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Abstract: Myocardial ischemia is the leading cause of health loss from cardiovascular disease world-
wide. Myocardial ischemia and hypoxia during exercise trigger the risk of sudden exercise death
which, in severe cases, will further lead to myocardial infarction. The Nrf2 transcription factor is an
important antioxidant regulator that is extensively engaged in biological processes such as oxidative
stress, inflammatory response, apoptosis, and mitochondrial malfunction. It has a significant role
in the prevention and treatment of several cardiovascular illnesses, since it can control not only the
expression of several antioxidant genes, but also the target genes of associated pathological processes.
Therefore, targeting Nrf2 will have great potential in the treatment of myocardial ischemic injury.
Natural products are widely used to treat myocardial ischemic diseases because of their few side
effects. A large number of studies have shown that the Nrf2 transcription factor can be used as an
important way for natural products to alleviate myocardial ischemia. However, the specific role and
related mechanism of Nrf2 in mediating natural products in the treatment of myocardial ischemia is
still unclear. Therefore, this review combs the key role and possible mechanism of Nrf2 in myocardial
ischemic injury, and emphatically summarizes the significant role of natural products in treating
myocardial ischemic symptoms, thus providing a broad foundation for clinical transformation.

Keywords: Nrf2; Keap1/Nrf2/HO-1; natural products; myocardial ischemia; myocardial
ischemia-reperfusion; myocardial infarction

1. Introduction

Cardiovascular diseases (CVDs) are the leading cause of premature death and chronic
disability worldwide, and the occurrence of cardiovascular events has become an increas-
ingly serious public health issue [1]. Epidemiology shows that the prevalence of CVD has
increased from 271 million in 1990 to 523 million in 2019 [1,2]. Among them, ischemic heart
disease is the main cause of cardiovascular health loss worldwide and in various regions
around the world. The incidence rate in China is increasing year by year, mainly affecting
middle-aged and elderly people, and gradually becoming younger. In severe cases, it
will further lead to myocardial infarction (MI) [3,4]. Percutaneous coronary intervention,
which is commonly used in clinics, has achieved timely myocardial reperfusion and is the
most effective treatment [5,6]. However, once the blood supply is restored, the original
ischemic myocardium will suffer from cellular metabolic dysfunction, and even irreversible
damage to the tissue structure, namely myocardial ischemia-reperfusion injury (MIRI) [7].
Eventually, it will induce cardiomyocyte injury, apoptosis, inflammation, microvascular
endothelial injury and no reflux phenomenon, which will directly affect the clinical efficacy
of patients [8]. Given the severity and complexity of these diseases, it is crucial to seek new
therapeutic targets to improve myocardial ischemic injury.
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Nuclear factor E2-related factor 2 (Nrf2) belongs to the Cap ‘n’ Collar (CNC) family,
and is encoded by the NFE2L2 gene [9,10]. Due to its crucial role in regulating the expression
of antioxidant and detoxifying enzymes, Nrf2 has become a widely studied hotspot [11,12].
Under non-stress conditions, Nrf2 is degraded by binding to Kelch-like ECH-associated
protein 1 (Keap1), an adaptor protein for E3 ubiquitin ligases. In response to stimuli such as
oxidative stress, Nrf2 rapidly accumulates and translocates to the nucleus, where it forms a
heterodimer with one of the small musculoaponeurotic fibrosarcoma proteins (sMaf) [10].
Nrf2 binds to the regulatory region of the target gene and upregulates its transcription.
As one of the coordinators of exogenous and oxidative stress, Nrf2 mainly plays a role in
organs with strong metabolism, such as cardiovascular system, liver and skeletal muscle,
and induces the expression of a series of cell protection gene products to protect cells from
oxidative stress [13–15]. Evidence shows that the function of Nrf2 mainly focuses on the
regulation of redox ability, including inflammation, autophagy, metabolism, antioxidation,
protein homeostasis and ferroptosis, so as to support it as a protective factor of myocardial
ischemia [16–19]. The regulatory system of Nrf2 activity has become a very attractive drug
target [20].

Because of their significant biological activity, varied chemical structures, and low
side effects, natural products (NPs) are widely employed in the treatment of many cardiac
ailments [21,22]. Furthermore, they are an important source of bioactive compounds
for the creation of new drugs [23]. Evidence exists to support the importance of dietary
therapy and medicine in the treatment of chronic ischemic heart disease. Cardiac function
can be markedly improved by supplementing NPs-derived nutritional substances or by
utilizing them as a pretreatment during myocardial ischemia [24]. More and more NPs
are regulating Nrf2 related pathways to enhance endogenous antioxidant defense, thereby
reducing myocardial cell apoptosis, inflammation, oxidative stress, fibrosis, and ferroptosis,
which is expected to alleviate MI [25,26]. Unfortunately, there is no relevant report about the
involvement of Nrf2 in the improvement of MI by NPs. Therefore, this review focuses on
elucidating the relevant mechanisms of different types of NPs delaying the progression of
myocardial ischemia through Nrf2, emphasizing the potential of NPs in treating myocardial
injury. We hope that this review can promote new ideas for developing natural products
targeting Nrf2 as anti-myocardial ischemia drugs.

2. Nrf2 Overview
2.1. Molecular Structure of Nrf2

The basic-region leucine zipper (bZIP) transcription factor CNC family encoded by the
NFE2L2 gene includes nuclear factor erythroid-derived 2 and NFE2-related factors Nrf1,
Nrf2 and Nrf3 [11,27]. Nrf2 has become the most important member of this family because
of its important role in preventing oxidative stress and electrophilic stress [28]. It contains
605 amino acids and seven highly conserved functional domains, known as Nrf2-ECH
homology domains (Neh1-Neh7) [29]. Neh1 contains a bZIP motif that regulates DNA
binding [30], which forms heterodimers with sMaf K, G and F [31], and binds to antioxidant
response elements or electrophilic response elements (ARE/EpRE) in the nucleus, thereby
regulating the transcription of various antioxidant enzymes, phase II detoxification en-
zymes, ATP-binding cassette (ABC) transporters and other stress response proteins [32,33].
In addition, nuclear localization signal (NLS) and nuclear export sequence (NES) exist in
this region to regulate the nuclear translocation of Nrf2 [34]. The domain located at the
N-terminus of Nrf2 is called Neh2, which is the most important regulatory domain in Nrf2
and is mainly responsible for regulating the stability of Nrf2. The ETGE motif and DLG
motif contained in this domain interact with the Kelch domain of its negative regulator
Keap1, and subsequently inhibit Nrf2 by regulating Keap1-dependent ubiquitination and
proteasomal degradation [35,36]. The Neh3 domain is located at the C-terminus of Nrf2
and binds to CHD6, a member of the helicase DNA binding protein family [37], which can
transactivate dependent genes [38,39]. Neh4 and Neh5 interact with cAMP response ele-
ment binding protein (CREB)-binding protein (CBP) with histone acetyltransferase activity
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to support transcriptional activation [40,41]. Neh6 and Neh7 domains are negative regula-
tors of Nrf2 activity. The Neh6 domain contains two redox-independent degrons, DSGIS
and DSAPGS, for recognizing ubiquitin ligase adaptors containing β-transducing repeat-
containing protein (β-TrCP), involved in Nrf2 Keap1 independent ubiquitination [42,43].
The seventh Neh7 domain promotes Nrf2 and its repressor retinoic X receptor alpha (RXRα)
binding to inhibit Nrf2 target gene transcription [44] (Figure 1).
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Figure 1. Molecular structure and signaling pathway activation mechanism of Nrf2. (A): Nrf2
molecular structure; (B): Nrf2 signaling pathway activation mechanism (created with BioRender.com,
accessed on 10 March 2024).

2.2. Regulation of Nrf2 Activity

Nrf2 is mainly negatively regulated by Keap1, which is an oxidation–reduction sen-
sitive E3 ubiquitin ligase substrate junction [45,46]. Keap1 belongs to the BTB Kelch
protein family, and is a cysteine rich protein [47]. It can be divided into five domains: an
N-terminal region (NTR), a BTB domain, a central interference region (IVR) with NES
mediated Keap1 cytoplasmic localization, six Kelch repeat sequences, and a C-terminal
region (CTR) [45,48,49]. Among them, the BTB domain promotes the binding with cullin
(Cul)3 E3 ligase, forming the Keap1-Cul3-ring box 1(RBX1) E3 ubiquitin ligase complex,
which is necessary for Keap1 homologous dimerization [50]. The Kelch domain located at
its C-terminus can interact with the ETGE and DLG motifs in the Neh2 domain of Nrf2,
serving as an adapter for the Cul3/RBX1 E3 ubiquitin ligase complex, binding Nrf2 in
dimeric form and promoting its ubiquitination [51–53]. IVR is located between the BTB
and Kelch/DGR domains and contains cysteine residues, which can regulate the activity of
Keap1 [48,54]. These three main structural domains play an important role in maintaining
stability between Nrf2 and Keap2.

Under normal physiological conditions, Nrf2 is sequestered in the cytoplasm by Keap1.
The BTB structural domain of Keap1 forms a Keap1–Cul3–RBX1 E3 ligase complex with
Cul3 ligase, and interactions between the Kelch structural domain of Keap1 and the ETGE
and DLG motifs on the Neh2 structural domain of Nrf2 localize Nrf2 in the Keap1 in
a complex that ultimately leads to the degradation of Nrf2 by the 26S proteasome and
proteasomal ubiquitination [31,55]. Under oxidative stress or other stimulatory conditions,
the Kelch structural domain of Keap1 is altered. Since the binding affinity of the ETGE
motif of Nrf2 is higher than that with the DLG motif, Nrf2 can still attach to Keap1 via
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the ETGE motif [35,56]. However, the low binding affinity DLG motif dissociates from
Keap1, thus preventing the ubiquitination and degradation of Nrf2 [56]. At this point,
Nrf2 is no longer a target for degradation by Keap1 molecules, and Nrf2 is released from
the Keap1–Cul3–RBX1 complex and translocated to the nucleus. In the nucleus, Nrf2
dimerizes with members of the sMaf family of proteins, which activates the transcription
of gene cascades containing AREs or EpREs in the promoter region, thereby increasing the
transcriptional activity of a range of antioxidant enzymes, such as HO-1, SOD, NQO1, CAT,
GSH, and GPX [57,58]. The Nrf2-sMaf protein heterodimer regulates the transcription of
ARE-containing target genes through the recruitment of transcriptional coactivators which,
in turn, are involved in a variety of cellular processes, mainly involving the regulation of
redox homeostasis, autophagy, apoptosis, iron-homeostasis, DNA repair, transcriptional
regulation, phase I, II and III drug/metabolism, carbohydrate and lipid metabolism, and
proteasome assembly [58,59]. By inducing the expression of these genes, Nrf2 is able to
enhance cellular defense processes against damage from external stimuli. This cellular
defense pathway is known as the Keap1–Nrf2 system (Figure 1).

3. Regulation of Nrf2 on Myocardial Ischemia
3.1. Nrf2/HO-1

Heme oxygenase-1 (HO-1), as an important target downstream of Nrf2, can catalyze
the degradation of heme into biliverdin, free iron and CO, thus playing antioxidant, anti-
inflammatory, anti-apoptotic and antithrombotic roles [59]. Nrf2/HO-1 plays a crucial role
in combating various oxidative stress responses and cardiac remodeling after MI. When car-
diomyocytes are attacked by a large number of reactive oxygen species (ROS), Nrf2 rapidly
translocates to the nucleus, which activates the expression of antioxidant enzyme HO-1 by
binding to the promoter region [60]. HO-1 activation can inhibit MIRI-induced inflamma-
tory factor production during cardiopulmonary bypass and inhibit NF-κB and activator
protein (AP)-1 translocation to reduce cardiomyocyte apoptosis [61], while pre-injection of
HO-1 activator can significantly reduce MI infarct size and cardiomyocyte apoptosis [62].
HO-1 decomposes heme to produce CO, which can promote the proliferation of vascular
endothelial cells and protect cardiomyocytes from oxidative stress by inhibiting L-type
Ca2+ channels and T-type Ca2+ channels [63]. Relevant evidence shows that Nrf2/HO-1
can treat MI by reducing the inflammatory response, apoptosis and oxidative stress.

3.2. AMPK/GSK-3β/Nrf2

AMP-activated protein kinase (AMPK) and glycogen synthase kinase-3β (GSK-3β)
play a key role in protecting cells from ischemic injury, and also affects glucose uptake
and metabolism during MI [64,65]. Activating the AMPK/GSK-3β signaling pathway can
increase the nuclear translocation of Nrf2, upregulate the transcription of HO-1, solute
carrier family 7 member 11 (SLC7A11) and glutathione peroxidase 4 (GPX4), and reduce
the expression of caspase 3 which, in turn, can combat oxidative stress, ferroptosis and cell
apoptosis in myocardial ischemia/reperfusion (I/R) [66,67]. In addition, upregulation of
the sirtuin family member sirtuin-3 (Sirt3) can enhance AMPK activity, thereby inhibiting
ROS accumulation and myocardial apoptosis, while alleviating inflammatory response
and improving myocardial I/R injury [68], but the specific mechanism of its downstream
has not yet been elucidated. In summary, activation of AMPK/GSK-3β/Nrf2 signaling
pathway protects the heart from I/R-induced oxidative stress, thereby alleviating cardiac
dysfunction and injury.

3.3. PI3K/Akt/Nrf2

Phosphoinositide 3-kinase (PI3K) and its downstream target protein kinase B (Akt)
have been identified as the key mechanisms of the occurrence, progression and treatment of
MI. Induction of PI3K-Akt can also prevent MIRI by inhibiting mitochondrial permeability
transition pore opening [69]. Similarly, inhibition of Phosphatase and tensin homolog
(PTEN, a negative regulator of PI3K/Akt) can reduce the expression of caspase-3, caspase-7,
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and caspase-9, while increasing the expression of B cell lymphoma-2 (Bcl-2) in cardiomy-
ocytes of MI mice, ultimately enhancing the protective effect of mice against ischemic
injury after MI and reducing inflammation and myocardial remodeling [70]. Studies have
shown that PI3K/Akt/Nrf2 pathway activation can upregulate Bcl-2 expression and down
regulate cleaved caspase-3 and Bax, thereby alleviating oxidative stress and cardiomy-
ocyte apoptosis and playing an anti-MI role [71]. PI3K/Akt dependent signal transduction
pathway regulates Nrf2 transcriptional activity. Activating PI3K/Akt signal is accompa-
nied by the increase of nuclear Nrf2 and HO-1, which promotes cardiac recovery after
MIRI [72]. Conversely, Nrf2 nuclear translocation was abolished using PI3K inhibitors [73].
In addition, GSK-3β is a downstream molecule of Akt, which can phosphorylate GSK-3β
and keep the enzyme inactive, which in turn enhances the activation of Nrf2 under I/R
conditions [74]. It can be seen that PI3K/Akt/Nrf2 is an important mechanism to prevent
cardiac ischemic injury.

3.4. NF-κB/p65/Nrf2

The activation of the NF-κB signaling pathway is essential for the pathogenesis of
cardiomyocyte injury. NF-κB p65 synergizes with the coactivator HDAC3 to directly inhibit
the activity of Nrf2 through deacetylation, thereby promoting I/R-induced cardiomyocyte
necrosis [75]. Inactivation of NF-κB signaling can inhibit the release of inflammatory
cytokines, reduce cardiomyocyte apoptosis and interstitial fibrosis, reduce the susceptibility
to ventricular arrhythmias, and improve cardiac function [76], which revealed that the
pathogenic role of NF-κB in cardiac ischemic injury and pathological remodeling [77].
Conversely, the Nrf2 pathway can reduce the activity level of NF-κB by increasing the
levels of antioxidants and cytoprotective enzymes, preventing IκB-α (NF-κB inhibitor)
degradation, thereby inhibiting NF-κB mediated transcription [78]. Therefore, inhibition
by targeting NF-κB p65 activation of Nrf2 may be an important strategy to alleviate MI.
However, it is necessary to further clarify other possible molecular crosstalk mechanisms,
such as Sirt2 and Sirt6 [79,80].

3.5. Sirt1/Nrf2

Sirt1 is the most widely studied longevity factor among the seven members of the
sirtuins family. Studies have observed that Sirt1 activation not only reduces cardiomyocyte
apoptosis induced in diabetic cardiomyopathy models [81], but also inhibits oxidative stress
in MIRI [82]. The protective effect conferred by Sirt1 on the heart involves the endogenous
antioxidant system of Nrf2. Sirt1 mediates protein activity through the deacetylation
of lysine residues, and its upregulation mediates Nrf2 deacetylation and increases the
nucleocytoplasmic localization and transcriptional activity of Nrf2, while promoting the
binding of Nrf2 to its DNA response element ARE, thereby reducing H9c2 cardiomyocyte
apoptosis and oxidative stress and improving cardiac dysfunction [82]. However, Sirt1
specific inhibitors have largely blocked the protective effect of Nrf2 on MI in vitro and
vivo [83]. However, Nrf2 siRNA has little effect on the expression and activity of Sirt1 [84].
Sirt1/Nrf2 signaling can also regulate I/R-induced endoplasmic reticulum stress and
participate in the disruption of the cardiac microvascular endothelial barrier triggered
by oxygen-glucose deprivation/reoxygenation (OGD/R) [85]. In conclusion, activating
Sirt1/Nrf2 signaling pathway is a potential target to improve MI injury.

3.6. MAPK/ERK/Nrf2

The mitogen-activated protein kinase (MAPK) signaling pathway consists of c-Jun
N-terminal kinases (JNKs), p38 mitogen activated protein kinase (p38) and extracellular
signal regulated kinase-1/2 (ERK1/2). Among them, MAPK/ERK pathway exerts a car-
dioprotective effect on MIRI [86]. Phosphorylation of ERK1/2 induces the activation of
Nrf2 which, in turn, upregulates HO-1 expression [87]. Notably, the removal of Bach1
(HO-1 transcriptional repressor) from the nucleus in an ERK1/2-dependent manner can
change the time difference between NAD(P)H quinone dehydrogenase 1 (NQO1) and
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HO-1 increase after myocardial injury treatment [88]. However, the activation of MAPK
signaling pathway does not always exert a protective effect on MIRI. Studies have found
that activating p38 MAPK/JNK pathway inhibits cardiomyocyte viability and promotes
apoptosis to aggravate MIRI [89,90]. The specific mechanism of p38 MAPK/JNK pathway
regulating Nrf2 needs further elucidation. In conclusion, existing studies have shown that
MAPK/JNK mediated activation of Nrf2 signaling partially contributes to cardioprotection.

In conclusion, HO-1, AMPK, PI3K/Akt, NF-κB, Sirt1 and MAPK signaling pathways
based on Nrf2-mediated signal play an important protective role against MI injury, but the
crosstalk between multiple mechanisms needs further study (Figure 2).
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4. Natural Products Target Nrf2 to Improve Myocardial Ischemia Injury

NPs have long been used to prevent and treat various diseases, and have become the
main source of new drug research and development because of their unique active frame-
work, active groups and excellent biological activities. According to their structural types,
they can be divided into terpenoids, flavonoids, phenols, polysaccharides and glycosides,
steroids, alkaloids, phenylpropane, quinones, etc. They rely on their pharmacological activ-
ities to protect the heart, such as enhancing cardiac remodeling, improving MI, relieving
MI, and protecting hypoxia/reperfusion-induced myocardial apoptosis (Table 1).
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Table 1. Experimental model and conclusion of natural products improving myocardial ischemic injury.

Category Natural Product Model Route of Medication Research Type Conclusions References

Terpenoids

Andrographolide C57BL/6 mice, N = 110,
H9c2 cell Orally/Cell culture Preclinical Andr alleviates adverse cardiac remodeling following myocardial infarction

through enhancing Nrf2 signaling pathway [91]

Panaxatriol saponin SD rats N = 60, H9c2 cell Intragastric
administration/Cell culture Preclinical PTS has therapeutic potential for MIRI by targeting Keap1/Nrf2 activity [92]

Ginsenoside Rd SD rats N = 24 Administrated
intraperitoneally Preclinical GsRd protects against myocardial I/R injury via Nrf2/HO-1 signaling [93]

Ginsenoside Rh2 SD rats N = 40, Neonatal rat
cardiomyocytes

Intragastric
administration/Cell culture Preclinical GRh2 could reduce oxidative stress and inflammation in cardiomyocytes after

reperfusion [94]

Ginsenoside Rb2 H9c2 cell Cell culture Preclinical
The underlying mechanism of ginsenoside Rb2 in H9c2 cells could be

standardized to Nrf2/HO-1 signaling pathway, inhibiting cell apoptosis and
regaining cell proliferation

[95]

Triptolide Wistar rats N = / Administrated
intraperitoneally Preclinical A novel cardioprotective effect of TPL in rats with I/R injuries, wherein the

activation of Nrf2/HO-1 signaling was involved [96]

Betulinic acid H9c2 cell Cell culture Preclinical
BA protects the H9c2 cells from I/RI by inhibiting oxidative stress and cell

apoptosis. The cardio-protective effects were mediated by the Nrf2/HO-1, p38
and JNK pathways

[97]

Maslinic acid SD rats N = 60, H9c2 cell Intraperitoneal injection Preclinical MA exerts its cardioprotective effect through regulating the crosstalk between
the Nrf2 and NF-κB pathways [98]

Glaucocalyxin A H9c2 cell Cell culture Preclinical GLA protected H9c2 cells from H/R-stimulated oxidative damage, which was
mediated by the Akt/Nrf2/HO-1 signaling pathway [99]

Costunolide C57BL/6 mice N = 64, H9c2
cell Gavage/Cell culture Preclinical Activation of Nrf2/Keap1 using Cos may be a therapeutic strategy for

myocardial I/R injury [100]

Lutein SD rats N = 40 Orally Preclinical LU exhibits potent cardioprotective activity against ISO-induced
cardiotoxicity [101]

Flavonoids

Hesperetin Mice N = 50 Intragastrically Preclinical
HESP plays a protective role in ISO-induced myocardial ischemia by

modulating oxidative stress, inflammation, and apoptosis via Sirt1/Nrf2
pathway activation

[102]

Baicalin H9c2 cell Cell culture Preclinical BI cardiomyocytes H9c2 apoptosis aroused by hypoxia might be achieved
through activating Nrf2/HO-1-mediated HIF1α/BNIP3 pathway [103]

Pinocembrin SD rats N = 56, H9c2 cell
Injected intravenously

through the tail vein/Cell
culture

Preclinical
PCB ameliorated cardiac functions and remodeling resulted from PIHF by

ROS scavenging and Nrf2/HO-1 pathway activation which further attenuated
collagen fibers deposition and apoptosis, and facilitated angiogenesis

[104,105]

Icariin H9c2 cell Cell culture Preclinical ICA attenuates H/R-induced ferroptosis of cardiomyocytes by activating the
Nrf2/HO-1 signaling pathway [106]

Wogonoside C57BL/6 mice N = 35 Intraperitoneally injected Preclinical
WG exerted the protective role against I/R-induced myocardial injury by

suppression of apoptosis, inflammation, and fibrosis via activating Nrf2/HO-1
pathway

[107]

Visnagin Wistar rats N = 36 Orally Preclinical Activation of Nrf2/HO-1 signaling and PPARγ mediates the cardioprotective
effect of VIS [108]

Isoliquiritigenin C57BL/6 mice N = 50 Intraperitoneal injection Preclinical
Activation of Nrf2/HO-1 pathway has an essential role in ISL-induced cardiac

protection by alleviating myocardial oxidative stress and inflammation
response in mice with AMI

[109]
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Table 1. Cont.

Category Natural Product Model Route of Medication Research Type Conclusions References

Phenols

Salvianolic acid B SD rats N = 108 Intraperitoneal injection Preclinical Sal B contributed to protecting MI by inhibiting ferroptosis via activating the
Nrf2 signaling pathway [110]

Lithospermic acid C57BL/6 mice N = 50, H9c2
cell Orally/Cell culture Preclinical LA protects against MI/R-induced cardiac injury by promoting eNOS and

Nrf2/HO-1 signaling via phosphorylation of AMPKα
[111]

Kazinol B H9c2 cell Cell culture Preclinical KB prevented H/R-induced cardiomyocyte injury via modulating the AKT
and AMPK-mediated Nrf2 induction [112]

Paeonol SD rats N = 40 Subcutaneous injection Preclinical Pae exerts significant cardioprotective effects against ISO-induced myocardial
infarction in rats [113]

Protocatechuic acid Wistar rats N = 35 Orally Preclinical PCA as an alternative therapeutic agent to attenuate the molecular,
biochemical, and histological alterations associated with MI development [114]

Resveratrol SD rats N = 24 Orogastric gavaged Preclinical
Myocardial protective mechanism of RE during CIH and suggest that

resveratrol treatment may be useful to counteract OSA-associated cardiac
injury

[115,116]

Polydatin SD rats N = /, H9c2 cell Intraperitoneal
injection/Cell culture Preclinical PD effectively inhibited hypoxia- and AMI-induced myocardial damage by

promotion of Nrf2/HO-1 signaling [117]

Polysaccharides
and gly-
cosides

Catalpol
C57BL/6 mice N = 30,

Human cardiomyocytes
AC16 cells

Intraperitoneal
injection/Cell culture Preclinical Catalpol exerted significant cardioprotective effects following myocardial

ischemia, possibly through the activation of the Nrf2/HO-1 signaling pathway [118]

Astragaloside IV SD rats N = 45, H9c2 cell Orally/Cell culture Preclinical ASI prevented heart failure by counteracting oxidative stress through the
Nrf2/HO-1 pathway [119,120]

Crocin
C57BL6/J mice N = 32,

Neonatal mouse
cardiomyocytes (NMCMs)

Orally/Cell culture Preclinical Crocin attenuates I/R-induced cardiomyocyte apoptosis via suppressing ER
stress, which is regulated by the miR-34a/Sirt1/Nrf2 pathway [121]

Steroids
Ruscogenin ICR mice N = 72, H9c2 cell Intraperitoneal

injection/Cell culture Preclinical
BCAT1/BCAT2 could alleviate MI-induced ferroptosis through the activation
of the Keap1/Nrf2/HO-1 pathway and RUS exerted cardioprotective effects

via BCAT1/BCAT2
[122]

Dioscin SD rats N = 50, H9c2 cell Intraperitoneal
injection/Cell culture Preclinical Dioscin alleviated DOX-induced cardiotoxicity through modulating

miR-140-5p-mediated myocardial oxidative stress [123]

Alkaloids

Neferine H9c2 cell Cell culture Preclinical
NEF preconditioning attenuated H/R-induced cardiac damage via

suppressing apoptosis, oxidative stress, and mitochondrial dysfunction, which
may be partially ascribed to the activation of Sirt1/Nrf2 signaling pathway

[124]

Stachydrine H9c2 cell Cell culture Preclinical STA protects H/R injury and inhibits oxidative stress and apoptosis in
cardiomyocytes by activation of the Sirt1-Nrf2 pathway [125]

Phenylpropane

Plantamajoside H9c2 cell Cell culture Preclinical PMS protected against myocardial I/R injury via attenuating oxidative stress,
inflammatory response and apoptosis [126]

Schizandrin B H9c2 cell Cell culture Preclinical
Sch B exerts cardioprotection on H/R injury in H9c2 cells due to its

antioxidant and anti-inflammatory activities via activation of the AMPK/Nrf2
pathway

[127]
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Table 1. Cont.

Category Natural Product Model Route of Medication Research Type Conclusions References

Quinones

Plumbagin C57BL6/J mice N = 40 Intraperitoneal injection Preclinical Protective role of PL against myocardial I/R injury by regulating antioxidant
and inflammatory mechanisms [128]

Aloin H9c2 cell Cell culture Preclinical Aloin may antagonize SI/R-induced cardiomyocyte injury by attenuating
excessive oxidative stress and inflammation [129]

Others

Kinsenoside C57BL6/J mice N = 88 Orally Preclinical
KD may exert anti-ferroptosis effect in myocardial I/R injury by decreasing

mitochondrial dysfunction and increasing anti-oxidation through the
Akt/Nrf2/HO-1 signaling pathway

[130]

Anethole Wistar rats N = 30 Gastric lavage Preclinical
Anethole may retain a cardio-protective potential by controlling myocardial
oxidative stress (through Nrf2 pathway) and diminishing inflammation and

apoptosis via the TLR4/MYD88 pathway
[131]

TFCC Clinopodium
chinense (Benth.) O.

Ktze
SD rats N = 120, H9c2 cell Dosed intragastrically/Cell

culture Preclinical
TFCC protects against myocardial injury and enhances cellular antioxidant

defense capacity by inducing the phosphorylation of AKT, which
subsequently activated the Nrf2/HO-1 signaling pathway

[132]

Ginkgo biloba
extract-761 SD rats N = 40 Gavage Preclinical

EGb 761 might inhibit the apoptosis of myocardial cells and protect the
myocardium by activating the Akt/Nrf2 pathway, increasing the expression of

HO-1, decreasing oxidative stress and repressing inflammatory reaction
[133]
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4.1. Terpenoids

Andrographolide (Andr) is a labdane diterpenoid derived from the natural plant
Andrographis paniculata [134,135]. It is widely used in the treatment of various diseases
because of its antibacterial, anti-inflammatory, antioxidant and immunomodulatory ef-
fects. Andrographolide was found to inhibit expression of the inflammatory cytokine
tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), interleukin-6 (IL-6) and monocyte
chemoattractant protein-1 (MCP-1), and NF-κB signaling pathway (p-IκBα and p-p65)
activation, alleviating post MI inflammation. In addition to its anti-inflammatory activity,
it also upregulates the levels of superoxide dismutase (SOD) 2, NQO1 and glutathione
peroxidase (GPX) by activating Nrf2/HO-1 signaling, while reducing the transcription of
p67 phox, Gp91 and NADPH oxidase 4 (NOX4), thereby inhibiting oxidative stress after
myocardial infarction [91].

Panaxatriol saponin (PTS) isolated from ginseng can improve H2O2-induced cardiomy-
ocyte redox homeostasis disorder and cardiomyocyte apoptosis, as shown by increased
expression of SOD1, SOD2 and HO-1, and decreased expression of cleaved caspase-3,
cleaved PARP-1, Bax, Cyt-c and ROS [92]. Panaxatriol binds to the Kelch domain of Keap1
protein, directly competes and restricts the binding site of Nrf2 and Keap1, destroys the
negative regulation of Nrf2 by Keap1, and then prevents the ubiquitination and degrada-
tion of Nrf2. In vivo experiments found that it reduced the myocardial infarct size of I/R
rats by targeting Keap1/Nrf2, and attenuated the expression of myocardial injury markers
(MB, cTn-T, CK, LDH and CK-MB) [92].

Ginsenosides isolated from Panax notoginseng and ginseng include ginsenoside Rd
(GsRd), ginsenoside Rh2 (GRh2) and ginsenoside Rbs [136]. GsRd can restore the impaired
cardiac function caused by myocardial I/R injury in rats, reduce myocardial infarct size,
and reduce serum CK, lactate dehydrogenase (LDH) and troponin (cTnI) levels by acti-
vating Nrf2/HO-1 signaling [93]. GRh2 increased the protein levels of nod-like receptor
protein 3 (NLRP3), apoptosis-associated speck-like protein containing a CARD (ASC) and
caspase-1 induced by myocardial I/R and hypoxia/reoxygenation (H/R), but increased
the expression of Nrf2 and HO-1 [94]. This indicates that Nrf2/HO-1/NLRP3 signaling
pathway may mediate GRh2 to protect the heart from oxidative stress and inflammatory
response. However, the inevitable link between the two still needs further elucidation.
Ginsenoside Rb2 is also considered to be beneficial for cardiovascular diseases [137]. In-
activation of the Nrf2/HO-1 signaling pathway alleviates the effects of ginsenoside Rb2
in promoting proliferation and inhibiting oxidative stress and apoptosis in H9c2 cells [95].
However, the specific protective mechanism of ginsenoside Rb2 mediated Nrf2/HO-1
signaling pathway on the heart needs to be further elucidated through in vivo experiments.

Triptolide (TPL) is a diterpene tricyclic oxide isolated from the traditional Chinese
medicine plant Tripterygium wilfordii Hook F [138]. It can reduce the expression of TNF-α,
IL-1β, IL-6 and malondialdehyde (MDA), and enhance the activities of antioxidants SOD,
GPX and glutathione (GSH) in myocardial tissue of I/R rats by enhancing the nuclear
accumulation of Nrf2 and the activity of its downstream target HO-1 [96]. In contrast, a
blockade of the Nrf2/HO-1 signaling using zinc protoporphyrin-IX led to an attenuation of
TPL-mediated cardiac protection [96].

Betulinic acid (BA) is a pentacyclic triterpenoid that is abundantly found in birch [139].
Studies have shown that BA protects H9c2 cells from oxidative stress and apoptosis caused
by myocardial ischemia/reperfusion injury (I/RI), which is mediated by enhancing the acti-
vation of Nrf2/HO-1 pathway and inhibiting the activation of p38 and JNK pathways [97].

Maslinic acid (MA) belongs to natural pentacyclic triterpenoids and has good anti-
inflammatory and anticancer properties [140]. It increases the activity of GSH and SOD
by promoting the nuclear expression of Nrf2 to reduce the generation of ROS in a dose-
dependent manner, alleviating MIRI and H2O2-induced oxidative stress in H9c2 cells.
The above process can be reversed by using ML385 (Nrf2 inhibitor). In addition, NF-κB
signaling pathway is also involved, but it is inhibited by MA [98].
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The ent-kauranoid diterpenoid glaucocalxin A (GLA) has been proved to have a variety
of pharmacological effects such as antioxidant, antifibrotic and immune regulation [141].
GLA inhibited ROS production and the activities of pro-apoptotic proteins Bax and caspase-
3, and increased the expression of antioxidant enzymes (SOD and GSH-Px) and anti-
apoptotic protein Bcl-2. Additionally, it can also significantly induce the expression levels
of p-Akt, nuclear Nrf2 and HO-1, thereby preventing H/R-stimulated cell oxidative damage
and apoptosis [99].

Costunolide (Cos) is a sesquiterpene lactone mainly found in the traditional Chinese
medicinal herb Saussurea lappa, and its protective effect on the heart is gradually being
discovered [142]. In vivo and in vitro studies confirmed that Cos significantly reduced ROS
levels, increased the expression of antioxidant proteins (HO-1 and NQO1), and decreased
Bax/Bcl-2 ratio, thereby improving I/R-induced cardiomyocyte apoptosis. When Nrf2 was
silenced, the protective effect of Cos on H9c2 cells was weakened. Further study found that
Cos significantly enhanced the dissociation of Keap1/Nrf2 complex, which is similar to the
mechanism of PTS in protecting against myocardial injury [100].

Lutein (LU) is a major carotenoid derived from flower plants, vegetables, fruits and
eggs [143]. Commercial antioxidant mixtures rich in LU protect the myocardium from I/R
injury [144]. In the isoproterenol (ISO)-induced MI rat model, rats orally administered
LU showed MI size, lipid peroxidation product MDA, cardiac diagnostic marker enzymes
(cTnT, CK-MB and LDH), inflammatory factors (IL-1β, TNF-α, NF-κB p65 and IL-6) and
apoptosis related markers (caspase-3 and caspase-9) were significantly decreased, while the
activities of cardiac antioxidants SOD and catalase (CAT) were increased. In addition, the
nuclear expression of Nrf2 was further upregulated by LU treatment, and the expression of
HO-1 was also upregulated [101].

4.2. Flavonoids

Hesperetin (HESP), a member of the flavanone subclass of flavonoids, has a good
curative effect on cardiovascular disease [145]. By activating Sirt1/Nrf2 pathway, it restored
CK and LDH levels in serum, reduced Ca2+ concentration in mouse cardiomyocytes, and
attenuated ISO induced the contents of MDA, IL-6, TNF-α,Bax and caspase-3 increased
and the activities of SOD, CAT, GSH and Bcl-2 decreased [102]. In addition, HESP can also
reduce cardiac injury, oxidative stress, apoptosis and Ca2+ influx of L-type Ca2+ channels
caused by CoCl2 mimicking hypoxia, and protect myocardial injury induced by ischemia
and hypoxia [146].

Baicalin (BI) is the main bioactive flavone derived from the medicine Radix Scutellariae,
which has a variety of pharmacological activities, including anti-inflammatory, antioxidant
and anti-apoptotic [147]. BI attenuates cardiomyocyte apoptosis and inflammatory factor
infiltration in I/R model rats not only through the JAK/STAT pathway, but also involves the
Nrf2/HO-1 pathway [148]. Silencing of hypoxia-inducible factor 1 alpha (HIF1α) changed
the effect of baicalin on promoting H9c2 cell viability and inhibiting apoptosis. BI treatment
not only further increased HIF1α and Bcl-2/adenovirus E1B interacting protein 3 (BNIP3)
in hypoxia-induced H9c2 cells, which also promoted the expression of Nrf2 and HO-1.
Interestingly, silencing Nrf2 reversed the protective effect of BI on myocardial injury and
significantly reduced HIF1α [103]. This revealed that the mechanism of BI improving MI
injury relies on activating Nrf2/HO-1-mediated HIF1α/BNIP3 pathway.

Pinocembrin (PCB) is a natural flavonoid found in propolis [149], which plays an
anti-inflammatory, antioxidation and anticancer role. It improves cardiac function and
remodeling in post-infarct heart failure (PIHF) by activating the Nrf2/HO-1 pathway,
and attenuates ISO-induced ROS accumulation [105]. PCB also inhibits the expression of
pyroptosis related factors NLRP3, ASC, cleaved caspase-1 and gasdermin D-N-terminal
domain (GSDMD-N) by activating the Nrf2/Sirt3 signaling pathway, thereby reducing
doxorubicin (DOX)-induced pyroptosis of cardiomyocytes and protecting the heart from
cardiotoxicity [104].
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Icariin (ICA) is a flavonol glycoside extracted from Epimedii Herba, which is benefi-
cial for cardiovascular and neurological diseases [150,151]. Research has found that ICA
alleviates H/R-induced ferroptosis and oxidative stress in cardiomyocytes by activating
the Nrf2/HO-1 signaling pathway, manifested by increased cell viability and GPX4 levels
while decreasing Fe2+, LDH and acyl-CoA synthetase long-chain family member 4 (ACSL4)
levels [106].

Wogonoside (WG) is a flavonoid compound derived from the roots of the traditional
Chinese medicine plant Scutellaria baicalensis. Previous studies have reported that active
compounds in Scutellaria baicalensis can exert anti-inflammatory and immunomodulatory
effects by affecting various signaling pathways, such as Nrf2, PPAR, MAPK, Akt, NF-κB
and JAK/STAT signaling pathways and Toll-like receptors [152]. In a mouse model of
myocardial I/R injury established in the left anterior descending coronary artery (LAD),
after seven consecutive days of administration of 20 and 40 mg/kg WG to mice, it was
found that abnormal structural recovery, apoptosis, myocardial fibrosis and inflammatory
response of myocardial cells were significantly reduced. Importantly, WG exerts this effect
by increasing the nuclear expression of Nrf2 and its downstream genes (HO-1 and NQO1),
thereby delaying myocardial cell damage [107].

Visnagin (VIS) is an active compound that has been found to inhibit NF-κB and
produces anti-inflammatory effects [153]. It upregulates myocardial Nrf2, HO-1, Bcl-2,
and PPARγ in a dose-dependent manner in poisoned rats, and reduces the expression of
apoptosis and pro-inflammatory cytokines such as Bax, caspases, ROS, MDA, NF-κB p65
can improve myocardial damage [108]. Therefore, the antioxidant, anti-inflammatory and
anti-apoptotic effects of VIS in the heart may be related to the stimulation of the activation
of Nrf2/HO-1 and PPAR-γ.

Isoliquiritigenin (ISL) is a chalcone type flavonoid derived from licorice, and its
therapeutic effect has been confirmed in a variety of diseases [154]. In the mouse model
of acute MI, the antioxidant effect of ISL was dependent on the activation of Nrf2/HO-1
signaling pathway, while attenuating inflammatory factors and chemokines (IL-6, IL-
1β, TNF α, MIP1α and MIP2) through the inhibition of NF-κB signaling. Notably, the
expression of p-IKKα/β, p-p65 and p-IκBα can increase in the NF-κB signaling pathway
after inhibiting Nrf2, which indicates that Nrf2 can affect NF-κB signaling pathway activity
and attenuate the inflammatory response [109].

4.3. Phenols

Salvianolic acid B (Sal B), a water-soluble compound extracted from the root of Salvia
miltiorrhiza, has anti-atherosclerotic pharmacological effects [155]. It was found that the
transcription of Nrf2 was activated in rats with MI, which was the feedback response
of Nrf2 to oxidative stress. Sal B further activated the nuclear expression of Nrf2 and
upregulated the levels of Nrf2 target genes HO-1, XCT, GPX4, Fpnl and Fthl in a dose-
dependent manner. After knocking down Nrf2 in vivo, it was observed that the release of
iron ions increased, and there was also a large accumulation of lipid peroxidation products,
and Sal B treatment could not upregulate the expression of Nrf2 target genes [110]. In
conclusion, Sal B’s protection against myocardial infarction by inhibiting ferroptosis is
dependent on the activation of Nrf2 signaling pathway.

Lithospermic acid (LA) is also the main phenolic acid compound derived from Salvia
miltiorrhiza, which has been proved to be used in the treatment of coronary heart disease
angina [156,157]. As an oxidase inhibitor, LA can reduce the content of oxidative factors
such as NOX4, p67 phox and GP91 in MIRI and promote the expression of antioxidant
genes (GPX, SOD2 and NQO1) [111]. Studies have reported that AMPK triggered the
phosphorylation of Nrf2 and promoted the transactivation of antioxidant genes [158].
Zhang confirmed through in vitro and in vivo studies that LA promotes the activation and
phosphorylation of AMPKα, further leading to the nuclear translocation of Nrf2 in MIRI
and activates the Nrf2/HO-1 pathway [111]. The phosphorylation of AMPKα seems to be
a key factor in LA mediated activation of Nrf2/HO-1 signaling to ameliorate MIRI.



Molecules 2024, 29, 2005 13 of 27

Kazinol B (KB) is a natural isoprenylated flavan, which is enriched in the root bark
of Broussonetia kazinoki Sieb and has effective antioxidant and anti-inflammatory proper-
ties [159]. It not only significantly promoted Nrf2 nuclear accumulation and increased
ARE promoter activity and HO-1 levels, but also upregulated phosphorylation of Akt
and AMPKα in H/R-induced H9c2 cells. In addition, Akt and AMPK specific inhibitors
abolished Nrf2 nuclear translocation [112]. The above shows that KB is expected to become
a therapeutic drug for ischemic heart disease by affecting the phosphorylation level of
AKT/AMPK and regulating Nrf2/ARE/HO-1 signaling.

Paeonol (Pae) is a phenolic acid compound purified from the root of Paeonia lactiflora
Pall. In exploring the anti-apoptotic and antioxidant mechanisms of Pae and danshensu
combination (PDSS) in the treatment of ischemic heart disease (IHD), it was found that
PDSS not only significantly reduced the histopathological changes in rat myocardial tissue
sections induced by ISO, but also decreased ROS, Bax, thiobarbituric acid reactive sub-
stances (TBARS), TNF-α, Fas, caspase-8 and caspase-3 levels, while significantly increasing
the glutathione/oxidized glutathione (GSH/GSSG) ratio and Bcl-2. Pae treatment alone
led to increased Nrf2 nuclear accumulation, caused a slight increase in phosphorylated
PI3K/Akt, restored ISO-induced Keap1 elevation, and upregulated HO-1, NQO1, and
glutathione S-transferase (GST) activities [113]. This suggests that Nrf2/HO-1 signaling
and PI3K/Akt activation may be involved in the protective effect of Pae on myocardium.

Protocatechuic acid (PCA) is a natural phenolic compound, which exists in green tea,
vegetables, fruits and various plants. It can improve cardiac dysfunction, cardiomyocyte
loss, fibrosis and inflammatory response, and reduce myocardial damage markers (CK-MB,
LDH and cTnT), MDA, TNF-α, IL-1β and NF-κB expression, increase GSH and its derived
enzymes, and also inhibited Bax, caspase-3, TGF-β1 and MMP-9 expression. PCA enhances
the cellular antioxidant defense system by increasing the expression of Nrf2 and HO-1 [114].
Therefore, PCA can be used as an alternative therapeutic drug to improve the molecular,
biochemical and histological changes caused by MI.

Resveratrol (RE) belongs to polyphenolic phytoalexin, which has been widely stud-
ied due to its antioxidant, anti-inflammatory, pro-angiogenic and other biological activi-
ties [160]. RE can mediate the inhibition of mTOR/TTP/NLRP3 mRNA signal by activating
AMPK, and also improve the expression of antioxidant molecules by activating Nrf2 [115].
Another study also found that Resveratrol improved the MI size of MIRI rats, decreased
the levels of myeloperoxidase (MPO), MDA, CK and LDH, and significantly enhanced the
activities of SOD and GSH-Px. Under the stimulation of I/R, the dissociation of Nrf2 from
Keap1 increased and was translocated to the nucleus, showing a significant increase in
the protein expression of Nrf2 and HO-1, which was further increased after RE interven-
tion [116]. Existing studies have shown that Nrf2 signaling plays an important role in RE
protecting the heart from injury. However, further identification of other molecules and
mechanisms involved in cardioprotection and elucidation of potential crosstalk between
upstream and downstream signaling molecules are needed.

Polydatin (PD), an important glucoside of RE, is widely distributed in many plants [161]
and can treat various diseases related to oxidative stress, inflammation and apoptosis [162]. PD
provides myocardial protection against apoptosis and ROS production in acute MI. However,
Nrf2 knockdown significantly reversed the effect of PD, upregulated caspase-3 and Bax
expression, and suppressed Bcl-2 and HO-1 expression [117].

4.4. Polysaccharides and Glycosides

Catalpol belongs to iridoid glucoside and is the main active ingredient extracted from
Rehmanniae Radix, which has the effects of antioxidation, promoting angiogenesis and
relieving inflammatory pain [163,164]. In vivo and in vitro studies showed that catalpol
can reduce the content of inflammatory markers and oxidative stress by regulating the
Nrf2/HO-1 signaling pathway, improving MIRI and protecting cardiomyocyte injury
model induced by OGD/R [118].



Molecules 2024, 29, 2005 14 of 27

Astragaloside IV (ASI), a triterpene glycoside extracted from Astragalus membranaceus,
has been shown to have potential protective effects against cardiovascular diseases [165]. It pro-
motes the expression of Nrf2 in the nucleus of H9c2 cells and activates Nrf2 downstream gene
promoters (NQO1, SOD2 and Txn-1), attenuating oxidative stress in cardiomyocytes [119]. It
also improved H/R-induced myocardial injury, increased cardiomyocyte viability and SOD
expression, and decreased ROS levels as well as content of LDH, MDA, IL-6 and TNF-α.
This study also confirmed that ASI regulated the protein expression of Nrf2, HO-1 and BTB
domain and CNC homolog 1 (Bach1) in the nucleus [120]. Interestingly, PI3K inhibitors could
partially counteract the above effects, suggesting that PI3K/Akt/HO-1 signaling pathway
may be a potential target of ASI against MIRI.

Crocin, also known as crocin A, is a water-soluble carotenoid isolated from the stigma
of Crocus sativus L., which has cardioprotective activity [166]. There is experimental ev-
idence that saffron not only alleviates I/R-induced left ventricular dysfunction and MI
size, but also reduces the levels of Bax, caspase 3, miR-34a and endoplasmic reticulum
stress biomarkers (GRP78 and CHOP), while increasing the levels of Bcl-2, Sirt1, Nrf2
and HO-1. Notably, Sirt1 blocker inhibited the effect of crocin, and miR-34a negatively
regulated the effect of crocin on Sirt1/Nrf2 signaling pathway [121]. This suggests that
crocetin inhibits I/R-induced ER stress and cardiomyocyte apoptosis by downregulating
miR-34a and activating Sirt1/Nrf2 pathway.

4.5. Steroids

Ruscogenin (RUS), a bioactive steroidal saponin derived from Ophiopogon japonicus,
has been identified as a potential drug for the treatment of cardiac diseases [167]. In vitro
and in vivo experiments showed that it significantly down regulated the expression of
Keap1, ACSL4 and FTL, and increased the levels of Nrf2, HO-1 and GPX4 in MI mice and
OGD injured H9c2 cardiomyocytes. Importantly, RUS treatment increased the expression
of branched-chain amino acid transaminase 1 or 2 (BCAT1 and BCAT2) in patients with
MI; conversely, BCAT1 or BCAT2 siRNA induced the degradation of Nrf2 and HO-1 in
cardiomyocytes and promoted ferroptosis [122]. It can be seen that RUS may activate
Keap1/Nrf2/HO-1 pathway by upregulating BCAT1 and BCAT2 to alleviate ferroptosis
induced by MI, thereby exerting its cardioprotective effect.

Dioscin, a natural steroid saponin extracted from various plants, can activate Nrf2
and Sirt2 signaling pathways and affect the levels of its downstream target genes (HO-
1, NQO1, GST, GCLM, Keap1 and FOXO3a) to prevent oxidative stress in H9c2 cells
and alleviate DOX-induced cardiotoxicity [123]. In the coronary heart disease (CHD)
model, 80 mg/kg dioscin also antagonized apoptosis, inflammation and oxidative stress by
promoting Sirt1/Nrf2 and inhibiting p38 MAPK and PARP/p53 expression [168].

4.6. Alkaloids

Neferine (NEF), originating from the green embryo of the mature seeds of lotus
(Nelumbo nucifera), can exert anti-inflammatory, anti-apoptotic and antioxidant biological
effects by regulating a variety of signaling pathways. In vitro studies have demonstrated
that NEF can reduce the content of MDA, increase the expression of SOD and CAT, and
improve mitochondrial dysfunction in injured H9c2 cells, which is closely related to the up
regulation of Sirt1 and Nrf2 expression [124]. Silencing Sirt1 reversed the above process,
suggesting that the activation of Sirt1/Nrf2 signaling pathway is a key factor for NEF to
improve I/R injury in H9c2 cells.

Stachydrine (STA), the main component purified from the leaves of the Chinese herb
Leonurus heterophyllus, has a variety of pharmacological properties, especially for car-
diovascular diseases [169]. A 50 µM STA treatment significantly decreased the expression
of LDH, MDA, caspase-3 and the number of TUNEL positive cells and increased SOD
activity in H9c2 cells induced by H/R. In addition, STA reduced the secretion of apop-
totic cytokines and oxidative stress molecules produced by H/R stimulation by activating
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Sirt1 and Nrf2/HO-1 signaling pathways to improve MI related symptoms and inflamma-
tion [125].

4.7. Phenylpropane

Plantamajorside (PMS) is a phenylpropanoid glycoside extracted from plantain, which
can be anti-inflammatory, antioxidant and anti-fibrotic [170]. Studies have shown that
PMS can improve the viability of H9c2 cells and inhibit ROS, TNF-α, IL-6, IL-1 β, Bax and
caspase 3 production, increased the expression of SOD, CAT, GSH-Px and Bcl-2 stimulated
by H/R. Further studies revealed that PMS inhibited H/R-induced NF-κB activation, and
activated the Akt/Nrf2/HO-1 signaling pathway, ultimately alleviating the inflammatory
response, oxidative stress, and apoptosis in injured cardiomyocytes [126].

Schisandrin B (Sch B), extracted from the fruit of Schisandra chinensis, belongs to one
of the dibenzocyclooctadiene derivatives and has shown biological activity in the treatment
of cardiovascular diseases [171]. In terms of cardiac effects, Sch B exhibited cardioprotection
in an Nrf2 dependent manner. HO-1, NQO1 were decreased, and Keap1 was upregulated
in H9c2 cells induced by H/R, while Nrf2 nuclear aggregation was decreased, and Sch B
intervention reversed this effect. Si-Nrf2 counteracts the protective mechanism of Sch B
on the heart [127]. Notably, Si-AMPK significantly decreased the expression of Nrf2. This
suggests that knockdown of AMPK can inhibit the transmission of nfr2 and its downstream
signals. In conclusion, Sch B alleviates oxidative stress and inflammatory response after
MIRI dependent on AMPK/Nrf2 signaling pathway.

4.8. Quinones

Plumbagin (PL) is a bioactive naphthoquinone isolated from the plant plumbago,
which has a variety of pharmacological properties and biological benefits [172]. After the
intervention of PL on MIRI, rats showed better antioxidant and anti-inflammatory status,
decreased ROS generation, increased activities of antioxidant enzymes (GSH, SOD, CAT,
GPX and GST) and inflammatory markers (NF-κB, COX-2 and iNOS) expression decreased.
In addition, it also induces Nrf2 activation, accompanied by increased NQO1, GST and
HO-1 protein expression, which in turn reduces MIRI [128].

Aloin, which has various pharmacological properties such as anti-cancer and anti-
inflammatory properties, is a natural anthraquinone glycoside found in the leaves of aloe
vera plants [173]. It has a protective effect on ISO-induced cardiac hypertrophy in rats,
and part of its mechanism is to stabilize the redox system and resist myocardial fibrosis
by upregulating the levels of Nrf2 and HO-1 [174]. Another study found that silencing
Nrf2 counteracted aloin mediated ROS, LDH, MDA, TNF-α, IL-6 and IL-1β reduced as
well as elevated activity of antioxidant stress kinase SOD which, in turn, aggravated
the oxidative stress and inflammatory response of cardiomyocytes induced by simulated
ischemia/reperfusion (SI/R) [129].

4.9. Others

Anethole is a kind of aromatic compound, which can resist ISO-induced cardiomy-
ocyte injury. The potential mechanism mainly includes two pathways, one is to increase
mitochondrial antioxidant enzyme activity by activating Nrf2/HO-1 pathway, and the
other is to reduce TLR4/MYD88 pathway to improve myocardial inflammatory response
and apoptosis [131].

Kinsenoside (KD) is the main bioactive component naturally isolated from Anoec-
tochilus roxburghii, which has anti-inflammatory, anti-hyperglycemic, anti-hyperlipidemic
and vascular protective effects [175]. By increasing AKT phosphorylation and Nrf2 translo-
cation to the nucleus, it significantly upregulates the expression of SOD, GSH, HO-1 and
GPX4, inhibits MDA accumulation, iron accumulation, Mito-ROS and COX2 production,
thereby reducing mitochondrial dysfunction in myocardial I/R and increasing antioxidant
function [176].
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Similarly, total flavonoids from C. chinese (benth.) O. Ktze (TFCC), as a traditional
Chinese herbal medicine, is also mediated by blocking oxidative stress. TFCC treatment
prevented hypoxia/reoxygenation (A/R)-induced apoptosis in H9c2 cells and low expres-
sion of AKT phosphorylation, increasing nuclear translocation of Nrf2 and expression
of HO-1 [132]. The above process was blocked by AKT inhibitor, which indicated that
TFCC-induced Nrf2/HO-1 activation and cytoprotection may be completed by promoting
the phosphorylation of AKT.

Ginkgo biloba extract-761 (EGb 761), which is composed of Ginkgo flavonoids and
terpene lactones, has been widely used to treat various cardiovascular and cerebrovascular
diseases [177]. Studies have revealed a variety of mechanisms of action of EGb, including
improving the degree of necrosis, edema and inflammatory infiltration of cardiomyocytes,
and inhibiting the expression of proinflammatory cytokines (TNF-α, IL-6 and IL-1 β),
decreasing the expression of apoptotic factors (caspase3 and Bax), and enhanced the activity
of antioxidant enzymes (SOD and GSH-Px) in myocardial tissue [133]. Among them, the
effect of EGb against oxidative stress is to first activate Akt phosphorylation, promote
Nrf2 to translocate into the nucleus and upregulate HO-1 expression, so Akt/Nrf2/HO-1
pathway seems to become an important target to protect MIRI in rats [133].

In summary, different natural products can protect the heart by regulating Nrf2/HO-1,
AMPK, PI3K/Akt, NF-κB, Sirt, ERK, JNK and other related signals, such as enhancing
cardiac remodeling, improving MI, alleviating MI, and protecting I/R-induced myocardial
apoptosis (Table 2). This important function implies its potential role in participating in
cardiovascular diseases. However, the molecular crosstalk mechanism between natural
products and signaling pathways is not fully understood, and the specific effects of natural
compounds in various pathological conditions of the heart need to be further evaluated.

Table 2. The mechanism of natural products improving myocardial ischemic injury.

Category Molecular
Formula Model Related Gene/Cytokines/Protein Pathway References

Terpenoids

Andrographolide C20H30O5
C57BL/6 mice, H9c2

cell

↑: SOD2, NQO1, GPX, Nrf2, HO-1
↓: TNF-α, IL-1β, IL-6, MCP-1, p-IκBα,
p-p65, p67 phox, Gp91, NOX4, TGF-β,

p-smad3

NF-κB,
Nrf2/HO-1 [91]

Panaxatriol
saponin C30H52O4 SD rats, H9c2 cell

↑: SOD1, SOD2, HO-1
↓: cleaved caspase-3, cleaved PARP-1, Bax,

Cyt-c, MB, cTn-T, CK, LDH

Keap1/Nrf2/HO-
1 [92]

Ginsenoside
Rd C48H82O18 SD rats ↑: Nrf2, HO-1

↓: CK, LDH, cTnI Nrf2/HO-1 [93]

Ginsenoside
Rh2 C36H62O8

SD rats, Neonatal rat
cardiomyocytes

↑: Nrf2, HO-1, SOD, GSH-Px
↓: IL-1β, IL-18, TNF-α, NLRP3, ASC,
caspase-1, MDA, LDH, CK, CK-MB

Nrf2/HO-
1/NLRP3 [94]

Ginsenoside
Rb2 C53H90O22 H9c2 cell ↑: Nrf2, HO-1

↓: CK-MB, cTn-1, LDH Nrf2/HO-1 [95]

Triptolide C20H24O6 Wistar rats ↑: Nrf2, HO-1, GPX, GSH, SOD
↓: TNF-α, IL-1β, IL-6, MDA Nrf2/HO-1 [96]

Betulinic acid C30H48O3 H9c2 cell ↑: Nrf2, HO-1, Bcl-2
↓: LDH, caspase-3, Bax, p38, JNK

Nrf2/HO-1, p38,
JNK [97]

Maslinic acid C30H48O4 SD rats, H9c2 cell
↑: GSH, SOD, p-Nrf2, HO-1, NQO1

↓: LDH, CK-MB, MAD, Keap-1, p-IκBα,
p-P65, TNF-α

Nrf2/HO-1,
NF-κB [98]

Glaucocalyxin
A C20H28O4 H9c2 cell ↑: SOD, GSH-Px, Bcl-2, p-Akt, Nrf2, HO-1

↓: Bax, caspase-3 Akt/Nrf2/HO-1 [99]

Costunolide C15H20O2
C57BL/6 mice, H9c2

cell
↑: Bcl-2, NQO1, HO-1, Nrf2

↓: cleaved caspase-3, Bax, MDA, SOD Keap1/Nrf2 [100]

Lutein C40H56O2 SD rats
↑: CAT, SOD, Nrf2, HO-1

↓: MDA, cTnT, CK-MB, LDH, IL-1β,
TNF-α, NF-κB p65, caspase-3, caspase-9

Nrf2/HO-1 [101]
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Table 2. Cont.

Category Molecular
Formula Model Related Gene/Cytokines/Protein Pathway References

Flavonoids

Hesperetin C16H14O6 mice

↑: CAT, SOD, GSH, Bcl-2, Sirt1, Nrf2,
NQO1, HO-1

↓: CK, LDH, MDA, IL-6, TNF-α, Bax,
caspase-3

Sirt1/Nrf2 [102]

Baicalin C21H18O11 H9c2 cell
↑: Bcl-2, HIF1α, BNIP3, Nrf2, HO-1

↓: p53, Bax, cleaved-caspase 9,
cleaved-caspase 3

HIF1α/BNIP3,
Nrf2/HO-1 [103]

Pinocembrin C15H12O4 SD rats, H9c2 cell ↑: Bcl-2, SOD, Nrf2, HO-1
↓: p53, Bax, cleaved-caspase 3, MDA Nrf2/HO-1 [104,105]

Icariin C33H40O15 H9c2 cell ↑: Nrf2, HO-1, GPX4, SOD, CAT
↓: LDH, ACSL4, MDA Nrf2/HO-1 [106]

Wogonoside C22H20O11 C57BL/6 mice

↑: Bcl-2, Nrf2, HO-1, NQO1
↓: Mb, CK-MB, cTnI, cleaved caspase-3,

cleaved caspase-9, Bax, TNF-α, IL-6, iNOS,
α-SMA, TGF-β

Nrf2/HO-1 [107]

Visnagin C13H10O4 Wistar rats

↑: Nrf2, HO-1, Bcl-2, PPARγ, GSH, SOD,
CAT, GPX

↓: MDA, NF-κB p65, Bax, caspase 3,
caspase 9, CTnI, CK-MB, LDH, TNF-α,

IL-6

Nrf2/HO-1 [108]

Isoliquiritigenin C15H12O4 C57BL/6 mice
↑: GSH-Px, SOD, Nrf2, HO-1

↓: MDA, p-p65, IL-6, IL-1β, TNF-α,
MIP1α, MIP2, p-IKKα/β, p-P65, p-IκBα

Nrf2/HO-1 [109]

Phenols

Salvianolic
acid B C36H30O16 SD rats

↑: Nrf2, HO-1, GSH, xCT, GPX4, Fth1,
Fpn1

↓: MDA, CK, CK-MB, LDH
Nrf2/HO-1 [110]

Lithospermic
acid C27H22O12

C57BL/6 mice, H9c2
cell

↑: eNOS, Nrf2, GPX, SOD2, NQO1, Bcl-2
↓: TnT, CK-MB, ROS, GP91, NOX4, p67

phox, p47 phox, Caspase-3, Bax

AMPK,
Nrf2/HO-1 [111]

Kazinol B C25H28O4 H9c2 cell

↑: Bcl-2/Bax, ATP, GSH-Px, SOD, Nrf2,
HO-1

↓: caspase-3, cleaved PARP, MDA, LDH,
p-AKT, p-AMPKα

AKT, AMPK,
Nrf2/ARE/HO-

1
[112]

Paeonol C9H10O3 SD rats

↑: GSH/GSSG, Bcl-2, Nrf2, HO-1, NQO1,
GST, p-PI3K, p-Akt

↓: Bax, TBARS, TNF-α, Fas, caspase-8,
caspases-3

Nrf2/HO-1,
PI3K/Akt [113]

Protocatechuic
acid C7H6O4 Wistar rats

↑: CAT, SOD, GSH, GPX, GR, Nrf2, HO-1,
Bcl-2, TIMP-3

↓: CK, LDH, CTnT, MDA, NO, TNF-α,
IL-1β, Bax, caspase-3, TGF-β1, MMP-9

Nrf2/HO-1 [114]

Resveratrol C14H12O3 SD rats

↑: SOD, GSH, GSH-PX, p-mTOR/mTOR,
SOD2, Nrf2, HO-1, p-AMPK/AMPK
↓: CK, LDH, MDA, NOX2, NOX4,

p-IRE/IRE, P-PERK/PERK, GRP78,
NLRP3, caspase-1, IL-1β, MPO

AMPK, Nrf2 [115,116]

Polydatin C20H22O8 SD rats, H9c2 cell ↑: Nrf2, HO-1, Bcl-2
↓: caspase-3, Bax Nrf2/HO-1 [117]
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Table 2. Cont.

Category Molecular
Formula Model Related Gene/Cytokines/Protein Pathway References

Polysaccharides and glycosides

Catalpol C15H22O10

C57BL/6 mice,
Human

cardiomyocytes
AC16 cells

↑: SOD2, GSH, Bax, Nrf2, HO-1
↓: cTnI, CK-MB, NPPB, BNP, MDA, ROS,
IL-1β, IL-6, IL-8, TNF-α, cleaved caspase 3

Nrf2/HO-1 [118]

Astragaloside
IV C41H68O14 SD rats, H9c2 cell

↑: CAT, GSH, SOD, Nrf2, HO-1, NQO1,
SOD2, Txn-1, PI3K, p-Akt

↓: CK, Keap-1, LDH, MDA, IL-6, TNF-α,
Bach1

PI3K/Akt/Nrf2/HO-
1 [119,120]

Crocin C44H64O24

C57BL6/J mice,
Neonatal mouse
cardiomyocytes

(NMCMs)

↑: Bcl-2, Sirt1, Nrf2, HO-1
↓: miR-34a, GRP78, CHOP

miR-
34a/Sirt1/Nrf2 [121]

Steroids

Ruscogenin C27H42O4 ICR mice, H9c2 cell
↑: GPX4, SOD, GSH, BCAT1, BCAT2, Nrf2,

HO-1
↓: ACSL4, FTL, MDA, Keap1

Keap1/Nrf2/HO-
1 [122]

Dioscin C45H72O16 SD rats, H9c2 cell
↑: SOD, GSH, GSH-Px, Sirt2, Nrf2, HO-1,

NQO1, GST, GCLM, Sirt2, FOXO3a
↓: CK, LDH, MDA, miR-140-5p, Keap1

miR-140-5p, Nrf2,
Sirt2 [123]

Alkaloids

Neferine C38H44N2O6 H9c2 cell ↑: Sirt1, Nrf2, SOD, CAT
↓: MDA, LDH Sirt1/Nrf2 [124]

Stachydrine C7H13NO2 H9c2 cell ↑: SOD, Sirt1, Nrf2, HO-1
↓: LDH, MDA, caspase-3 Sirt1/Nrf2 [125]

Phenylpropane

Plantamajoside C29H36O16 H9c2 cell

↑: SOD, CAT, GSH-Px, Bcl-2, p-Akt, Nrf2,
HO-1

↓: TNF-α, IL-6, IL-1β, Bax, caspase 3,
p-IκBα, p-P65

Akt/Nrf2/HO-1,
NF-κB [126]

Schizandrin B C23H28O6 H9c2 cell

↑: SOD, GSH, Nrf2, NAD(P)H, NQO1,
HO-1, p-AMPK

↓: LDH, MDA, TNF-α, IL-6, IL-1β, IL-8,
TGF-β, IL-10

AMPK/Nrf2 [127]

Quinones

Plumbagin C11H8O3 C57BL6/J mice

↑: GSH, SOD, CAT, GPX, GST, Nrf2, HO-1,
NQO1

↓: NF-κB, COX-2, iNOS, MCP-1, IL-6, IL-8,
TNF-α

Nrf2 [128]

Aloin C21H22O9 H9c2 cell ↑: SOD, Nrf2, HO-1
↓: LDH, MDA, IL-6, IL-1β, TNF-α Nrf2/HO-1 [129]

Others

Kinsenoside C10H16O8 C57BL6/J mice
↑: p-Akt, Nrf2, HO-1, SOD, GSH, HO-1,

GPX4
↓: MDA, CK-MB, COX2, ACSL4, Keap1

Akt/Nrf2/HO-1 [130]

Anethole C10H12O Wistar rats

↑: Nrf2, HO-1, SOD, CAT, GPX, GSH, GST,
Bcl-2

↓: Keap-1, CKMB, CK, CTnT, TNF-α,
IL-1β, IL-6, NF-κB, Bax, caspase-3,

caspase-9, TLR4, MYD88

Nrf2/HO-1,
TLR4/MYD88 [131]

TFCC
Clinopodium

chinense
(Benth.) O.

Ktze

/ SD rats, H9c2 cell
↑: GSH-Px, CAT, SOD, POD, HO-1, Nrf2,

HO-1, AKT, Bcl-2
↓: cleaved caspase-3, caspase 9, Bax

AKT/Nrf2/HO-
1 [132]

Ginkgo biloba
extract-761 / SD rats

↑: Bcl-2, p-Akt, HO-1, Nrf2
↓: CK-MB, LDH, TnT, TNF-α, IL-6, IL-1β,

Caspase-3, Bax
Akt/Nrf2 [133]

↑: up regulation; ↓: down regulation.
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5. Conclusions and Prospects

As an important pathway of anti-oxidative stress, Nrf2 signaling is involved in allevi-
ating the pathological changes in myocardial ischemia. A large number of studies have
shown that many NPs can effectively and safely relieve myocardial ischemia injury through
Nrf2 signaling. With the deepening of research, Nrf2-based signaling pathways have
gradually emerged, which are often associated with HO-1, AMPK, PI3K/Akt, NF-κB, Sirt1,
ERK and other signaling pathways interact and influence each other, forming a complex
pharmacological network for NPs to protect the heart (Figure 3).
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Figure 3. The effects of natural products targeting Nrf2-related signaling pathway on myocardial
ischemia. The natural product inhibits pathological mechanisms such as inflammatory response,
ferroptosis, oxidative stress, apoptosis and fibrosis in cardiomyocytes through the Nrf2/HO-1-related
signaling pathway, thereby alleviating myocardial ischemic injury. (Created with BioRender.com,
accessed on 10 March 2024).

Although the evidence of the cardioprotective effect of NPs is relatively clear, the
mechanism of Nrf2 as a driver needs further verification. At present, the research on drugs
targeting Nrf2 in the treatment of ischemic heart disease is mostly based on the level of cells
and animal models, lacking factual evidence of clinical research. NPs are helpful in both the
development and prevention of cardiovascular events. To truly translate basic experimental
results into clinical applications, dose-specific clinical trials are still required to determine
the anti-inflammatory and antioxidant therapeutic potential of natural compounds, as well
as their potential toxicity and safety over the long term. Meanwhile, the comparison of
the mechanism of action of natural drugs with different structures and types to protect
the heart should be clarified, and its specific effect should be clarified. Next, an in-depth
exploration of the regulatory network of NPs targeting Nrf2 to protect the heart will help
delay the development of cardiovascular disease and improve its prognosis, which may be
a promising therapeutic strategy.
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