibitors from Inula britanica and their potential interactions with soluble epoxide hydrolase: Insight from inhibition kinetics and molecular dynamics. Chem. Biol. Interact. 2021, 345, 109571. [Google Scholar] [CrossRef]
  103. Ahmad, V.U.; Ismail, N. Two new flavones from Inula grantioides. Z. Naturforsch. 1991, 46, 950–954. [Google Scholar] [CrossRef]
  104. Lan, M.-S.; Luo, C.; Tan, C.-H.; Chen, L.; Wei, S.; Zhu, D.-Y. Chemical constituents in Blumea aromatica of Zhuang medicine. Zhong Cao Yao 2012, 43, 1708–1711. [Google Scholar]
  105. Nessa, F.; Ismail, Z.; Mohamed, N.; Mas Haris, M.R.H. Free radical-scavenging activity of organic extracts and of pure flavonoids of Blumea balsamifera DC leaves. Food Chem. 2004, 88, 243–252. [Google Scholar] [CrossRef]
  106. Nessa, F.; Mohamed, N.; Ismail, Z. Superoxide Radical Scavenging Properties of Extracts and Flavonoids Isolated from the Leaves of Blumea balsamifera. Pharm. Biol. 2004, 42, 404–408. [Google Scholar] [CrossRef]
  107. Chen, M.; Jin, H.-Z.; Yan, L.; Hu, X.-J.; Qin, J.-J.; Liu, J.-H.; Yan, S.-K.; Zhang, W.-D. Flavonoids from Blumea balsamifera. Nat. Prod. Res. Dev. 2010, 23, 991–994. Available online: http://www.trcw.ac.cn/EN/Y2010/V23/I6/991 (accessed on 10 November 2023).
  108. Tan, D.; Yan, Q. Flavonoids from the aerial parts of Blumea megacephala. Chem. Nat. Compd. 2019, 55, 927–928. [Google Scholar] [CrossRef]
  109. Ahmed, A.A.; Mahmoud, A.A.; Tanaka, T.; Iinuma, M. Two methylated flavonols from Jasonia candicans. Phytochemistry 1994, 35, 241–243. [Google Scholar] [CrossRef]
  110. Mahmoudi, H.; Hosni, K.; Zaouali, W.; Amri, I.; Zargouni, H.; Ben Hamida, N.; Kaddour, R.; Hamrouni, L.; Ben Nasri, M.; Ouerghi, Z. Comprehensive phytochemical analysis, antioxidant and antifungal activities of Inula viscosa Aiton leaves. J. Food Saf. 2016, 36, 77–88. [Google Scholar] [CrossRef]
  111. Wen, Z.; Huang, W.; Long, W.; Gong, J.; Wu, D. In vitro anticomplementary activity and quality evaluation of dried blossoms of Inula nervosa Wall. from different geographical origins. Biomed. Chromatogr. 2019, 33, e4682. [Google Scholar] [CrossRef] [PubMed]
  112. Hu, L.-X.; Luo, M.-F.; Guo, W.-J.; He, X.; Zhou, J.; Qiu, X.-Y.; Gong, J.-P.; Li, M.-C.; Chen, X.-T.; Wu, D.; et al. Quality assessment and antioxidant activities of the blossoms of Inula nervosa Wall. J. AOAC Int. 2021, 104, 818–826. [Google Scholar] [CrossRef]
  113. Cheng, X.-R.; Jie, R.; Wang, C.-H.; Guan, B.; Jin, H.-Z.; Zhang, W.-D. Chemical constituents from Inula wissmanniana. Chem. Nat. Compd. 2013, 49, 815–818. [Google Scholar] [CrossRef]
  114. Pradhan, S.K.; Sharma, V. Polyphenols in different plant parts of Inula grandiflora collected from two habitats of Uttarakhand Himalayas. J. Herbs Spices Med. Plants 2023, 29, 199–212. [Google Scholar] [CrossRef]
  115. Gökbulut, A.; Özhan, O.; Satılmış, B.; Batçıoğlu, K.; Günal, S.; Şarer, E. Antioxidant and antimicrobial activities, and phenolic compounds of selected Inula species from Turkey. Nat. Prod. Commun. 2013, 8, 475–478. [Google Scholar] [CrossRef] [PubMed]
  116. Bai, N.; Zhou, Z.; Zhu, N.; Zhang, L.; Quan, Z.; He, K.; Zheng, Q.Y.; Ho, C.-T. Antioxidative flavonoids from the flower of Inula britannica. J. Food Lipids 2005, 12, 141–149. [Google Scholar] [CrossRef]
  117. Eshbakova, K.A.; Yili, A.; Aisa, H.A. Phenolic constituents of Pulicaria gnaphaloides. Chem. Nat. Compd. 2014, 50, 737–738. [Google Scholar] [CrossRef]
  118. Wang, Y.-H.; Al-Rehaily, A.J.; Yousaf, M.; Ahmad, M.S.; Khan, I.A. Characterization and discrimination of different Pulicaria species using UHPLC-UV-MS QTOF (Quadrupole Time-of-Flight Mass Spectrometer). J. Chem. Soc. Pak. 2015, 37, 967–973. Available online: https://jcsp.org.pk/PublishedVersion/5d2d6407-a28c-48b1-a031-3bf712bb356fManuscript%20no%203,%20Final%20Gally%20Proof%20of%2010450%20(Muhammad%20Ikram).pdf (accessed on 30 October 2023).
  119. Melieva, S.O.; Eshbakova, K.A.; Turgunov, K.K.; Tashkhodzhaev, B. Flavonoids of Pulicaria salviifolia. Chem. Nat. Compd. 2019, 55, 729–731. [Google Scholar] [CrossRef]
  120. Mohammed, H.A.; Al-Omar, M.S.; Khan, R.A.; Mohammed, S.A.A.; Qureshi, K.A.; Abbas, M.M.; Al Rugaie, O.; Abd-Elmoniem, E.; Ahmad, A.M.; Kandil, Y.I. Chemical profile, antioxidant, antimicrobial, and anticancer activities of the water-ethanol extract of Pulicaria undulata growing in the oasis of central Saudi Arabian desert. Plants 2021, 10, 1811. [Google Scholar] [CrossRef] [PubMed]
  121. Komilov, B.Z.; Eshbakova, K.A.; Aisa, H.A. Chemical constituents of Pulicaria uliginosa. Chem. Nat. Compd. 2015, 51, 563–564. [Google Scholar] [CrossRef]
  122. Ahmed, A.A.; Ishak, M.S.; Micheal, H.N.; El-Ansari, M.A.; El-Sissi, H.I. Flavonoids of Asteriscus graveolens. J. Nat. Prod. 1991, 54, 1092–1093. [Google Scholar] [CrossRef]
  123. Su, H.; Li, X.; Li, Y.; Kong, Y.; Lan, J.; Huang, Y.; Liu, Y. Chemical profiling and rapid discrimination of Blumea riparia and Blumea megacephala by UPLC-Q-Exactive-MS/MS and HPLC. Chin. Herb. Med. 2023, 15, 317–328. [Google Scholar] [CrossRef]
  124. Heilmann, J.; Müller, E.; Merfort, I. Flavonoid glucosides and dicaffeoylquinic acids from fowerheads of Buphthalmum salicifolium. Phytochemistry 1999, 51, 713–718. [Google Scholar] [CrossRef]
  125. Ma, J.-P.; Tan, C.-H.; Zhu, D.-Y. Glycosidic constituents from Carpesium cernuum L. J. Asian Nat. Prod. Res. 2008, 10, 565–569. [Google Scholar] [CrossRef] [PubMed]
  126. Hou, J.-Y.; Lu, Y.; Pan, J.; Lan, Y.-Y.; Li, C.; Chen, S.-Y.; Wang, Y.-L. Simultaneous determination of six components in Inula cappa by UPLC-MS. Nat. Prod. Res. Dev. 2015, 27, 1917–1921. [Google Scholar] [CrossRef]
  127. Ivanova, V.; Trendafilova, A.; Todorova, M.; Danova, K.; Dimitrov, D. Phytochemical Profile of Inula britannica from Bulgaria. Nat. Prod. Commun. 2017, 12, 153–154. [Google Scholar] [CrossRef]
  128. Bandyukova, V.A.; Sergeeva, N.V.; Dzhumyrko, S.F. Luteolin glycosides in some plants of the family Compositae. Chem. Nat. Compd. 1970, 6, 483. [Google Scholar] [CrossRef]
  129. de la Luz Cádiz-Gurrea, M.; Zengin, G.; Kayacık, O.; Lobine, D.; Mahomoodally, M.F.; Leyva-Jiménez, F.J.; Segura-Carretero, A. Innovative perspectives on Pulicaria dysenterica extracts: Phyto-pharmaceutical properties, chemical characterization and multivariate analysis. J. Sci. Food Agric. 2019, 99, 6001–6010. [Google Scholar] [CrossRef] [PubMed]
  130. El-Sabagh, O.A.; El-Toumy, S.A.; Mounir, R.; Farag, M.A.; Mahrous, E.A. Metabolite profiles of Pulicaria crispa and P. incisa in relation to their in-vitro/ in-vivo antioxidant activity and hepatoprotective effect: A comparative mass spectrometry-based metabolomics. J. Pharm. Biomed. Anal. 2021, 194, 113804. [Google Scholar] [CrossRef] [PubMed]
  131. Zhou, L.; Luo, S.; Li, J.; Zhou, Y.; Chen, T.; Feng, S.; Ding, C. Simultaneous optimization of extraction and antioxidant activity from Blumea laciniata and the protective effect on Hela cells against oxidative damage. Arab. J. Chem. 2020, 13, 9231–9242. [Google Scholar] [CrossRef]
  132. Dai, L.; Cai, S.; Chu, D.; Pang, R.; Deng, J.; Zheng, X.; Dai, W. Identification of chemical constituents in Blumea balsamifera using UPLC–Q–Orbitrap HRMS and evaluation of their antioxidant activities. Molecules 2023, 28, 4504. [Google Scholar] [CrossRef]
  133. Osaki, N.; Koyano, T.; Kowithayakorn, T.; Hayashi, M.; Komiyama, K.; Ishibashi, M. Sesquiterpenoids and plasmin-inhibitory flavonoids from Blumea balsamifera. J. Nat. Prod. 2005, 68, 447–449. [Google Scholar] [CrossRef]
  134. Yuan, C.; Wang, H.-F.; Hu, X.; Pang, Y.-X. Rapid identification on chemical constituents of antimicrobial fractions from Blumea balsamifera (L.) DC. by UPLC-Q-TOF-MSE. Nat. Prod. Res. Dev. 2018, 30, 1904–1912. [Google Scholar] [CrossRef]
  135. Rechek, H.; Haouat, A.; Hamaidia, K.; Pinto, D.C.G.A.; Boudiar, T.; Válega, M.S.G.A.; Pereira, D.M.; Pereira, R.B.; Silva, A.M.S. Inula viscosa (L.) Aiton ethanolic extract inhibits the growth of human AGS and A549 cancer cell lines. Chem. Biodiv. 2023, 20, e202200890. [Google Scholar] [CrossRef] [PubMed]
  136. Pang, Y.; Zhang, Y.; Huang, L.; Xu, L.; Wang, K.; Wang, D.; Guan, L.; Zhang, Y.; Yu, F.; Chen, Z.; et al. Effects and Mechanisms of Total Flavonoids from Blumea balsamifera (L.) DC. on Skin Wound in Rats. Int. J. Mol. Sci. 2017, 18, 2766. [Google Scholar] [CrossRef] [PubMed]
  137. Benslama, A.; Harrar, A.; Gül, F.; Demirtaş, I. In vitro Antioxidant, Antibacterial Activities and HPLC-TOF/MS Analysis of Anvillea radiata (Asteraceae) Extracts. Curr. Nutr. Food Sci. 2018, 14, 376–383. [Google Scholar] [CrossRef]
  138. Lan, M.-S.; Luo, C.; Tan, C.-H.; Chen, L.; Wei, S.; Zhu, D.-Y. Study on chemical constituents of the ethyl acetate extract from Blumea aromatica. Zhong Yao Cai 2012, 35, 229–231. [Google Scholar] [PubMed]
  139. Rhimi, W.; Ben Salem, I.; Immediato, D.; Saidi, M.; Boulila, A.; Cafarchia, C. Chemical composition, antibacterial and antifungal activities of crude Dittrichia viscosa (L.) Greuter leaf extracts. Molecules 2017, 22, 942. [Google Scholar] [CrossRef]
  140. Krishnaveni, M.; Suja, V.; Vasanth, S.; Shyamaladevi, C.S. Antiinflammatory and analgesic actions of 4′,5,6-trihydroxy-3′,7-dimethoxy flavone-from Vicoa indica D C. Indian J. Pharmacol. 1997, 29, 178–181. [Google Scholar]
  141. Vasanth, S.; Ahmed, A. 6-Hydroxyluteolin 7,3′-dimethylether from Pentanema indicum. Fitoterapia 1998, 69, 179. [Google Scholar]
  142. Boukhris, M.A.; Destandau, E.; El Hakmaoui, A.; El Rhaffari, L.; Elfakir, C. A dereplication strategy for the identification of new phenolic compounds from Anvillea radiata (Coss. and Durieu). C. R. Chimie 2016, 19, 1124–1132. [Google Scholar] [CrossRef]
  143. Destandau, E.; Boukhris, M.A.; Zubrzycki, S.; Akssira, M.; El Rhaffari, L.; Elfakir, C. Centrifugal partition chromatography elution gradient for isolation of sesquiterpene lactones and flavonoids from Anvillea radiata. J. Chromatogr. B 2015, 985, 29–37. [Google Scholar] [CrossRef]
  144. Ragasa, C.Y.; Wong, J.; Rideout, J.A. Monoterpene glycoside and flavonoids from Blumea lacera. J. Nat. Med. 2007, 61, 474–475. [Google Scholar] [CrossRef]
  145. Afifi, F.U.; Al-Khalil, S.; Abdul-Haq, B.K.; Mahasneh, A.; Al-Eisawi, D.M.; Sharaf, M.; Wong, L.K.; Schiff Jr., P. L. Antifungal favonoids from Varthemia iphionoides. Phytother. Res. 1991, 5, 173–175. [Google Scholar] [CrossRef]
  146. Afifi, F.U.; Aburjai, T. Antiplatelet activity of Varthemia iphionoides. Fitoterapia 2004, 75, 629–633. [Google Scholar] [CrossRef] [PubMed]
  147. Bai, L.; Wang, J.; Fu, M.; Han, S.; Pang, J.; Zhang, W. Chemical constituents from Inula helenium. Zhong Cao Yao 2018, 49, 2512–2515. [Google Scholar]
  148. Khettaf, A.; Dridi, S. Chemical composition analysis and in vivo anti-diabetic activity of aqueous extract of aerial part of Pallenis spinosa in diabetic rats. Curr. Bioact. Compd. 2022, 18, e010921191723. [Google Scholar] [CrossRef]
  149. Ahmed, A.A.; Spaller, M.; Mabry, T.J. Flavonoids of Pallenis spinosa (Asteraceae). Biochem. Syst. Ecol. 1992, 20, 785–786. [Google Scholar] [CrossRef]
  150. Ohtsuki, T.; Koyano, T.; Kowithayakorn, T.; Yamaguchi, N.; Ishibashi, M. Isolation of austroinulin possessing cell cycle inhibition activity from Blumea glomerata and revision of its absolute configuration. Planta Med. 2004, 70, 1170–1173. [Google Scholar] [CrossRef]
  151. Tan, D.; Yan, Q.; Kang, H. Chemical constituents from Blumea balsamifera. Chem. Nat. Compd. 2013, 48, 1072–1073. [Google Scholar] [CrossRef]
  152. Ali, D.M.H.; Wong, K.C.; Lim, P.K. Flavonoids from Blumea balsamifera. Fitoterapia 2005, 76, 128–130. [Google Scholar] [CrossRef]
  153. Aboul Ela, M.A.; El-Lakany, A.M.; Shams-El-Din, S.M.; Hammoda, H.M. Phytochemical and antimicrobial investigation of Inula crithmoides L. Alex. J. Pharm. Sci. 2011, 25, 37–40. [Google Scholar]
  154. Swaraz, A.M.; Sultana, F.; Ahmed, K.S.; Satter, M.A.; Hossain, H.; Raihan, O.; Brishti, A.; Khalil, I.; Gan, S.H. Polyphenols profile and enzyme inhibitory properties of Blumea lacera (Burm. f.) DC.: A potential candidate against obesity, aging, and skin disorder. Chem. Biodivers. 2022, 19, e202200282. [Google Scholar] [CrossRef] [PubMed]
  155. Al-Rimawi, F.; Imtara, H.; Khalid, M.; Salah, Z.; Parvez, M.K.; Saleh, A.; Al kamaly, O.; Shawki Dahu, C. Assessment of antimicrobial, anticancer, and antioxidant activity of Verthimia iphionoides plant extract. Processes 2022, 10, 2375. [Google Scholar] [CrossRef]
  156. Petkova, N.; Ivanov, I.; Vrancheva, R.; Deneva, P.; Pavlov, A. Ultrasound and microwave-assisted extraction of elecampane (Inula helenium) roots. Nat. Prod. Commun. 2017, 12, 171–174. [Google Scholar] [CrossRef]
  157. Huang, M.-H.; Tai, H.-M.; Wang, B.-S.; Chang, L.-W. Inhibitory effects of water extract of Flos Inulae on mutation and tyrosinase. Food Chem. 2013, 139, 1015–1020. [Google Scholar] [CrossRef]
  158. Ramadan, M.A. Flavonoids from Pulicaria arabica (L.) Cass. Bull. Pharm. Sci. (Assiut Univ.) 1998, 21, 103–108. [Google Scholar] [CrossRef]
  159. Ibraheim, Z.Z.; Salem, H.A. Phytochemical and pharmacological studies on Pulicaria orientalis Jaub and Sp. Bull. Pharm. Sci. (Assiut Univ.) 2002, 25, 189–200. [Google Scholar] [CrossRef]
  160. Hussein, S.R.; Marzouk, M.M.; Soltan, M.M.; Ahmed, E.K.; Said, M.M.; Hamed, A.R. Phenolic constituents of Pulicaria undulata (L.) C.A. Mey. sub sp. undulata (Asteraceae): Antioxidant protective effects and chemosystematic significances. J. Food Drug Anal. 2017, 25, 333–339. [Google Scholar] [CrossRef] [PubMed]
  161. Alshehri, K.M.; Ghobashy, M.O.I. Antitumor, antimicrobial activities and phytochemicals constituent of different extracts of Pulicaria undulata (Forssk.) Oliver. grown naturally in Saudi Arabia. Int. J. Res. Pharm. Sci. 2020, 11, 4889–4901. [Google Scholar] [CrossRef]
  162. Perveen, S.; Alqahtani, J.; Orfali, R.; Aati, H.Y.; Al-Taweel, A.M.; Ibrahim, T.A.; Khan, A.; Yusufoglu, H.S.; Abdel-Kader, M.S.; Taglialatela-Scafati, O. Antibacterial and antifungal sesquiterpenoids from aerial parts of Anvillea garcinii. Molecules 2020, 25, 1730. [Google Scholar] [CrossRef]
  163. Kłeczek, N.; Malarz, J.; Gierlikowska, B.; Kiss, A.K.; Stojakowska, A. Constituents of Xerolekia speciosissima (L.) Anderb. (Inuleae), and Anti-Inflammatory Activity of 7,10-Diisobutyryloxy-8,9-epoxythymyl Isobutyrate. Molecules 2020, 25, 4913. [Google Scholar] [CrossRef]
  164. Abd El Maksoud, A.I.; Taher, R.F.; Gaara, A.H.; Abdelrazik, E.; Keshk, O.S.; Elawdan, K.A.; Morsy, S.E.; Salah, A.; Khalil, H. Selective regulation of B-Raf dependent K-Ras/Mitogen-Activated Protein by natural occurring multi-kinase inhibitors in cancer cells. Front. Oncol. 2019, 9, 1220. [Google Scholar] [CrossRef] [PubMed]
  165. Eissa, T.F.; González-Burgos, E.; Carretero, M.E.; Gómez-Serranillos, M.P. Phenolic composition and evaluation of antioxidant and cytoprotective activity of Chiliadenus montanus. Rec. Nat. Prod. 2013, 7, 184–191. Available online: http://www.acgpubs.org/doc/2018080817310629-RNP-1210-172.pdf (accessed on 30 September 2023).
  166. Hegazy, M.-E.F.; Matsuda, H.; Nakamura, S.; Hussein, T.A.; Yoshikawa, M.; Paré, P.W. Chemical constituents and their antibacterial and antifungal activity from the Egyptian herbal medicine Chiliadenus montanus. Phytochemistry 2014, 103, 154–161. [Google Scholar] [CrossRef] [PubMed]
  167. Schulte, K.E.; Rücker, G.; Müller, F. Einige Inhaltsstoffe der Blütenköpfchen von Pulicaria dysenterica. Arch. Pharm. 1968, 301, 115–119. [Google Scholar] [CrossRef] [PubMed]
  168. Mansour, R.M.A.; Ahmed, A.A.; Melek, F.R.; Saleh, N.A.M. The flavonoids of Pulicaria incisa. Fitoterapia 1990, 61, 186–187. [Google Scholar]
  169. Rubio, B.; Villaescusa, L.; Diaz, A.M.; Fernandez, L.; Martin, T. Flavonol glycosides from Scolymus hispanicus and Jasonia glutinosa. Planta Med. 1995, 61, 583. [Google Scholar] [CrossRef]
  170. Poljuha, D.; Sladonja, B.; Šola, I.; Šenica, M.; Uzelac, M.; Veberič, R.; Hudina, M.; Famuyide, I.M.; Eloff, J.N.; Mikulic-Petkovsek, M. LC–DAD–MS phenolic characterisation of six invasive plant species in Croatia and determination of their antimicrobial and cytotoxic activity. Plants 2022, 11, 596. [Google Scholar] [CrossRef]
  171. Perveen, S.; Fawzy, G.A.; Al-Taweel, A.M.; Orfali, R.S.; Yusufoglu, H.S.; Abdel-Kader, M.S.; Al-Sabbagh, R.M. Antiulcer Activity of Different Extracts of Anvillea garcinii and Isolation of Two New Secondary Metabolites. Open Chem. 2018, 16, 437–445. [Google Scholar] [CrossRef]
  172. Brahmi-Chendouh, N.; Piccolella, S.; Crescente, G.; Pacifico, F.; Boulekbache, L.; Hamri-Zeghichi, S.; Akkal, S.; Madani, K.; Pacifico, S. A nutraceutical extract from Inula viscosa leaves: UHPLC-HR-MS/MS based polyphenol profile, and antioxidant and cytotoxic activities. J. Food Drug Anal. 2019, 27, 692–702. [Google Scholar] [CrossRef]
  173. Rhimi, W.; Ben Salem, I.; Camarda, A.; Saidi, M.; Boulila, A.; Otranto, D.; Cafarchia, C. Chemical characterization and acaricidal activity of Drimia maritima (L) bulbs and Dittrichia viscosa leaves against Dermanyssus gallinae. Vet. Parasitol. 2019, 268, 61–66. [Google Scholar] [CrossRef]
  174. Spiridon, I.; Nechita, C.B.; Niculaua, M.; Silion, M.; Armatu, A.; Teacă, C.-A.; Bodîrlău, R. Antioxidant and chemical properties of Inula helenium root extracts. Cent. Eur. J. Chem. 2013, 11, 1699–1709. [Google Scholar] [CrossRef]
  175. Gonzalez, A.G.; Bermejo Barrera, J.; Triana Méndez, J.; Eiroa Martinez, J.; Lopez Sanchez, M. Germacranolides from Allagopappus viscosissimus. Phytochemistry 1992, 31, 330–331. [Google Scholar] [CrossRef]
  176. Al-Dabbas, M.M.; Kitahara, K.; Suganuma, T.; Hashimoto, F.; Tadera, K. Antioxidant and α-amylase inhibitory compounds from aerial parts of Varthemia iphionoides Boiss. Biosci. Biotechnol. Bioch. 2006, 70, 2178–2184. [Google Scholar] [CrossRef]
  177. Al-Dabbas, M.M.; Al-Ismail, K.; Abu-Taleb, R.; Hashimoto, F.; Rabah, I.O.; Kitahara, K.; Fujita, K.; Suganuma, T. Chemistry and antiproliferative activities of 3-methoxyflavones isolated from Varthemia iphionoides. Chem. Nat. Compd. 2011, 47, 17–21. [Google Scholar] [CrossRef]
  178. Zhang, F.; Cheng, X.R.; Zhu, J.X.; Chang, R.J.; Ren, J.; Jin, H.Z.; Zhang, W.D. Phytochemical studies on Inula hookeri. Chem. Nat. Compd. 2013, 49, 121–123. [Google Scholar] [CrossRef]
  179. Abdel-Mogib, M.; Dawidar, A.M.; Metwally, M.A.; Abou-Elzahab, M. Flavonols of Pulicaria undulata. Pharmazie 1989, 44, 801. [Google Scholar]
  180. Taillade, C.I.; Susplugas, P.; Balansard, G. Flavonoids of Inula viscosa [Sur les flavonoides d’Inula viscosa Ait. (Composees)]. Plant. Med. Phytother. 1980, 14, 26–28. [Google Scholar]
  181. Cao, J.Q.; Sun, S.W.; Chen, H.; Wang, Y.N.; Pei, Y.H. Studies on flavonoids from Blumea riparia. Zhongguo Zhong Yao Za Zhi 2008, 33, 782–784. [Google Scholar] [PubMed]
  182. Öksüz, S.; Topcu, G. Triterpene fatty acid esters and flavonoids from Inula britannica. Phytochemistry 1987, 26, 3082–3084. [Google Scholar] [CrossRef]
  183. Ahmad, V.U.; Rasool, N.; Abbasi, M.A.; Rashid, M.A.; Kousar, F.; Zubair, M.; Ejaz, A.; Choudhary, M.I.; Tareen, R.B. Antioxidant flavonoids from Pulicaria undulata. Pol. J. Chem. 2006, 80, 745–751. [Google Scholar] [CrossRef]
  184. Nikonova, L.P.; Nikonov, G.K. 4′,5,6-Trihydroxy-3,7-dimethoxyflavone from Inula grandis. Chem. Nat. Compd. 1975, 11, 104. [Google Scholar] [CrossRef]
  185. Galala, A.A.; Sallam, A.; Abdel-Halim, O.B.; Gedara, S.R. New ent-kaurane diterpenoid dimer from Pulicaria inuloides. Nat. Prod. Res. 2016, 30, 2468–2475. [Google Scholar] [CrossRef] [PubMed]
  186. Malarz, J.; Michalska, K.; Galanty, A.; Kiss, A.K.; Stojakowska, A. Constituents of Pulicaria inuloides and cytotoxic activities of two methoxylated flavonols. Molecules 2023, 28, 480. [Google Scholar] [CrossRef] [PubMed]
  187. Williams, C.A.; Harborne, J.B.; Greenham, J. Geographical variation in the surface flavonoids of Pulicaria dysenterica. Biochem. Syst. Ecol. 2000, 28, 679–687. [Google Scholar] [CrossRef] [PubMed]
  188. Hussien, T.A.; El-Toumy, S.A.; Hassan, H.M.; Hetta, M.H. Cytotoxic and antioxidant activities of secondary metabolites from Pulicaria undulata. Int. J. Pharm. Pharm. Sci. 2016, 9, 150–155. [Google Scholar] [CrossRef]
  189. Ahmed, A.A.; Ali, A.A.; Mabry, T.J. Flavonoid aglycones from Jasonia montana. Phytochemistry 1989, 28, 665–667. [Google Scholar] [CrossRef]
  190. Soliman, F.M.; Moussa, M.Y.; Abdallah, H.M.; Othman, S.M. Cytotoxic activity of flavonoids of Jasonia montana Vahl. (Botsch). (Astraceae) growing in Egypt. Aust. J. Basic Appl. Sci. 2009, 3, 148–152. Available online: https://www.ajbasweb.com/old/ajbas/2009/148-152.pdf (accessed on 25 July 2023).
  191. Markham, K.R. A reassessment of the data supporting the structures of Blumea malcolmii flavonols. Phytochemistry 1989, 28, 243–244. [Google Scholar] [CrossRef]
  192. Habib, E.S.; El-Bsoumy, E.; Ibrahim, A.K.; Helal, M.A.; El-Magd, M.A.; Ahmed, S.A. Anti-inflammatory effect of methoxyflavonoids from Chiliadenus montanus (Jasonia montana) growing in Egypt. Nat. Prod. Res. 2021, 35, 5909–5913. [Google Scholar] [CrossRef]
  193. Baruah, N.C.; Sharma, R.P.; Thyagarajan, G.; Herz, W.; Govindan, S.V. New flavonoids from Inula cappa. Phytochemistry 1979, 18, 2003–2006. [Google Scholar] [CrossRef]
  194. Akdad, M.; Moujane, S.; Bouadid, I.; Benlyas, M.; Eddouks, M. Phytocompounds from Anvillea radiata as promising anti-Covid-19 drugs: In silico studies and in vivo safety assessment. J. Environ. Sci. Health A 2021, 56, 1512–1523. [Google Scholar] [CrossRef] [PubMed]
  195. Cao, J.Q.; Yao, Y.; Chen, H.; Qiao, L.; Zhou, Y.Z.; Pei, Y.H. A New xanthene from Blumea riparia. Chin. Chem. Lett. 2007, 18, 303–305. [Google Scholar] [CrossRef]
  196. Swaraz, A.M.; Sultana, F.; Bari, M.W.; Ahmed, K.S.; Hasan, M.; Islam, M.M.; Islam, M.A.; Satter, M.A.; Hossain, M.H.; Islam, M.S.; et al. Phytochemical profiling of Blumea laciniata (Roxb.) DC. and its phytopharmaceutical potential against diabetic, obesity, and Alzheimer’s. Biomed. Pharmacother. 2021, 141, 111859. [Google Scholar] [CrossRef] [PubMed]
  197. Abu-Romman, S.M.; Haddad, M.A.; Al-Hadid, K.J. The potential allelopathic effects of Varthemia iphionoides and the identification of phenolic allelochemicals. Jordan J. Biol. Sci. 2015, 8, 301–306. Available online: http://jjbs.hu.edu.jo/files/v8n4/Paper%20Number%208.pdf (accessed on 24 October 2023). [CrossRef]
  198. Silinsin, M.; Bursal, E. UHPLC-MS/MS phenolic profiling and in vitro antioxidant activities of Inula graveolens (L.) Desf. Nat. Prod. Res. 2018, 32, 1467–1471. [Google Scholar] [CrossRef] [PubMed]
  199. Gharred, N.; Baaka, N.; Bettache, N.; Hamdi, A.; Dbeibia, A.; Dhaouadi, H.; Morere, A.; Menut, C.; Dridi-Dhaouadi, S. Wastewater to ecological dyeing process and bioactive compounds resources: Case study of Dittrichia graveolens hydrodistillation aqueous residue. Waste Biomass Valori. 2021, 12, 5065–5077. [Google Scholar] [CrossRef]
  200. Öksüz, S. Flavonoidal compounds of Inula viscosa part II. Planta Med. 1977, 31, 270–273. [Google Scholar] [CrossRef]
  201. Zhao, Q.; Ding, R.; Li, S.; Wang, C.; Gu, R. Identification of the active compounds and their mechanisms of medicinal and edible Heigen based on UHPLC-Q-Exactive Orbitrap MS and network pharmacology. Food Sci. Technol. 2023, 43, e123522. [Google Scholar] [CrossRef]
  202. Kowalewska, K.; Lutomski, J. Flavonoids in the inflorescences of Inula helenium L. Herba Pol. 1978, 24, 107–113. (In Polish) [Google Scholar]
  203. Gokbulut, A.; Gunal, S.; Sarer, E. Antioxidant and antimicrobial activities and phenolic compounds of Inula peacockiana and Inula thapsoides ssp. thapsoides. Chem. Nat. Compd. 2016, 52, 119–122. [Google Scholar] [CrossRef]
  204. Yousuf, S.; Shabir, S.; Kauts, S.; Minocha, T.; Obaid, A.A.; Khan, A.A.; Mujalli, A.; Jamous, Y.F.; Almaghrabi, S.; Baothman, B.K.; et al. Appraisal of the antioxidant activity, polyphenolic content, and characterization of selected Himalayan herbs: Anti-proliferative potential in HepG2 cells. Molecules 2022, 27, 8629. [Google Scholar] [CrossRef]
  205. Maleš, Ž.; Plazibat, M.; Greiner, M. Qualitative and quantitative analysis of flavonoids of Golden Samphire—Limbarda crithmoides (L.) Dumort. Farm. Glas. 2004, 60, 453–459. [Google Scholar]
  206. Malash, B.N.; Ibrahim, S.M.; Ibrahim, A.-R.S.; Kabbash, A.; El-Aasr, M. In vitro and in vivo hepatoprotective study of Inula crithmoides L., Pluchea dioscoridis (L.) Desf. and Phyllanthus reticulates Poir. J. Pharm. Sci. Res. 2015, 7, 987–993. Available online: https://www.jpsr.pharmainfo.in/Documents/Volumes/vol7Issue11/jpsr07111517.pdf (accessed on 25 July 2023).
  207. Adoui, N.; Souilah, N.; Bendif, H.; Sut, S.; Dall’Acqua, S.; Flamini, G.; Maggi, F.; Peron, G. Characterization of polyphenols and volatile compounds from understudied Algerian Pallenis spinosa by HS-SPME-GC-MS, NMR and HPLC-MSn approaches. Appl. Sci. 2023, 13, 10113. [Google Scholar] [CrossRef]
  208. Alamdary, M.P.; Baharfar, R.; Tavakoli, S. Isolation of secondary metabolites from Pulicaria gnaphalodes (Vent.) Boiss. and evaluation of their anti-proliferative activity. Polycycl. Aromat. Compd. 2023, 43, 8307–8318. [Google Scholar] [CrossRef]
  209. Elshamy, A.I.; Mohamed, T.A.; Marzouk, M.M.; Hussien, T.A.; Umeyama, A.; Hegazy, M.E.F.; Efferth, T. Phytochemical constituents and chemosystematic significance of Pulicaria jaubertii E.Gamal-Eldin (Asteraceae). Phytochem. Lett. 2018, 24, 105–109. [Google Scholar] [CrossRef]
  210. Tan, D.-P.; Yan, Q.-X.; Kang, H.; Zeng, W.-Z.; Feng, H.-L. Chemical Constituents of Blumea balsamifera DC. Nat. Prod. Res. Dev. 2012, 23, 718–721. [Google Scholar]
  211. Tan, D.; Yang, Z.; Zhang, Q.; Ling, H.; Du, Y.; Lu, Y.; Xie, T.; Zhou, X.; Qin, L.; He, Y. Simultaneous quantitative determination of polyphenolic compounds in Blumea balsamifera (Ai-Na-Xiang, Sembung) by high-performance liquid chromatography with photodiode array detector. Int. J. Anal. Chem. 2020, 2020, 9731327. [Google Scholar] [CrossRef] [PubMed]
  212. Villaescusa Castillo, L.; Diaz, A.M.; Bartolome, C. Methoxylated flavonoids from Jasonia glutinosa DC, and their relation with others species of Jasonia. Pharmazie 1995, 50, 639–640. [Google Scholar]
  213. Stojakowska, A.; Malarz, J.; Zubek, S.; Turnau, K.; Kisiel, W. Terpenoids and phenolics from Inula ensifolia. Biochem. Syst. Ecol. 2010, 38, 232–235. [Google Scholar] [CrossRef]
  214. El-Negoumy, S.I.; Mansour, R.M.A.; Saleh, N.A.M. Flavonols of Pulicaria arabica. Phytochemistry 1982, 21, 953–954. [Google Scholar] [CrossRef]
  215. Alreshidi, M.; Abdulhakeem, M.A.; Badraoui, R.; Amato, G.; Caputo, L.; De Martino, L.; Nazzaro, F.; Fratianni, F.; Formisano, C.; De Feo, V.; et al. Pulicaria incisa (Lam.) DC. as a potential source of antioxidant, antibacterial, and anti-enzymatic bioactive molecules: Phytochemical constituents, in vitro and in silico pharmacological analysis. Molecules 2023, 28, 7439. [Google Scholar] [CrossRef] [PubMed]
  216. Jallali, I.; waffo Téguo, P.; Smaoui, A.; Mérillon, J.-M.; Abdelly, C.; Ksouri, R. Bio-guided fractionation and characterization of powerful antioxidant compounds from the halophyte Inula crithmoїdes. Arab. J. Chem. 2020, 13, 2680–2688. [Google Scholar] [CrossRef]
  217. Chelly, S.; Chelly, M.; Occhiuto, C.; Cimino, F.; Cristani, M.; Saija, A.; Molonia, M.S.; Ruberto, G.; D’Angelo, V.; Germanň, M.P.; et al. Evaluation of antioxidant, anti-inflammatory and antityrosinase potential of extracts from different aerial parts of Rhanterium suaveolens from Tunisia. Chem. Biodivers. 2021, 18, e2100316. [Google Scholar] [CrossRef]
  218. Eshbakova, K.A.; Khasanova, K.I.; Komilov, B.D.; Melieva, S.O.; Aisa, H.A. Diterpenoids and flavonoids from Pulicaria gnaphalodes. Chem. Nat. Compd. 2018, 54, 360–361. [Google Scholar] [CrossRef]
  219. Villaescusa, L.; Diaz, A.M.; Lapica, B.C.; Fernandez, L. Patuletin and quercetin derivatives in Jasonia glutinosa. Ars Pharm. 1992, 33, 469–472. [Google Scholar]
  220. Perveen, S.; Al-Taweel, A.M.; Yusufoglu, H.S.; Fawzy, G.A.; Foudah, A.; Abdel-Kader, M.S. Hepatoprotective and cytotoxic activities of Anvillea garcinii and isolation of four new secondary metabolites. J. Nat. Med. 2018, 72, 106–117. [Google Scholar] [CrossRef] [PubMed]
  221. Alam, M.K.; Rana, Z.H.; Islam, S.N.; Akhtaruzzaman, M. Comparative assessment of nutritional composition, polyphenol profile, antidiabetic and antioxidative properties of selected edible wild plant species of Bangladesh. Food Chem. 2020, 320, 126646. [Google Scholar] [CrossRef] [PubMed]
  222. Jdey, A.; Falleh, H.; Ben Jannet, S.; Mkadmini Hammi, K.; Dauvergne, X.; Ksouri, R.; Magné, C. Phytochemical investigation and antioxidant, antibacterial and anti-tyrosinase performances of six medicinal halophytes. S. Afr. J. Bot. 2017, 112, 508–514. [Google Scholar] [CrossRef]
  223. Daroui-Mokaddem, H.; Kabouche, A.; Boutaghane, N.; Calliste, C.-A.; Duroux, J.-L.; Kabouche, Z. Antioxidant Flavonoids from Asteriscus maritimus. Nat. Prod. Commun. 2017, 12, 385–386. [Google Scholar] [CrossRef]
  224. Sagitdinova, G.V.; Éshbakova, K.A.; Malikov, V.M. Diterpenoids of Pulicaria salviifolia. III. The structure of salvicinin. Chem. Nat. Compd. 1994, 30, 226–228. [Google Scholar] [CrossRef]
  225. Zhou, L.; Xiong, Y.; Chen, J.-L.; Zhang, J.-Y.; Hao, X.-J.; Gu, W. Study on the chemical constituents from the aerial parts of Blumea balsamifera DC. and their antioxidant and tyrosinase inhibitory activities. Nat. Prod. Res. Dev. 2021, 33, 1112–1120. [Google Scholar] [CrossRef]
  226. Achoub, H.; Mencherini, T.; Esposito, T.; Rastrelli, L.; Aquino, R.; Gazzerro, P.; Zaiter, L.; Benayache, F.; Benayache, S. New sesquiterpenes from Asteriscus graveolens. Nat. Prod. Res. 2021, 35, 2190–2198. [Google Scholar] [CrossRef]
  227. Simöes, F.; Nascimento, J. Constituents of Dittrichia viscosa subsp. viscosa. Fitoterapia 1990, 61, 553–554. [Google Scholar]
  228. El-Ghaly, E.-S.M.; Shaheen, U.; Ragab, E.; El-hila, A.A.; Abd-Allah, M.R. Bioactive constituents of Pulicaria jaubertii: A promising antihypertensive activity. Pharmacogn. J. 2016, 8, 81–86. [Google Scholar]
  229. Geng, H.-M.; Zhang, D.-Q.; Zha, J.-P.; Qi, J.-L. Simultaneous HPLC determination of five flavonoids in Flos Inulae. Chromatographia 2007, 66, 271–275. [Google Scholar] [CrossRef]
  230. Hu, Y.; Li, Y.-N.; Li, X.; Hao, X.-J.; Yang, W.-X.; Gu, W. Study on the flavonoids in Blumea balsamifera DC. and their antioxidant activity as well as α-glucosidase inhibitory activity. Nat. Prod. Res. Dev. 2018, 30, 1898–1903. [Google Scholar] [CrossRef]
  231. Pan, S.; Lee, E.; Lee, Y.J.; Jin, M.; Lee, E. Suppressive effect of tamarixetin, isolated from Inula japonica, on degranulation and eicosanoid production in bone marrow-derived mast cells. Allergol. Immunopathol. 2021, 49, 42–49. [Google Scholar] [CrossRef] [PubMed]
  232. Gonzalez, A.G.; Bermejo, J.; Triana, J.; Eiroa, J.L.; Lopez, M. Sesquiterpene lactones and other constituents of Allagopappus species. J. Nat. Prod. 1995, 58, 432–437. [Google Scholar] [CrossRef]
  233. Chiappini, I.; Fardella, G.; Menghini, A.; Rossi, C. Flavonoids from Dittrichia viscosa. Planta Med. 1982, 44, 159–161. [Google Scholar] [CrossRef]
  234. Ibraheim, Z.Z.; Darwish, F.M.M. Further constituents from Pulicaria incise. Bull. Fac. Pharm. (Cairo Univ.) 2002, 40, 167–173. [Google Scholar]
  235. Queiroz, E.F.; Ioset, J.-R.; Ndjoko, K.; Guntern, A.; Foggin, C.M.; Hostettmann, K. On-line identification of the bioactive compounds from Blumea gariepina by HPLC-UV-MS and HPLC-UV-NMR, combined with HPLC-micro-fractionation. Phytochem. Anal. 2005, 16, 166–174. [Google Scholar] [CrossRef] [PubMed]
  236. Boussaha, S.; Bekhouche, K.; Boudjerda, A.; Leόn, F.; Koldaş, S.; Yaglioglu, A.S.; Demirtaş, İ.; Brouard, I.; Marchioni, E.; Zama, D.; et al. Chemical constituents, in vitro antioxidant and antiproliferative activities of Perralderia coronopifolia Coss. subsp. eu-coronopifolia M. var. typica M. extract. Rec. Nat. Prod. 2015, 9, 312–322. Available online: http://www.acgpubs.org/doc/2018080720214939-RNP-1404-064.pdf (accessed on 14 January 2022).
  237. Triana, J.; López, M.; Pérez, F.J.; León, F.; Quintana, J.; Estévez, F.; Hernández, J.C.; González-Platas, J.; Brouard, I.; Bermejo, J. Secondary metabolites from two species of Pulicaria and their cytotoxic activity. Chem. Biodivers. 2011, 8, 2080–2089. [Google Scholar] [CrossRef] [PubMed]
  238. Elhady, S.S.; Eltamany, E.E.; Shaaban, A.E.; Bagalagel, A.A.; Muhammad, Y.A.; El-Sayed, N.M.; Ayyad, S.N.; Ahmed, A.A.M.; Elgawish, M.S.; Ahmed, S.A. Jaceidin Flavonoid Isolated from Chiliadenus montanus Attenuates Tumor Progression in Mice via VEGF Inhibition: In Vivo and In Silico Studies. Plants 2020, 9, 1031. [Google Scholar] [CrossRef]
  239. Heilmann, J.; Merfort, I.; Weiss, M. Radical Scavenger Activity of Different 3′,4′-Dihydroxyflavonols and 1,5-Dicaffeoylquinic Acid Studied by Inhibition of Chemiluminescence. Planta Med. 1995, 61, 435–438. [Google Scholar] [CrossRef]
  240. Stojakowska, A.; Malarz, J.; Żylewski, M.; Kisiel, W. Acylated hydroxycinnamic acid glucosides from flowers of Telekia speciosa. Phytochem. Lett. 2015, 12, 257–261. [Google Scholar] [CrossRef]
  241. Ezzat, M.I.; Ezzat, S.M.; El Deeb, K.S.; El Fishawy, A.M.; El-Toumy, S.A. A new acylated flavonol from the aerial parts of Asteriscus maritimus (L.) Less (Asteraceae). Nat. Prod. Res. 2016, 30, 1753–1761. [Google Scholar] [CrossRef]
  242. El-Lakany, A.M.; Aboul Ela, M.A.; Hammoda, H.M.; Ghazy, N.M.; Mahmoud, Z.F. New methoxylated flavonols from Inula crithmoides L. Pharmazie 1996, 51, 435–436. [Google Scholar]
  243. Piao, D.; Kim, T.; Zhang, H.Y.; Choi, H.G.; Lee, C.S.; Choi, H.J.; Chang, H.W.; Woo, M.-H.; Son, J.-K. DNA Topoisomerase inhibitory activity of constituents from the flowers of Inula japonica. Chem. Pharm. Bull. 2016, 64, 276–281. [Google Scholar] [CrossRef]
  244. Yang, H.H.; Zhang, H.; Son, J.-K.; Kim, J.-R. Inhibitory effects of quercetagetin 3,4′-dimethyl ether purified from Inula japonica on cellular senescence in human umbilical vein endothelial cells. Arch. Pharm. Res. 2015, 38, 1857–1864. [Google Scholar] [CrossRef] [PubMed]
  245. Królikowska, M.; Wolbiś, M. Polyphenolic compounds of Inula britannica L. (Compositae). Acta Polon. Pharm. 1981, 38, 107–114. [Google Scholar]
  246. Abdel Bar, F.M.; Elsbaey, M.; Taha, N.; Elgaml, A.; Abdel-Fattah, G.M. Phytochemical, antimicrobial and antiquorum-sensing studies of Pulicaria undulata L.: A revision on the structure of 1β,2α,3β,19α,23-pentahydroxy-urs-12-en-28-oic acid. Nat. Prod. Res. 2020, 34, 804–809. [Google Scholar] [CrossRef] [PubMed]
  247. Venkateswarlu, K.; Satyalakshmi, G.; Suneel, K.; Reddy, T.S.; Raju, T.V.; Das, B. A benzofuranoid and two clerodane diterpenoids from Pulicaria wightiana. Helv. Chim. Acta 2008, 91, 2081–2088. [Google Scholar] [CrossRef]
  248. Zhu, H.; Tang, S.-A.; Qin, N.; Duan, H.-Q.; Jin, M.-H. Anti-inflammatory constituents from Inula japonica. Zhongguo Zhongyao Zazhi 2014, 39, 83–88. [Google Scholar] [PubMed]
  249. Gore, M.; Desai, N.S. Characterization of phytochemicals and evaluation of anti-cancer potential of Blumea eriantha DC. Physiol. Mol. Biol. Plants 2014, 20, 475–486. [Google Scholar] [CrossRef] [PubMed]
  250. Ayaz, F.; Emerce, E.; Gören, N.; Çalış, İ.; Rehman, M.U.; Choudhary, M.I.; Küçükboyacı, N. Antiproliferative constituents from the aerial parts of Chrysophthalmum montanum (DC.) Boiss. Phytochem. Lett. 2020, 36, 173–182. [Google Scholar] [CrossRef]
  251. Bheemasankara Rao, C.; Namosiva Rao, T.; Muralikrishna, B. Flavonoids from Blumea lacera. Planta Med. 1977, 31, 235–237. [Google Scholar] [CrossRef] [PubMed]
  252. Mossa, J.S.; Hifnawy, M.S.; Alyahya, M.A.; Hafez, M.M.; Shehata, A.A.; El-Feraly, F.S. Flavonoids and coumarins from three Saudi Arabian compositae species. Int. J. Crude Drug Res. 1988, 26, 181–184. [Google Scholar] [CrossRef]
  253. Saleh, S.M.; Ali, R.; Hegazy, M.-E.F.; Alminderej, F.M.; Mohamed, T.A. The natural compound chrysosplenol-D is a novel, ultrasensitive optical sensor for detection of Cu(II). J. Mol. Liq. 2020, 302, 112558. [Google Scholar] [CrossRef]
  254. Sagitdinova, G.V.; Eshbakova, K.A.; Khushbaktova, Z.A.; Malikov, V.M.; Olimov, V. Flavonoid pulicarpin from Pulicaria salviifolia and its hypolipidemic activity. Chem. Nat. Compd. 1992, 28, 286–288. [Google Scholar] [CrossRef]
  255. Fadel, H.; Sifaoui, I.; López-Arencibia, A.; Reyes-Batlle, M.; Hajaji, S.; Chiboub, O.; Jiménez, I.A.; Bazzocchi, I.L.; Lorenzo-Morales, J.; Benayache, S.; et al. Assessment of the antiprotozoal activity of Pulicaria inuloides extracts, an Algerian medicinal plant: Leishmanicidal bioguided fractionation. Parasitol. Res. 2018, 117, 531–537. [Google Scholar] [CrossRef] [PubMed]
  256. Bose, P.K.; Barua, A.K.; Chakrabarti, P. Revised Structure of Erianthin-A Flavonol from Blumea eriantha DC. J. Indian Chem. Soc. 1968, 45, 851–852. [Google Scholar] [CrossRef]
  257. Pham, X.P.; Nhung, T.T.T.; Trinh, H.N.; Vu, B.D.; Nguyen, V.T.; Men, C.V. Isolation and structural characterization of compounds from Blumea lacera. Pharmacogn J. 2021, 13, 999–1004. Available online: http://www.phcogj.com/v13/i4 (accessed on 12 October 2023). [CrossRef]
  258. Melek, F.R.; El-Ansar, M.A.; Hassan, A.; Regaila, A.; Ahmed, A.A.; Mabry, T.J. Methoxylated flavonoid aglycones from Pulicaria arabica. Rev. Latinoamer. Quim. 1988, 19, 119–120. [Google Scholar]
  259. Burki, S.; Zehravi, M.; Asghar, M.A.; Ahmed, I.; Burki, Z.G.; Rehman, A.A.; Ansar, H. Screening of phytochemical constituents and potential antioxidant, antibacterial and anticancerous activities of Carpesium nepalense seeds oil. Pak. J. Pharm. Sci. 2021, 34, 1975–1982. [Google Scholar] [CrossRef] [PubMed]
  260. Tambewagh, U.U.; Javir, G.R.; Joshi, K.S.; Rojatkar, S.R. Two new polyoxygenated flavonoids from Blumea eriantha DC, methanol extract and their anti-proliferative activity. Nat. Prod. Res. 2021, 35, 2815–2822. [Google Scholar] [CrossRef] [PubMed]
  261. Ahmad, V.U.; Ismail, N. 5-Hydroxy-3,6,7,2′,5′-pentamethoxyflavone from Inula grantioides. Phytochemistry 1991, 30, 1040–1041. [Google Scholar] [CrossRef]
  262. Goswami, A.C.; Baruah, R.N.; Sharma, R.P.; Baruah, J.N.; Kulanthaivel, P.; Herz, W. Germacranolides from Inula cappa. Phytochemistry 1984, 23, 367–372. [Google Scholar] [CrossRef]
  263. Bae, W.-Y.; Kim, H.-Y.; Park, E.-H.; Kim, K.-T.; Paik, H.-D. Improved in vitro antioxidant properties and hepatoprotective effects of a fermented Inula britannica extract on ethanol-damaged HepG2 cells. Mol. Biol. Rep. 2019, 46, 6053–6063. [Google Scholar] [CrossRef]
  264. Hanh, T.T.H.; Hang, L.T.T.; Giang, V.H.; Trung, N.Q.; Thanh, N.V.; Quang, T.H.; Cuong, N.X. Chemical constituents of Blumea balsamifera. Phytochem. Lett. 2021, 43, 35–39. [Google Scholar] [CrossRef]
  265. Ulubelen, A.; Öksüz, S.; Gören, N. Sesquiterpene acids from Inula viscosa. Phytochemistry 1987, 26, 1223–1224. [Google Scholar] [CrossRef]
  266. Shi, Y.-P.; Guo, W.; Jia, Z.-J. Germacranolides from Carpesium lipskyi. Planta Med. 1999, 65, 94–96. [Google Scholar] [CrossRef] [PubMed]
  267. Yang, C.; Yuan, C.; Jia, Z. Xanthanolides, Germacranolides, and Other Constituents from Carpesium longifolium. J. Nat. Prod. 2003, 66, 1554–1557. [Google Scholar] [CrossRef] [PubMed]
  268. Asraoui, F.; Kounnoun, A.; Cacciola, F.; El Mansouri, F.; Kabach, I.; El Majdoub, Y.O.; Alibrando, F.; Arena, K.; Trovato, E.; Mondello, L.; et al. Phytochemical Profile, antioxidant capacity, α-amylase and α-glucosidase inhibitory potential of wild Moroccan Inula viscosa (L.) Aiton leaves. Molecules 2021, 26, 3134. [Google Scholar] [CrossRef] [PubMed]
  269. Bohlmann, F.; Czerson, H.; Schoneweiß, S. Neue Inhaltsstoffe aus Inula viscosa Ait. Chem. Ber. 1977, 110, 1330–1334. [Google Scholar] [CrossRef]
  270. Metwally, M.; Dawidar, A.-A.; Metwally, S. A new thymol derivative from Pulicaria undulata. Chem. Pharm. Bull. 1986, 34, 378–379. [Google Scholar] [CrossRef]
  271. Lin, Y.C.; Long, K.H.; Deng, Y.J. Studies on chemical constituents of the Chinese medicinal plant Blumea balsamifera. Acta Sci. Natur. Univ. Sunjatseni 1988, 27, 77–80. [Google Scholar]
  272. Saifudin, A.; Tanaka, K.; Kadota, S.; Tezuka, Y. Chemical constituents of Blumea balsamifera of Indonesia and their protein tyrosine phosphatase 1B inhibitory activity. Nat. Prod. Commun. 2012, 7, 815–818. [Google Scholar] [CrossRef]
  273. Yang, C.; Zhu, Y.; Jia, Z.-J. Sesquiterpene lactones and other constituents from the aerial parts of Carpesium macrocephalum. Aust. J. Chem. 2003, 56, 621–624. [Google Scholar] [CrossRef]
  274. Ragab, E.A.; Raafat, M. A new monoterpene glucoside and complete assignments of dihydroflavonols of Pulicaria jaubertii: Potential cytotoxic and blood pressure lowering activity. Nat. Prod. Res. 2016, 30, 1280–1288. [Google Scholar] [CrossRef]
  275. Triana, J.; López, M.; Pérez, F.J.; González-Platas, J.; Quintana, J.; Estévez, F.; León, F.; Bermejo, J. Sesquiterpenoids from Pulicaria canariensis and their cytotoxic activities. J. Nat. Prod. 2005, 68, 523–531. [Google Scholar] [CrossRef] [PubMed]
  276. Barua, N.C.; Sharma, R.P. (2R,3R)-7,5′-dimethoxy-3,5,2′-trihydroxyflavanone from Blumea balsamifera. Phytochemistry 1992, 31, 4040. [Google Scholar] [CrossRef]
  277. Ruangrungsi, N.; Tappayuthpijarn, P.; Tantivatana, P.; Borris, R.P.; Cordell, G.A. Traditional medicinal plants of Thailand. I. Isolation and structure elucidation of two new flavonoids, (2R,3R)-dihydroquercetin-4′-methyl ether and (2R,3R)-dihydroquercetin-4′,7-dimethyl ether from Blumea balsamifera. J. Nat. Prod. 1981, 44, 541–545. [Google Scholar] [CrossRef]
  278. Xia, K.; Qi, W.-J.; Wu, X.-Q.; Song, Y.-Y.; Zhu, J.-J.; Ai, Y.; Cui, Z.; Zhang, Z.-P.; Tang, S.-A.; Gui, Y.-T.; et al. Synthesis, structure revision, and anti-inflammatory activity investigation of putative blumeatin. ACS Omega 2023, 8, 14240–14246. [Google Scholar] [CrossRef] [PubMed]
  279. Elmann, A.; Telerman, A.; Erlank, H.; Mordechay, S.; Rindner, M.; Ofir, R.; Kashman, Y. Protective and antioxidant effects of a chalconoid from Pulicaria incisa on brain astrocytes. Oxid. Med. Cell. Longev. 2013, 2013, 694398. [Google Scholar] [CrossRef] [PubMed]
  280. Gao, X.; Ma, Y.; Wang, Z.; Bia, R.; Zhang, P.; Hu, F. Identification of anti-inflammatory active ingredients from Tumuxiang by ultra-performance liquid chromatography/quadrupole time-of-flight-MSE. Biomed. Chromatogr. 2018, 32, e4179. [Google Scholar] [CrossRef] [PubMed]
  281. Hernández, V.; Recio, M.C.; Máńez, S.; Giner, R.M.; Ríos, J.-L. Effects of naturally occurring dihydroflavonols from Inula viscosa on inflammation and enzymes involved in the arachidonic acid metabolism. Life Sci. 2007, 81, 480–488. [Google Scholar] [CrossRef] [PubMed]
  282. Zhang, W.Y.; Lee, J.-J.; Kim, I.-S.; Kim, Y.; Park, J.-S.; Myung, C.-S. 7-O-Methylaromadendrin stimulates glucose uptake and improves insulin resistance in vitro. Biol. Pharm. Bull. 2010, 33, 1494–1499. [Google Scholar] [CrossRef]
  283. Saito, T.; Abe, D.; Sekiya, K. Sakuranetin induces adipogenesis of 3T3-L1 cells through enhanced expression of PPARγ2. Biochem. Biophys. Res. Commun. 2008, 372, 835–839. [Google Scholar] [CrossRef]
  284. Marín, M.; Giner, R.M.; Recio, M.C.; Máńez, S. Phenylpropanoid and phenylisoprenoid metabolites from Asteraceae species as inhibitors of protein carbonylation. Phytochemistry 2011, 72, 1821–1825. [Google Scholar] [CrossRef] [PubMed]
  285. Xu, S.-B.; Chen, W.-F.; Liang, H.-Q.; Lin, Y.-C.; Deng, Y.-J.; Long, K.-H. Protective action of blumeatin against experimental liver injuries. Acta Pharmacol. Sin. 1992, 14, 376–378. Available online: http://www.chinaphar.com/article/view/8794/9420 (accessed on 12 October 2023).
  286. Mohammed, H.A.; Almahmoud, S.A.; El-Ghaly, E.-S.M.; Khan, F.A.; Emwas, A.-H.; Jaremko, M.; Almulhim, F.; Khan, R.A.; Ragab, E.A. Comparative anticancer potentials of taxifolin and quercetin methylated derivatives against HCT-116 cell lines: Effects of O-methylation on taxifolin and quercetin as preliminary natural leads. ACS Omega 2022, 7, 46629–46639. [Google Scholar] [CrossRef] [PubMed]
  287. Hasegawa, H.; Yamada, Y.; Komiyama, K.; Hayashi, M.; Ishibashi, M.; Yoshida, T.; Sakai, T.; Koyano, T.; Kam, T.-S.; Murata, K.; et al. Dihydroflavonol BB-1, an extract of natural plant Blumea balsamifera, abrogates TRAIL resistance in leukemia cells. Blood 2006, 107, 679–688. [Google Scholar] [CrossRef]
  288. Saewan, N.; Koysomboon, S.; Chantrapromma, K. Anti-tyrosinase and anti-cancer activities of flavonoids from Blumea balsamifera DC. J. Med. Plant. Res. 2011, 5, 1018–1025. [Google Scholar]
  289. Nguyen, M.T.T.; Nguyen, N.T. Xanthine oxidase inhibitors from Vietnamese Blumea balsamifera L. Phytother. Res. 2012, 26, 1178–1181. [Google Scholar] [CrossRef]
  290. Talib, W.H.; Abu Zarga, M.H.; Mahasneh, A.M. Antiproliferative, antimicrobial and apoptosis inducing effects of compounds isolated from Inula viscosa. Molecules 2012, 17, 3291–3303. [Google Scholar] [CrossRef]
  291. Ashaq, A.; Maqbool, M.F.; Maryam, A.; Khan, M.; Shakir, H.A.; Irfan, M.; Qazi, J.I.; Li, Y.; Ma, T. Hispidulin: A novel natural compound with therapeutic potential against human cancers. Phytother. Res. 2021, 35, 771–789. [Google Scholar] [CrossRef] [PubMed]
  292. Kim, J.H.; Park, Y.-I.; Hur, M.; Park, W.T.; Moon, Y.-H.; Koo, S.C.; Hera, Y.-C.; Lee, I.S.; Park, J. The inhibitory activity of methoxyl flavonoids derived from Inula britannica flowers on SARS-CoV-2 3CLpro. Int. J. Biol. Macromol. 2022, 222, 2098–2104. [Google Scholar] [CrossRef]
  293. Kim, S.R.; Park, M.J.; Lee, M.K.; Sung, S.H.; Park, E.J.; Kim, J.; Kim, S.Y.; Oh, T.H.; Markelonis, G.J.; Kim, Y.C. Flavonoids of Inula britannica protect cultured cortical cells from necrotic cell death induced by glutamate. Free Radic. Biol. Med. 2002, 32, 596–604. [Google Scholar] [CrossRef]
  294. Ji, N.; Kim, S.-G.; Park, H.-H.; Lee, E.; Lee, Y.J.; Jin, M.; Lee, E. Nepetin, a natural compound from Inulae flos, suppresses degranulation and eicosanoid generation through PLCγ1 and Akt signaling pathways in mast cells. Arch. Pharm. Res. 2020, 43, 224–232. [Google Scholar] [CrossRef] [PubMed]
  295. Imran, M.; Rauf, A.; Abu-Izneid, T.; Nadeem, M.; Shariati, M.A.; Khan, I.A.; Imran, A.; Erdogan Orhan, I.; Rizwan, M.; Atif, M.; et al. Luteolin, a flavonoid, as an anticancer agent: A review. Biomed. Pharmacother. 2019, 112, 108612. [Google Scholar] [CrossRef] [PubMed]
  296. Ntalouka, F.; Tsirivakou, A. Luteolin: A promising natural agent in management of pain in chronic conditions. Front. Pain Res. 2023, 4, 1114428. [Google Scholar] [CrossRef] [PubMed]
  297. Nabavi, S.F.; Braidy, N.; Gortzi, O.; Sobarzo-Sanchez, E.; Daglia, M.; Skalicka-Woźniak, K.; Nabavi, S.M. Luteolin as an anti-inflammatory and neuroprotective agent: A brief review. Brain Res. Bull. 2015, 119, 1–11. [Google Scholar] [CrossRef] [PubMed]
  298. Miao, L.; Zhang, H.; Cheong, M.S.; Zhong, R.; Garcia-Oliveira, P.; Prieto, M.A.; Cheng, K.-W.; Wang, M.; Cao, H.; Nie, S.; et al. 1991Anti-diabetic potential of apigenin, luteolin, and baicalein via partially activating PI3K/Akt/GLUT-4 signaling pathways in insulin-resistant HepG2 cells. Food Sci. Hum. Wellness 2023, 12, 1991–2000. [Google Scholar] [CrossRef]
  299. Nessa, F.; Ismail, Z.; Mohamed, N. Xanthine oxidase inhibitory activities of extracts and flavonoids of the leaves of Blumea balsamifera. Pharm. Biol. 2010, 48, 1405–1412. [Google Scholar] [CrossRef] [PubMed]
  300. Zhang, J.; Zhang, W.-H.; Morisseau, C.; Zhang, M.; Dong, H.-J.; Zhu, Q.-M.; Huo, X.-K.; Sun, C.-P.; Hammock, B.D.; Ma, X.-C. Genetic deletion or pharmacological inhibition of soluble epoxide hydrolase attenuated particulate matter 2.5 exposure mediated lung injury. J. Hazard. Mater. 2023, 458, 131890. [Google Scholar] [CrossRef]
  301. Jose, S.; Devi, S.S.; Shakthi, P.; Al-Khafaji, K. Phytochemical constituents of Inula britannica as potential inhibitors of dihydrofolate reductase: A strategic approach against shigellosis. J. Biomed. Struct. Dyn. 2022, 40, 11932–11947. [Google Scholar] [CrossRef]
  302. Yang, D.; Wang, T.; Long, M.; Li, P. Quercetin: Its Main Pharmacological Activity and Potential Application in Clinical Medicine. Oxid. Med. Cell. Longev. 2020, 2020, 8825387. [Google Scholar] [CrossRef]
  303. Salehi, B.; Machin, L.; Monzote, L.; Sharifi-Rad, J.; Ezzat, S.M.; Salem, M.A.; Merghany, R.M.; El Mahdy, N.M.; Kılıç, C.S.; Sytar, O.; et al. Therapeutic Potential of Quercetin: New Insights and Perspectives for Human Health. ACS Omega 2020, 5, 11849–11872. [Google Scholar] [CrossRef]
  304. Chen, A.Y.; Chen, Y.C. A review of the dietary flavonoid, kaempferol on human health and cancer chemoprevention. Food Chem. 2013, 138, 2099–2107. [Google Scholar] [CrossRef] [PubMed]
  305. Valentová, K.; Vrba, J.; Bancířová, M.; Ulrichová, J.; Křen, V. Isoquercitrin: Pharmacology, toxicology, and metabolism. Food Chem. Toxicol. 2014, 68, 267–282. [Google Scholar] [CrossRef]
  306. Riaz, A.; Rasul, A.; Hussain, G.; Zahoor, M.K.; Jabeen, F.; Subhani, Z.; Younis, T.; Ali, M.; Sarfraz, I.; Selamoglu, Z. Astragalin: A bioactive phytochemical with potential therapeutic activities. Adv. Pharmacol. Sci. 2018, 2018, 9794625. [Google Scholar] [CrossRef] [PubMed]
  307. Silva dos Santos, J.; Gonçalves Cirino, J.P.; de Oliveira Carvalho, P.; Ortega, M.M. The Pharmacological Action of Kaempferol in Central Nervous System Diseases: A Review. Front. Pharmacol. 2021, 11, 565700. [Google Scholar] [CrossRef] [PubMed]
  308. Sala, E.; Guasch, L.; Iwaszkiewicz, J.; Mulero, M.; Salvadó, M.-J.; Bladé, C.; Ceballos, M.; Valls, C.; Zoete, V.; Grosdidier, A.; et al. Identification of human IKK-2 inhibitors of natural origin (Part II): In Silico prediction of IKK-2 inhibitors in natural extracts with known anti-inflammatory activity. Eur. J. Med. Chem. 2011, 46, 6098–6103. [Google Scholar] [CrossRef] [PubMed]
  309. Abad, M.J.; Guerra, J.A.; Bermejo, P.; Irurzun, A.; Carrasco, L. Search for antiviral activity in higher plant extracts. Phytother. Res. 2000, 14, 604–607. [Google Scholar] [CrossRef]
  310. Zarei, M.; Mohammadi, S.; Komaki, A. Antinociceptive activity of Inula britannica L. and patuletin: In vivo and possible mechanisms studies. J. Ethnopharmacol. 2018, 219, 351–358. [Google Scholar] [CrossRef]
  311. Ji, N.; Pan, S.; Shao, C.; Chen, Y.; Zhang, Z.; Wang, R.; Qiu, Y.; Jin, M.; Kong, D. Spinacetin suppresses the mast cell activation and passive cutaneous anaphylaxis in mouse model. Front. Pharmacol. 2018, 9, 824. [Google Scholar] [CrossRef] [PubMed]
  312. Semple, S.J.; Nobbs, S.F.; Pyke, S.M.; Reynolds, G.D.; Flower, R.L.P. Antiviral flavonoid from Pterocaulon sphacelatum, an Australian Aboriginal medicine. J. Ethnopharmacol. 1999, 68, 283–288. [Google Scholar] [CrossRef]
  313. Son, M.-J.; Kim, H.K.; Huong, D.T.T.; Kim, Y.H.; Sung, T.V.; Cuong, N.M.; Woo, S.-H. Chrysosplenol C increases contraction in rat ventricular myocytes. J. Cardiovasc. Pharmacol. 2011, 57, 259–262. [Google Scholar] [CrossRef]
  314. Zerargui, F.; Saffidine, K.; Guemmaz, T.; Laroui, H.; Trabsa, H.; Baghiani, A.; Khanouf, S.; Abu Zarga, M.H. Antioxidant potentials of five flavonoids compounds isolated from Varthemia iphionoids. Trop. J. Pharm. Res. 2023, 22, 1417–1425. [Google Scholar] [CrossRef]
  315. Homma, M.; Minami, M.; Taniguchi, C.; Oka, K.; Morita, S.; Niitsuma, T.; Hayashi, T. Inhibitory Effects of lignans and flavonoids in Saiboku-To, a herbal medicine for bronchial asthma, on the release of leukotrienes from human polymorphonuclear leukocytes. Planta Med. 2000, 66, 88–91. [Google Scholar] [CrossRef]
  316. Logendra, S.; Ribnicky, D.M.; Yang, H.; Poulev, A.; Ma, J.; Kennelly, E.J.; Raskin, I. Bioassay-guided isolation of aldose reductase inhibitors from Artemisia dracunculus. Phytochemistry 2006, 67, 1539–1546. [Google Scholar] [CrossRef]
  317. Desire, O.; Rivičre, C.; Razafindrazaka, R.; Goossens, L.; Moreau, S.; Guillon, J.; Uverg-Ratsimamanga, S.; Andriamadio, P.; Moore, N.; Randriantsoa, A.; et al. Antispasmodic and antioxidant activities of fractions and bioactive constituent davidigenin isolated from Mascarenhasia arborescens. J. Ethnopharmacol. 2010, 130, 320–328. [Google Scholar] [CrossRef] [PubMed]
  318. Elmann, A.; Telerman, A.; Ofir, R.; Kashman, Y. Pulichalconoid B suppresses experimental dermatitis in mice. Isr. J. Plant Sci. 2015, 62, 242–249. [Google Scholar] [CrossRef]
  319. Pérez-Jiménez, J.; Fezeu, L.; Touvier, M.; Arnault, N.; Manach, C.; Hercberg, S.; Galan, P.; Scalbert, A. Dietary intake of 337 polyphenols in French adults. Am. J. Clin. Nutr. 2011, 93, 1220–1228. [Google Scholar] [CrossRef] [PubMed]
  320. Clifford, M.N. Chlorogenic acids and the acyl-quinic acids: Discovery, biosynthesis, bioavailability and bioactivity. Nat. Prod. Rep. 2017, 34, 1391–1421. [Google Scholar] [CrossRef] [PubMed]
  321. Alcázar Magańa, A.; Kamimura, N.; Soumyanath, A.; Stevens, J.F.; Maier, C.S. Caffeoylquinic acids: Chemistry, biosynthesis, occurrence, analytical challenges, and bioactivity. Plant J. 2021, 107, 1299–1319. [Google Scholar] [CrossRef] [PubMed]
  322. Rebai, O.; Belkhir, M.; Sanchez-Gomez, M.V.; Matute, C.; Fattouch, S.; Amri, M. Differential molecular targets for neuroprotective effect of chlorogenic acid and its related compounds against glutamate induced excitotoxicity and oxidative stress in rat cortical neurons. Neurochem. Res. 2017, 42, 3559–3572. [Google Scholar] [CrossRef]
  323. Kwon, S.-H.; Lee, H.-K.; Kim, J.-A.; Hong, S.-I.; Kim, H.-C.; Jo, T.-H.; Park, Y.-I.; Lee, C.-K.; Kim, Y.-B.; Lee, S.-Y.; et al. Neuroprotective effects of chlorogenic acid on scopolamine-induced amnesia via anti-acetylcholinesterase and anti-oxidative activities in mice. Eur. J. Pharmacol. 2010, 649, 210–217. [Google Scholar] [CrossRef]
  324. Jang, H.; Ahn, H.R.; Jo, H.; Kim, K.-A.; Lee, E.H.; Lee, K.W.; Jung, S.H.; Lee, C.Y. Chlorogenic Acid and Coffee Prevent Hypoxia-Induced Retinal Degeneration. J. Agric. Food Chem. 2014, 62, 182–191. [Google Scholar] [CrossRef] [PubMed]
  325. Kim, J.; Jeong, I.-H.; Kim, C.-S.; Lee, Y.M.; Kim, J.M.; Kim, J.S. Chlorogenic acid inhibits the formation of advanced glycation end products and associated protein cross-linking. Arch. Pharm Res. 2011, 34, 495–500. [Google Scholar] [CrossRef] [PubMed]
  326. Danino, O.; Gottlieb, H.E.; Grossman, S.; Bergman, M. Antioxidant activity of 1,3-dicaffeoylquinic acid isolated from Inula viscosa. Food Res. Int. 2009, 42, 1273–1280. [Google Scholar] [CrossRef]
  327. Aboul Ela, M.A.; El-Lakany, A.M.; Abdel-Kader, M.S.; Alqasoumi, S.I.; Shams-El-Din, S.M.; Hammoda, H.M. New quinic acid derivatives from hepatoprotective Inula crithmoides root extract. Helv. Chim. Acta 2012, 95, 61–65. [Google Scholar] [CrossRef]
  328. Kłeczek, N.; Michalak, B.; Malarz, J.; Kiss, A.K.; Stojakowska, A. Carpesium divaricatum Sieb. and Zucc. revisited: Newly identified constituents from aerial parts of the plant and their possible contribution to the biological activity of the plant. Molecules 2019, 24, 1614. [Google Scholar] [CrossRef] [PubMed]
  329. Peng, J.; Xie, J.; Shi, S.; Luo, L.; Li, K.; Xiong, P.; Cai, W. Diagnostic fragment-ion-based for rapid identification of chlorogenic acids derivatives in Inula cappa using UHPLC-QExactive Orbitrap mass spectrometry. J. Anal. Methods Chem. 2021, 2021, 6393246. [Google Scholar] [CrossRef] [PubMed]
  330. Cai, W.; Li, K.; Xiong, P.; Gong, K.; Zhu, L.; Yang, J.; Wu, W. A systematic strategy for rapid identification of chlorogenic acids derivatives in Duhaldea nervosa using UHPLC-Q-Exactive Orbitrap mass spectrometry. Arab. J. Chem. 2020, 13, 3751–3761. [Google Scholar] [CrossRef]
  331. Liu, L.; Zhang, J.; Zheng, B.; Guan, Y.; Wang, L.; Chen, L.; Cai, W. Rapid characterization of chlorogenic acids in Duhaldea nervosa based on ultra-high-performance liquid chromatography–linear trap quadropole-Orbitrap-mass spectrometry and mass spectral trees similarity filter technique. J. Sep. Sci. 2018, 41, 1764–1774. [Google Scholar] [CrossRef] [PubMed]
  332. Jaiswal, R.; Kiprotich, J.; Kuhnert, N. Determination of the hydroxycinnamate profile of 12 members of the Asteraceae family. Phytochemistry 2011, 72, 781–790. [Google Scholar] [CrossRef]
  333. Mrid, R.B.; Bouchmaa, N.; Kabach, I.; Zouaoui, Z.; Chtibi, H.; Maadoudi, M.E.; Kounnoun, A.; Cacciola, F.; Majdoub, Y.O.E.; Mondello, L.; et al. Dittrichia viscosa L. leaves: A valuable source of bioactive compounds with multiple pharmacological effects. Molecules 2022, 27, 2108. [Google Scholar] [CrossRef]
  334. Stojakowska, A.; Malarz, J.; Kiss, A.K. Hydroxycinnamates from elecampane (Inula helenium L.) callus culture. Acta Physiol. Plant. 2016, 38, 41. [Google Scholar] [CrossRef]
  335. Olennikov, D.N.; Tankhaeva, L.M. Phenylpropanoids from subterranean organs of Inula helenium. Chem. Nat. Compd. 2012, 48, 317–318. [Google Scholar] [CrossRef]
  336. Ren, J.; Cheng, X.-R.; Yan, S.-K.; Jin, H.-Z.; Zhang, W.-D. Chemical constituents of Inula falconeri. Chem. Nat. Compd. 2014, 50, 342–343. [Google Scholar] [CrossRef]
  337. Wang, Y.-L.; Li, Y.-J.; Wang, A.-M.; He, X.; Liao, S.-G.; Lan, Y.-Y. Two new phenolic glycosides from Inula cappa. J. Asian Nat. Prod. Res. 2010, 12, 765–769. [Google Scholar] [CrossRef] [PubMed]
  338. Wang, C.; Zhang, X.; Wei, P.; Cheng, X.; Ren, J.; Yan, S.; Zhang, W.; Jin, H. Chemical constituents from Inula wissmanniana and their anti-inflammatory activities. Arch. Pharm. Res. 2013, 36, 1516–1524. [Google Scholar] [CrossRef] [PubMed]
  339. Hong, H.; Lou, S.; Zheng, F.; Gao, H.; Wang, N.; Tian, S.; Huang, G.; Zhao, H. Hydnocarpin D attenuates lipopolysaccharide-induced acute lung injury via MAPK/NF-κB and Keap1/Nrf2/HO-1 pathway. Phytomedicine 2022, 101, 154143. [Google Scholar] [CrossRef]
  340. Lou, S.; Hong, H.; Maihesuti, L.; Gao, H.; Zhu, Z.; Xu, L.; Tian, S.; Kai, G.; Huang, G.; Zhao, H. Inhibitory effect of hydnocarpin D on T-cell acute lymphoblastic leukemia via induction of autophagy-dependent ferroptosis. Exp. Biol. Med. 2021, 246, 1541–1553. [Google Scholar] [CrossRef]
  341. Křen, V.; Valentová, K. Silybin and its congeners: From traditional medicine to molecular effects. Nat. Prod. Rep. 2022, 39, 1264–1281. [Google Scholar] [CrossRef]
  342. Teponno, R.B.; Kusari, S.; Spiteller, M. Recent advances in research on lignans and neolignans. Nat. Prod. Rep. 2016, 33, 1044. [Google Scholar] [CrossRef]
  343. Wang, L.-X.; Wang, H.-L.; Huang, J.; Chu, T.-Z.; Peng, C.; Zhang, H.; Chen, H.-L.; Xiong, Y.-A.; Tan, Y.-Z. Review of lignans from 2019 to 2021: Newly reported compounds, diverse activities, structure-activity relationships and clinical applications. Phytochemistry 2022, 202, 113326. [Google Scholar] [CrossRef]
  344. Jang, W.Y.; Kim, M.-Y.; Cho, J.Y. Antioxidant, anti-Inflammatory, anti-menopausal, and anti-cancer effects of lignans and their metabolites. Int. J. Mol. Sci. 2022, 23, 15482. [Google Scholar] [CrossRef]
  345. Belaabed, S.; Khalfaoui, A.; Parisi, V.; Santoro, V.; Russo, D.; Ponticelli, M.; Monné, M.; Rebbas, K.; Milella, L.; Donadio, G. Rhanteriol, a new Rhanterium suaveolens Desf. lignan with pharmacological potential as an inhibitor of enzymes involved in neurodegeneration and type 2 diabetes. Plants 2023, 12, 301. [Google Scholar] [CrossRef]
  346. Randelović, S.; Bipat, R. A review of coumarins and coumarin-related compounds for their potential antidiabetic effect. Clin. Med. Insights Endocrinol. Diabetes 2021, 14, 1–9. [Google Scholar] [CrossRef] [PubMed]
  347. Wu, Y.; Xu, J.; Liu, Y.; Zeng, Y.; Wu, G. A review on anti-tumor mechanisms of coumarins. Front. Oncol. 2020, 10, 592853. [Google Scholar] [CrossRef]
  348. Keri, R.S.; Budagumpi, S.; Somappa, S.B. Synthetic and natural coumarins as potent anticonvulsant agents: A review with structure–activity relationship. J. Clin. Pharm. Ther. 2022, 47, 915–931. [Google Scholar] [CrossRef]
  349. Yang, C.; Shi, Y.-P.; Jia, Z.-J. Sesquiterpene lactone glycosides, eudesmanolides, and other constituents from Carpesium macrocephalum. Planta Med. 2002, 68, 626–630. [Google Scholar] [CrossRef]
  350. Wang, J.N.; Gu, S.P.; Tan, R.X. Coumarin dimer and sesquiterpene lactones from Carpesium lipskyi Winkl. Indian J. Chem. Sect. B 2007, 46, 985–988. [Google Scholar] [CrossRef]
  351. El-Ashmawy, I.M.; Aljohani, A.S.M.; Soliman, A.S. Studying the bioactive components and phytochemicals of the methanol extract of Rhanterium epapposum Oliv. Appl. Biochem. Biotechnol. 2023. ahead of print. [Google Scholar] [CrossRef] [PubMed]
  352. Eshbakova, K.A.; Toshmatov, Z.O.; Melieva, S.O.; Aisa, H.A.; Abdullaev, N.D. Secondary metabolites from Pulicaria gnaphalodes. Chem. Nat. Compd. 2016, 52, 713–714. [Google Scholar] [CrossRef]
  353. Khan, M.; Khan, M.; Adil, S.F.; Alkhathlan, H.Z. Screening of potential cytotoxic activities of some medicinal plants of Saudi Arabia. Saudi J. Biol. Sci. 2022, 29, 1801–1807. [Google Scholar] [CrossRef]
  354. Dvorakova, M.; Landa, P. Anti-inflammatory activity of natural stilbenoids: A review. Pharmacol. Res. 2017, 124, 126–145. [Google Scholar] [CrossRef] [PubMed]
  355. Koh, Y.-C.; Ho, C.-T.; Pan, M.-H. Recent advances in health benefits of stilbenoids. J. Agr. Food Chem. 2021, 69, 10036–10057. [Google Scholar] [CrossRef] [PubMed]
  356. Duta-Bratu, C.-G.; Nitulescu, G.M.; Mihai, D.P.; Olaru, O.T. Resveratrol and other natural oligomeric stilbenoid compounds and their therapeutic applications. Plants 2023, 12, 2935. [Google Scholar] [CrossRef] [PubMed]
  357. Bohlmann, F.; Baruah, R.N.; Jakupovic, J. New melampolides from Inula germanica. Planta Med. 1985, 51, 261–262. [Google Scholar] [CrossRef]
Figure 1. Polyphenolic constituents of the Inuleae-Inulinae.
Figure 1. Polyphenolic constituents of the Inuleae-Inulinae.
Molecules 29 02014 g001
Figure 2. Structures of japonicins A and B from Inula japonica and biflavones from Blumea balsamifera.
Figure 2. Structures of japonicins A and B from Inula japonica and biflavones from Blumea balsamifera.
Molecules 29 02014 g002
Figure 3. Structures of the selected chalcones from the Inuleae-Inulinae.
Figure 3. Structures of the selected chalcones from the Inuleae-Inulinae.
Molecules 29 02014 g003
Figure 4. Structures of the selected isoflavones from the Inuleae-Inulinae.
Figure 4. Structures of the selected isoflavones from the Inuleae-Inulinae.
Molecules 29 02014 g004
Figure 5. Structures of the selected flavonolignans from the Inuleae-Inulinae.
Figure 5. Structures of the selected flavonolignans from the Inuleae-Inulinae.
Molecules 29 02014 g005
Figure 6. Structures of the selected Inuleae-Inulinae lignans.
Figure 6. Structures of the selected Inuleae-Inulinae lignans.
Molecules 29 02014 g006
Figure 7. Structures of the selected coumarins from the Inulae-Inulinae.
Figure 7. Structures of the selected coumarins from the Inulae-Inulinae.
Molecules 29 02014 g007
Figure 8. Structures of stilbenoids from Inulae-Inulinae.
Figure 8. Structures of stilbenoids from Inulae-Inulinae.
Molecules 29 02014 g008
Table 1. Commonly used plant binominal names and the current taxonomic nomenclature in the Inuleae-Inulinae subtribe.
Table 1. Commonly used plant binominal names and the current taxonomic nomenclature in the Inuleae-Inulinae subtribe.
Commonly Used NameCurrent Botanical Nomenclature (According to WFO)
Allagopappus dichotomus subsp. dichotomusAllagopappus canariensis (Willd.) Greuter
Allagopappus dichotomus Cass.Allagopappus canariensis (Willd.) Greuter
Anvillea radiata Coss. and DurieuAnvillea garcinii subsp. radiata (Coss. and Durieu) Anderb.
Asteriscus maritimus Less.Pallenis maritima subsp. maritima
Asteriscus pygmaeus Coss. and DurieuPallenis hierochuntica (Michon) Greuter
Blumea gariepina DC.Laggera decurrens (Vahl) Hepper and J.R.I.Wood
Blumea glomerata DC.Blumea fistulosa Kurz
Blumea laciniata DC.Blumea sinuata (Lour.) Merr.
Inula aschersoniana JankaPentanema aschersonianum (Janka) D.Gut.Larr., Santos-Vicente, Anderb., E.Rico and M.M.Mart.Ort.
Inula bifrons L.Pentanema bifrons (L.) D.Gut.Larr., Santos-Vicente, Anderb., E.Rico and M.M.Mart.Ort.
Inula britannica L.Pentanema britannicum (L.) D.Gut.Larr., Santos-Vicente, Anderb., E.Rico and M.M.Mart.Ort.
Inula britannica var. chinensis (Rupr. ex Maxim.) RegelInula japonica Thunb.
Inula britannica var. japonica (Thunb.) Franch. and Sav.Inula japonica Thunb.
Inula cappa (Buch.-Ham. ex D.Don) DCDuhaldea cappa (Buch.-Ham. ex D.Don) Pruski and Anderb.
Inula conyza DC.; Inula conyzae (Griess.) MeiklePentanema conyzae (Griess.) D.Gut.Larr., Santos-Vicente, Anderb., E.Rico and M.M.Mart.Ort.
Inula crithmoides L.Limbarda crithmoides (L.) Dumort.
Inula ensifolia L.Pentanema ensifolium (L.) D.Gut.Larr., Santos-Vicente, Anderb., E.Rico and M.M.Mart.Ort.
Inula falconeri Hook.f.Pentanema caspicum (F.K.Blum ex Ledeb.) G.V.Boiko, Korniy. and Mosyakin
Inula germanica L.; Inula orientalis Willd.Pentanema germanicum (L.) D.Gut.Larr., Santos-Vicente, Anderb., E.Rico and M.M.Mart.Ort.
Inula grantioides Boiss.Iphiona grantioides (Boiss.) Anderb.
Inula graveolens (L.) Desf.Dittrichia graveolens (L.) Greuter
Inula mariae Bordz.Pentanema mariae (Bordz.) D.Gut.Larr., Santos-Vicente, Anderb., E.Rico and M.M.Mart.Ort.
Inula montana L.Pentanema montanum (L.) D.Gut.Larr., Santos-Vicente, Anderb., E.Rico and M.M.Mart.Ort.
Inula nervosa Wall.Duhaldea nervosa (Wall. ex DC.) Anderb.
Inula oculus-christi L.; Inula montana M.Bieb.Pentanema oculus-christi (L.) D.Gut.Larr., Santos-Vicente, Anderb., E.Rico and M.M.Mart.Ort.
Inula orientalis Lam.Pentanema orientale (Lam.) D.Gut.Larr., Santos-Vicente, Anderb., E.Rico and M.M.Mart.Ort.
Inula royleana C.B.ClarkeInula racemosa Hook.f.
Inula salicina L.Pentanema salicinum (L.) D.Gut.Larr., Santos-Vicente, Anderb., E.Rico and M.M.Mart.Ort.
Inula spiraeifolia L.; Inula germanica Vill.Pentanema spiraeifolium (L.) D.Gut.Larr., Santos-Vicente, Anderb., E.Rico and M.M.Mart.Ort.
Inula viscosa (L.) AitonDittrichia viscosa subsp. viscosa-Dittrichia viscosa (L.) Greuter
Inula wissmanniana Hand.-Mazz.Duhaldea wissmanniana (Hand.-Mazz.) Anderb.
Jasonia candicans (Delile) Botsch.Chiliadenus candicans (Delile) Brullo
Jasonia glutinosa (L.) DC.Chiliadenus glutinosus Fourr.
Jasonia montana (Vahl) Botsch.Chiliadenus montanus (Vahl) Brullo
Nauplius aquaticus Cass.Asteriscus aquaticus (L.) Less.
Pentanema divaricatum Cass.Vicoa divaricata (Cass.) Oliv. and Hiern
Pentanema glanduligerum (Krasch.) Gorschk.Vicoa glanduligera Krasch.
Pentanema indicum (L.) Y.LingVicoa indica DC.
Pulicaria crispa Forssk. Benth. et Hook. f; Francoeuria crispa (Forssk.) Cass.Pulicaria undulata (L.) C.A.Mey. including P. undulata subsp. undulata
Varthemia candicans Boiss.Chiliadenus candicans (Delile) Brullo
Varthemia iphionoides Boiss. and C.I.BlancheChiliadenus iphionoides (Boiss. and C.I.Blanche) Brullo
Xerolekia speciosissima (L.) Anderb.Buphthalmum speciosissimum L.
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Malarz, J.; Michalska, K.; Stojakowska, A. Polyphenols of the Inuleae-Inulinae and Their Biological Activities: A Review. Molecules 2024, 29, 2014. https://0-doi-org.brum.beds.ac.uk/10.3390/molecules29092014

AMA Style

Malarz J, Michalska K, Stojakowska A. Polyphenols of the Inuleae-Inulinae and Their Biological Activities: A Review. Molecules. 2024; 29(9):2014. https://0-doi-org.brum.beds.ac.uk/10.3390/molecules29092014

Chicago/Turabian Style

Malarz, Janusz, Klaudia Michalska, and Anna Stojakowska. 2024. "Polyphenols of the Inuleae-Inulinae and Their Biological Activities: A Review" Molecules 29, no. 9: 2014. https://0-doi-org.brum.beds.ac.uk/10.3390/molecules29092014

Article Metrics

Back to TopTop