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Abstract: Carbonic anhydrases are mononuclear metalloenzymes catalyzing the reversible hydration
of carbon dioxide in organisms belonging to all three domains of life. Although the mechanism of
the catalytic reaction is similar, different families of carbonic anhydrases do not have a common
ancestor nor do they exhibit significant resemblance in the amino acid sequence or the structure and
composition of the metal-binding sites. Little is known about the physical principles determining
the metal affinity and selectivity of the catalytic centers, and how well the native metal is protected
from being dislodged by other metal species from the local environment. Here, we endeavor to
shed light on these issues by studying (via a combination of density functional theory calculations
and polarizable continuum model computations) the thermodynamic outcome of the competition
between the native metal cation and its noncognate competitor in various metal-binding sites. Typical
representatives of the competing cations from the cellular environments of the respective classes
of carbonic anhydrases are considered. The calculations reveal how the Gibbs energy of the metal
competition changes when varying the metal type, structure, composition, and solvent exposure of
the active center. Physical principles governing metal competition in different carbonic anhydrase
metal-binding sites are delineated.
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1. Introduction

Carbonic anhydrases (CAs) constitute a large family of metalloenzymes which catalyze
the reversible conversion of carbon dioxide and water to bicarbonate and hydrogen ions:

CO2 + H2O ↔ HCO3
− + H+

CAs are ubiquitous for the organisms belonging to all three domains of life, namely,
Archaea, Bacteria, and Eukarya, where the enzyme plays a crucial role in a number of
essential vital processes, such as maintaining acid–base homeostasis, regulating fluid
balance and cellular pH, participating in CO2 transport, carbon fixation, respiration and
photosynthesis, and influencing the hemoglobin function and cell metabolism, to name
but a few [1–7]. Several families of carbonic anhydrases have been identified, among
which αCA (found in humans and other mammals), βCA (mostly in plants), γCA (Bacteria
and Archaea domains), and ζCA (Diatoms/phytoplankton) are the best functionally and
structurally characterized [1,5–8]. All CAs contain a mononuclear metal-binding site which
plays an indispensable role in enzyme performance: a polarized/ionized metal-bound
water molecule acts as a nucleophile attacking the incoming CO2 [9]. It should be noted
that although the mechanism of the catalytic reaction is similar, the CA families have no
common ancestor and do not exhibit significant resemblance in the amino acid sequence
or overall 3D structure, thus being considered as a paradigm of convergent evolution.
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Metal-binding sites of different classes of CAs are not identical either: they vary in the type
of the metal cofactor and the arrangement and composition of its ligation sphere. This is
demonstrated in Figure 1, which depicts the structure of metal-binding sites of some typical
representatives of α-, β-, γ-, and ζCA as derived from X-ray crystallographic studies, where
the corresponding PDB Entry is given in parentheses.
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Figure 1. Structures of metal-binding sites of: (A) α-, (B) β-, (C) γ-, and (D) ζ-carbonic anhydrases as
taken from X-ray crystallographic studies given in parentheses.

αCA comprises a Zn-binding site where the Zn2+ cation is tetrahedrally coordinated
to three histidine side-chain ligands and a catalytic (activated) water molecule (Figure 1A;
PDB code 1TE3 [10]; Homo sapiens). A second-shell threonine amino acid residue and
two water molecules complement the architecture of the active center. βCA is also a
zinc metalloenzyme but the composition of the metal-binding site differs from that of its
αCA counterpart: a histidine residue and two cysteine side chains, in addition to a water
ligand, orbit the metal cation in a distorted tetrahedral arrangement (Figure 1B; PDB entry
1EKJ [11]; common pea, Pisum sativum). The catalytic water molecule is hydrogen-bonded
to another water ligand and an aspartate residue from the metal’s second coordination
layer. Another type of metal-binding site has been observed in γCA (PDB code 1QQ0 [12];
methanogenic archaeon, Methanosarcina thermophila). First of all, the metal cofactor is not
Zn2+ but another transition metal—Co2+ or Fe2+ [6,12]. Recent investigations have revealed
that the biologically relevant metal cofactor is Fe2+, although the enzyme also exhibits
significant activity with Co2+ [6]. Not surprisingly, the first-shell ligation sphere, formed by
three histidine and three water ligands, is arranged in an octahedral fashion (Figure 1C) in
accordance with the stereochemical requirements of the metal cation (Co2+ in the 1QQ0
structure; Figure 1C). Side chains of a glutamate and glutamine from the metal’s second
coordination shell are hydrogen-bonded to water molecules from the primary coordination
layer. Much to the surprise of the scientific community, the active site of ζCA in some
marine diatoms has been found to contain Cd2+ as a cofactor [7,8]. Direct metal ligands—a
histidine, two cysteines, and two waters—coordinate the Cd2+ cation in a semi-square
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pyramidal fashion (Figure 1D; PDB code 3BOB [8]; marine diatom, Thalassiosira weissflogii).
A second-shell water forms hydrogen bonds with its first-shell counterparts.

Notably, although different in structure and composition, the metal-binding sites
in diverse CA families have evolved to fulfil the same task—the reversible hydration of
CO2—quite efficiently. In the course of the 3–4 billion years of organism evolution, the
physicochemical properties of the metal cations and their bioavailability in the environment
have played a pivotal role in choosing the proper metal cofactor to accomplish the assign-
ment. Intriguing questions arise: How do different CAs select their cognate metal cofactor
from the surrounding fluids teeming with other metal cations? How well is the native
metal in the active site protected from being replaced by other metal species from the local
environment? What kind of selectivity rules apply for these various metal-binding sites?

Here, we endeavor to address these questions by exploring the thermodynamic out-
come of the competition between the native metal cation and its noncognate competitor
in various CA model metal-binding sites. Typical representatives of competing cations
from the cellular environments of the respective classes of carbonic anhydrases were con-
sidered (see the “Results” section below). Density functional theory (DFT) calculations in
combination with polarizable continuum model (PCM) computations were employed (see
the “Methods” section). The competition between the cognate metal and its rival can be
expressed in terms of the Gibbs energy, ∆Gε, for replacing the native metal cation bound to
the protein by its competitor:

[Comp2+-aq] + [Nat2+-protein] → [Comp2+-protein] + [Nat2+-aq] (1)

In Equation (1), [Comp2+/Nat2+-protein] and [Comp2+/Nat2+-aq] represent the metal
ion (competitor or native) bound to protein ligands inside the metal-binding cavity and
unbound in aqueous solution, respectively. Buried and solvent-accessible metal-active
centers are characterized by an effective dielectric constant, ε, of ~4 and ~30, respectively,
whereas bulk aqueous solvent is represented by ε = 78. A positive ∆Gε implies a Nat2+-
selective site, whereas a negative value implies a Comp2+-selective one. To delineate the
key factors underlying the Comp2+ versus Nat2+ competition, we assessed how the Gibbs
energy for Equation (1) changed when varying the metal type, structure, composition,
and solvent exposure of the metal binding site. Physical principles governing the metal
competition in different CAs active sites are delineated. It should be noted that the aim
of the present calculations is to yield reliable trends in the Gibbs energy changes when
varying structural parameters of the metal binding centers rather than to reproduce the
absolute Gibbs energies of the metal competition. Such an approach has proven reliable in
the study of other biological systems, such as enzymes [13,14], signaling proteins [15], and
ion channels [16].

2. Results
2.1. αCA

The competition between the native Zn2+ cation and other biologically relevant metal
cations present in cellular fluids of mammals, such as Mg2+, Fe2+, and Cu2+ [17] was
studied. The structures of the fully optimized metal complexes are shown in Figure 2.
The optimized structure of the model Zn2+-binding site follows closely that of the initial
X-ray construct taken from the pdb file (entry 1TE3 [10]; Figure 1A). As seen, the overall
shape of the binding site, where the metal is tetrahedrally coordinated to four first-shell
ligands, is preserved during the optimization process. The optimization of “rival” metal
complexes does not alter the general structure of the binding site either, since in all cases,
the tetrahedral arrangement of the immediate metal’s surrounding is retained (Figure 2).
The metal–ligand bond lengths, however, differ (though not very drastically) as their mean
value decreases from 2.028 Å in the Zn2+ complex to 2.009 Å in its Cu2+ counterpart, but
increases to 2.040 and 2.075 Å in the Mg2+ and Fe2+ constructs, respectively.
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The Gibbs energies of metal exchange reaction (2) in different dielectric environments
are also given in Figure 2. Notably, evaluating the Gibbs energies in different types of
dielectric media (gas phase, ∆G1, vs. condensed media, ∆G4/29) allows for the separate
accounting of different effects influencing the above equilibrium. Thus, in the gas phase,
electronic effects govern the reaction outcome. Zinc cation, being a stronger Lewis acid
than Mg2+ and Fe2+, forms more stable complexes and outcompetes these adversaries in
the gas phase evidenced by positive ∆G1s. It should be noted that the active site of αCA
comprising three nitrogen-containing ligands (i.e., histidines) is especially unfavorable for
the Mg2+ binding since this “hard” metal cation has stronger preference to “hard” oxygen-
containing ligands (e.g., aspartates/glutamates or backbone carbonyls) rather than to “softer”
nitrogen- or sulfur-containing ligands. Copper cation, however, is more competitive than
Zn2+ and yields negative ∆G1 of the Zn2+ → Cu2+ exchange. On the other side, however,
the solvation effects, which are quite strong, especially for doubly charged metals and metal
complexes, may substantially affect the reaction course. These can either attenuate the gas-
phase Gibbs energy, ∆G1, which for the αCA-Mg construct decreases from 52.0 kcal/mol to
∆G4/29 = 23.6/24.0 kcal/mol, or reverse the reaction direction for the other two metals. Thus,
Fe2+ appears more competitive than Zn2+ in a protein environment (∆G1 of 26.4 kcal/mol
deceases to ∆G4/29 of −3.4/−4.7 kcal/mol) whereas Cu2+ loses out against the “native”
Zn2+ in condensed media (∆G1 of −4.0 kcal/mol increases to ∆G4/29 of 9.5/8.4 kcal/mol).
These effects can be mainly attributed to the substantial differences in the Gibbs energies of
solvation of the metal cations (see “Methods” section) involved in Reaction (2). The Gibbs
energy gain upon Zn2+ release to the bulk (∆Gsolv = −484.6 kcal/mol; right-hand side of
Equation (2)) exceeds the desolvation penalty for the competing species (∆Gsolv = −455.5 and
−456.4 kcal/mol for Mg2+ and Fe2+, respectively; left-hand side of Equation (2)), thus favoring
the straightforward reaction for the respective Zn2+ → Mg2+ and Zn2+ → Fe2+ substitutions.
Conversely, since the desolvation penalty for Cu2+ ion (−498.7 kcal/mol) surpasses the Gibbs
energy benefit upon Zn2+ liberation, the Zn2+ → Cu2+ exchange appears unfavorable in a
protein environment (positive ∆G4/29).

[M2+-aq] + [αCA-Zn2+] → [αCA-M2+] + [Zn2+-aq], M = Mg, Fe or Cu (2)

The results presented suggest that the type of protein binding site—buried (modeled
with ε = 4) or solvent-accessible (modeled with ε = 29)—has little effect on the thermo-
dynamics of the exchange process as ∆G4 and ∆G29 fluctuate in narrow limits for the
respective reactions.

The effect of binding site flexibility on metal selectivity was also studied. The values
presented for the Gibbs energies discussed so far were evaluated for modeled flexible
binding sites where the metal ligands were allowed to relax and find their optimal position
during the optimization procedure. An “experiment” was performed with a rigid/inflexible
binding site, where the ligands in the non-cognate metal complex (αCA-Fe2+) were denied
relaxation and stayed “frozen” at the initial positions of the starting αCA-Zn2+-derived
structure during the optimization. The results are shown in parentheses in Figure 2. The
calculations suggest that rigidifying the binding site of the native metal (Zn2+ in our case)
increases its competitiveness with respect to a rival metal species (Fe2+ in this case), as
evidenced by the increased ∆G4/29.

2.2. βCA

β-Carbonic anhydrase is found predominantly in plants. Therefore, our models were
derived from the X-ray structure (PDB entry 1EKJ, [11], 1.93 Å resolution) of plant βCA.
The native metal cation in βCA is, again, Zn2+. The amino acid ligation sphere, however,
differs from that in its α-counterpart: instead of three histidines in αCA, a histidine and
two cysteine ligands orbit the metal cofactor in βCA (Figure 1B). In both cases, the central
metal cation is (semi) tetrahedrally coordinated to the first-shell ligands. The optimized
structure of the model Zn2+-binding site is shown in Figure 3. As seen, the overall shape
of the metal center is preserved during the optimization. The Zn2+ major competitors in
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plants appear to be Mg2+, Fe2+, and Cu2+ which are present in appreciable quantities in
the cellular environment [18,19]. Thus, complexes of these rival metals were also modeled
(after substituting for the native Zn2+ cation; see “Methods” section) and subsequently
optimized (Figure 3). The optimization of “rival” metal complexes does not alter the overall
structure of the binding site as, in all cases, the (semi) tetrahedral arrangement of the
immediate metal’s surrounding is retained (Figure 3). It should be noted that the metal
complexes are bulkier than the respective αCA-metal constructs (see above): the mean
value of the metal–ligand bond lengths for the Zn2+ complex is 2.228 Å, 2.214 Å for its Cu2+

counterpart, and 2.256 and 2.306 Å for the respective Fe2+ and Mg2+ structures.
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and Gibbs energies (in kcal/mol) of metal exchange in different dielectric media. Superscripts 1, 4, and
29 denote gas phase, buried metal-binding site, and solvent-accessible metal center, respectively.

The Gibbs energies for the metal exchange in βCA metal centers, reaction (3) were
evaluated and are presented in Figure 3. Generally, the trends of changes in ∆Gs of the
metal exchange reactions in βCA metal-binding sites are similar to those observed for their
αCA counterpart. The least competitive to the cognate Zn2+ cation is Mg2+ (highest positive
Gibbs energies of metal exchange in a protein environment) followed by Cu2+ (lower positive
∆G4/29) and Fe2+ (lowest ∆G4/29). The calculations imply that the zinc-binding sites in βCA
are reliably protected against “foreign” invasion. Comparing the numerical data obtained for
αCA and βCA, one can notice that the metal-binding site in the latter favors the Zn2+/Mg2+

and Zn2+/Fe2+ competition to a greater extent than in the former (higher positive ∆Gs of
metal exchange in βCA than in αCA; Figures 2 and 3). This is due to the presence of two
cysteine residues in the active center of βCA in place of the respective number of histidine
residues in the αCA construct, which secure stronger interactions with the native Zn2+ than
with its rival Mg2+ and Fe2+ cations. On the other hand, Cu2+, with a higher affinity for
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sulfur-containing ligands than Zn2+, increases (slightly) its competitiveness in βCA, although
∆Gs remain positive. Again, varying the solvent exposure of the binding pocket has little
effect on the metal competition.

[M2+-aq] + [βCA-Zn2+] → [βCA-M2+] + [Zn2+-aq] (M = Mg, Fe or Cu) (3)

2.3. γCA

The native metal for γCA is Fe2+ [6], which is octahedrally coordinated to
six ligands—three histidine side chains and three water molecules. Optimized structures
of the model metal-binding sites of the γCA-Fe complex and constructs comprising rival
cations from the saline water environment such as Mg2+, Ni2+, and Zn2+ [20,21] are de-
picted in Figure 4. All complexes retain the initial octahedral coordination of the metal ion
during the optimization. Gibbs energies evaluated for the competition between the cognate
metal and its contestants reaction (4), are also given in Figure 4. The data presented suggest
that the metal-binding site in γCA can withstand attacks from other metal species from
the surrounding fluids as all Gibbs energies of metal exchange in a protein environment,
∆G4/29, are positive. Again, Mg2+ is the weakest competitor of the native metal species.
Zn2+ and Ni2+ cations cannot successfully compete with Fe2+ either. Two major factors
contribute to this result: (1) six-coordinated complexes suit Fe2+ better than its contestants
as the latter prefer lower coordination-number constructs—usually four for Zn2+ and four
to five for Ni2+ complexes; and (2) the desolvation penalty of the attacking Zn2+ and Ni2+

(484.6 and 494.2 kcal/mol, respectively; left-hand side of Equation (4)) exceeds the Gibbs
energy gain of the liberated Fe2+ (−456.4 kcal/mol; right-hand side of Equation (4)), which
favors the backward Reaction (4).

[M2+-aq] + [γCA-Fe2+] → [γCA-M2+] + [Fe2+-aq] (M = Mg, Zn or Ni) (4)
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2.4. ζCA

ζ-Carbonic anhydrase is a Cd2+ enzyme. The metal cofactor is coordinated to five
ligands: a histidine and two cysteine side chains donated by the protein, and two water
molecules. Optimized structures of ζCA-Cd and ζCA-Mg/Fe/Zn complexes, which all
preserve the original five-coordinated ligation pattern, are presented in Figure 5 along with
the Gibbs energies of the metal exchange:

[M2+-aq] + [ζCA-Cd2+] → [ζCA-M2+] + [Cd2+-aq] (M = Mg, Fe or Zn) (5)
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Positive ∆G4/29 evaluated for all reactions indicate that Cd2+ is the cation of choice
for the ζCA. Again, the structure of the metal-binding site (which is well adapted to the
specific coordination requirements of Cd2+ rather than of Mg2+, Fe2+, and Zn2+) and the
balance between the desolvation penalty for the attacking metal species and the Gibbs
energy gain of the outgoing Cd2+ (which is in favor of the native Cd2+ cation) determine
the outcome of the competition process.

3. Methods
3.1. Models Used

Metal-binding sites in α-, β-, γ-, and ζCA were modeled after the respective X-
ray structures, deposited in the Protein Data Bank [22,23]. The metal cation and its
ligands—amino acid residues and water molecules—from both the first and second coor-
dination layer were incised from the protein structure and further modified by capping
the amino acid side chains at the Cα atom with a methyl group. Thus, the side chains of
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His, Cys−, Asp−, Glu−, Thr, and Gln were represented by ethyl-imidazole, CH3CH2S−,
CH3CH2COO−, CH3CH2CH2COO−, CH3CH(OH)CH3, and CH3CH2CH2CONH2, respec-
tively. The coordinates of the Cα atoms were kept frozen during the ensuing optimization
to account for the packing/rigidifying effect of the protein matrix.

3.2. DFT/PCM Calculations

The Gaussian 09 suite of programs [24] was employed in performing the required
calculations. The most suitable combination of theoretical method/basis set was found to be
the Minnesota density functional M062X method [25] in conjunction with the 6-311++G(d,p)
basis set for all “light” atoms (C, H, N, O, S, Zn, Cu, Mg, Ni, and Fe), and the SDD basis
set/effective core potential [26] for the “heavy” Cd. Our previous studies [14] proved
it dependable in correctly reproducing the geometry of a series of representative metal
structures and the Gibbs energies of metal exchange in acetate, imidazole, and glycine
complexes too [27].

As a first step in the current study, the metal-loaded binding sites comprising the
cognate metals (Zn2+ for both α- and βCA, Fe2+ for γCA, and Cd2+ for ζCA) were fully
optimized. The second step was the optimization of the resulting constructs where the
native metal was replaced by its rival metal species. The respective structures, as shown
in Figures 2–5, were discussed accordingly in the preceding sections. The calculations
provided the electronic energies, Eel, for each optimized metal complex. According to the
performed vibrational frequency calculations (at the same M062X/6-311++G(d,p)//SDD
level of theory), the located stationary points on the potential energy surface were found
to be energy minima. The frequencies were scaled by an empirical factor of 0.983 [25]
and employed to evaluate the thermal energies, Eth, including zero-point energy, and
entropies, S. The metal exchange Gibbs energy in the gas phase, ∆G1, at T = 298.15 K
and 1 atm was calculated using the electronic energies and the thermodynamic properties
according to the following equation:

∆G1 = ∆Eel
1 + ∆Eth

1 − T∆S1 (6)

In Equation (6), ∆ stands for the differences in Eel, Eth, and S between the products
and reactants. The basis set superposition error for the type of metal substitution reactions
modeled by Equation (1) is insignificant [28], and, therefore, it was not considered in the
present calculations.

Metal-binding sites in metalloenzymes are situated in cavities of the protein structure
whose dielectric properties differ from those in the bulk water [29] and exhibit characteristics
closer to the low-polarity solvents [30]. Thus, condensed-phase calculations were performed
in solvents emulating the dielectric properties of buried and solvent-accessible binding sites,
diethyl ether (ε = 4) and propanonitrile (ε = 29), respectively. The SMD (Solvation Model
based on Density) [31] version of the Polarizable Continuum Model was employed in ac-
counting for the solvation effects by subjecting each optimized structure in the gas phase
to single-point calculations in the respective solvent at the M062X/6-311++G(d,p)//SDD
level of theory. The differences between the gas-phase and SMD energies were used to
compute the solvation Gibbs energy, ∆Gsolv

ε, of each metal construct. The incoming and
outgoing metal species were considered to be in a bulk watery environment (ε = 78) outside the
binding pocket. Hence, their experimentally determined hydration Gibbs energies [32] were
used in the computations: ∆G78(Mg2+) = −455.5 kcal/mol; ∆G78(Zn2+) = −484.6 kcal/mol;
∆G78(Cu2+) = −498.7 kcal/mol; ∆G78(Fe2+) = −456.4 kcal/mol; ∆G78(Ni2+) = −494.2 kcal/mol;
and ∆G78(Cd2+) = −430.5 kcal/mol. The cation exchange Gibbs energy, ∆Gε, in a protein
binding site characterized by an effective dielectric constant ε was evaluated as:

∆Gε = ∆G1 + ∆Gsolv
ε([Comp2+-protein]) − ∆Gsolv

ε [Nat2+-protein] − ∆Gsolv
78([Comp2+-aq]) + ∆Gsolv

78([Nat2+-aq]) (7)
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4. Conclusions

The competition between the cognate metal cofactor and other metal species from the
surrounding fluids in four different classes of carbonic anhydrases was studied through
high-level DFT/PCM calculations. The results obtained provide a basis for delineating
the major determinants of the metal selectivity in these systems. Although the structure
and composition of the active sites of αCA, βCA, γCA, and ζCA are different, the metal
selectivity principles, employed by the enzyme, appear to be identical for all the representa-
tives of the carbonic anhydrase family. Thus, Mg2+, which is quite abundant in the cellular
environment of organisms from all three domains of life, cannot compete successfully with
the native metal cofactor in the active site since, unlike the cognate Zn2+, Fe2+, and Cd2+

cations, it has low affinity for nitrogen- and sulfur-containing protein ligands (histidines
and cysteines). Also, the tetrahedral arrangement of metal-binding sites in αCA and βCA
is not favorable for Mg2+ as it prefers octahedrally shaped ligation spheres. The symme-
try of the metal-binding site also plays a substantial role in the competition between the
transition metals. Thus, in γCA, the octahedrally arranged binding site strongly benefits
Fe2+ but is not optimal for Zn2+ and Ni2+ as those cations prefer smaller number of ligands
orbiting the metal cation. The same rule also applies for the Cd2+ center in ζCA, where its
structure is appropriately adapted to its specific coordination requirements. Furthermore,
the metal cation solvation is another factor which has to be taken into account in assessing
the outcome of the metal competition. As shown in the preceding sections, the balance
between the desolvation penalty of the attacking metal species and the Gibbs energy gain
of the outgoing native metal emerges as a major determinant of the metal selectivity in the
systems studied. Rigidifying the metal-binding site, thus imposing the overall geometry
of the native construct on the attacking competitor, also increases the competitiveness
of the cognate metal species (Figure 2; Zn2+/Fe2+ competition). On the other hand, the
solvent exposure of the metal-binding site seems to be a factor of lesser importance for the
selectivity process.

Notably, Fe2+ appears to be a strong competitor of Zn2+ in αCA and βCA, as evidenced
by the small Gibbs energies of the metal exchange (Figures 2 and 3). Thus, in some
circumstances (for example, Zn2+ deficiency), Fe2+ might substitute for the native Zn2+ and
keep the enzyme functional. In fact, Fe2+ is the native metal cofactor in γCA.
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