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Abstract: A facile methodology for the construction of a complex heterocycle indazolo-fused quinox-
alinone has been developed via an Ugi four-component reaction (U-4CR) followed by an intramolec-
ular Ullmann reaction. The expeditious process features an operationally simple approach, time
efficiency, and a broad substrate scope. Biological activity was evaluated and demonstrated that com-
pound 6e inhibits human colon cancer cell HCT116 proliferation with an IC50 of 2.1 µM, suggesting
potential applications for developing a drug lead in medicinal chemistry.
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1. Introduction

Fused nitrogen polycyclic aromatic systems are one of the privileged core skeletons
that are of great significance in biochemistry and the pharmaceutical industry [1–4]. Inda-
zole and quinoxalinone cores, as two of them, are not only key scaffolds of many natural
products but also essential units of a number of synthetic compounds possessing a wide
spectrum of pharmaceutical activities [5–15]. In addition, indazole-fused polycyclic conju-
gated skeletons have received considerable interest as they are frequently encountered in
natural products, biologically active compounds, and fluorescent probes (Figure 1) [16–21].
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Figure 1. Natural product, bioactive, and drug molecules containing indazole structure.

Despite their importance, reliable methods for the synthesis of indazole-related poly-
heterocycles (PHCs) are rather limited [22–25], and some of them still suffer from the
use of highly functionalized substrates, the production of a large amount of waste, and
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low atom economy. In recent years, isocyanide-based multicomponent reactions have
been reported for the construction of indazole-related polyheterocycles with a facile and
efficient process. For example, Jeong and coworkers reported the synthesis of novel
2-aryl-5H-imidazo [1,2-b]indazol-3-amine derivatives by using the Groebke–Blackburn–
Bienaymé (GBB) reaction, which involved the reagents of 3-amino-1H indazoles, aldehydes,
and isonitriles (Scheme 1a) [26]. Then, the same team reported the synthesis of novel
amino-indazolo[3′,2′:2,3]imidazo[1,5-c]quinazolin-6(5H)-ones via a sequential post-GBB
cyclization/spiro ring expansion triggered by a [1,5]-hydride shift (Scheme 1b) [27]. Our
group has also reported the synthesis of pyrazole-pyrazines using a catalyst-free post-Ugi
cascade reaction (Scheme 1c) [28]. In spite of this, more efficient synthesis methods for the
construction of complex polyheterocycles are still desired.
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Scheme 1. Strategies for the synthesis of indazolo-fused polycyclics via isocyanide-based multicom-
ponent reactions.

As an evergreen in organic chemistry, multicomponent reactions (MCRs) never be-
came old-fashioned or tedious [29–33], because they always inspire creative spirits by
following the fundamental quest: more than two compounds are reacted in a one-pot
fashion to form two or more bonds. The post-Ugi reactions [34–37], as typical MCRs, are
well suited for the construction of important heterocycles, macrocycles, polymers, and
other compounds in drug discovery and natural product synthesis [38–43]. In the course
of our continued study on the construction of novel N-fused heterocyclic chemical spaces
and activity evaluation from Ugi adductive [28,36,44–46], we hoped to establish a highly
efficient diversity-oriented synthetic route to indazole-fused polycyclics utilizing a sequen-
tial one-pot Ugi/Ullmann reaction, as shown in Scheme 1d. We reasoned that the Ugi
product involving 3-carboxyindazole and 2-bromoaniline would undergo an intramolec-
ular Ullmann cyclization cascade process to yield the indazolo-quinoxaline derivatives.
As excepted, indazolo-quinoxaline derivatives were synthesized by a facile and efficient
process and are discussed below.

2. Results and Discussion

The starting materials, 3-carboxyindazole 1a, 4-chlorobenzaldehyde 2a, 2-bromoaniline
3, and tert-butyl isocyanide 4a, were mixed in methanol at room temperature and under air
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to afford the desired Ugi product 5a. With compound 5a in hand, we proceeded to optimize
the conditions for the subsequent Ullmann reaction, and the results are shown in Table 1.
Compound 5a was treated in N,N-dimethylformamide (DMF) with different bases under a
variety of microwave irradiation conditions. When an inorganic base was used, the target
compound 6a was observed in a relatively low yield (55%) (Table 1, entry 1–5). The results of
these screening experiments revealed that when organic bases 1,8-diazabicyclo[5.4.0]undec-
7-ene (DBU), 4-dimethylaminopyridine (DMAP), and triethylamine) (TEA) were used,
target compound 6a was observed in the LC/MS spectrum with very low yield (Table 1,
entries 6–8). Addition of a copper catalyst and ligand resulted in a considerable increase
in the yield (Table 1, entries 9–17). Different ligands were screened by performing the
reaction with K2CO3 and CuI (Table 1, entries 9–14), and the results showed that when
tetramethylethylenediamine (TMEDA) was used as the ligand, compound 6 was obtained
with a high yield (95%). When we carried out the reaction using another copper catalyst,
such as CuBr, Cu2O, and Cu(OTf)2, in the presence of TMEDA, we only achieved yields
of 49–65% (entries 15–17). The results proved that the optimal conditions for the Ullmann
reaction were K2CO3 as the base in the presence of CuI and TMEDA in DMF under
microwave at 150 ◦C for 30 min. After the Ullmann reaction conditions were optimized, we
continued to investigate the possibility of carrying out this reaction as a one-pot procedure.

Table 1. Optimization of the Ullmann reaction conditions from 5a a.
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Entry Base
(2.0 Eqiv.)

Cat.
(10 mol%)

Ligand
(20 mol%)

Temp.
(◦C)

Time
(Min) Yield of 6a (%) b

1 K2CO3 / / MW 120 10 min Trace
2 K2CO3 / / MW 150 10 min 25
3 K2CO3 / / MW 150 30 min 55
4 KOtBu / / MW 150 30 min 31
5 Cs2CO3 / / MW 150 30 min 43
6 TEA / / MW 150 30 min Trace
7 DBU / / MW 150 30 min 15
8 DMAP / / MW 150 30 min 17
9 K2CO3 CuI L1 MW 150 30 min 57

10 K2CO3 CuI L2 MW 150 30 min 67
11 K2CO3 CuI L3 MW 150 30 min 79
12 K2CO3 CuI L4 MW 150 30 min 95
13 K2CO3 CuI L5 MW 150 30 min 83
14 K2CO3 CuI L6 MW 150 30 min 73
15 K2CO3 CuBr L4 MW 150 30 min 65
16 K2CO3 Cu2O L4 MW 150 30 min 53
17 K2CO3 Cu(OTf)2 L4 MW 150 30 min 49

a Reaction conditions: 5a (0.1 mmol) and base (0.2 mmol) in DMF (1.0 mL) under air. b Isolated yields.
MW = microwave irradiation.

With the optimized intramolecular Ullmann cyclization reaction conditions in hand,
we investigated the cyclization reaction with the unpurified Ugi product 5a. In all cases,
the initial Ugi products were used directly in the next step without further purification
after the removal of the solvent. In one pot, the cascade reaction produced the final
product 6a with a 73% yield for two steps, which showed no discernible impact on the
overall yield. We then investigated the scope of this one-pot procedure by varying the
starting materials (in Scheme 2). First, different aldehydes were tested. The results showed
that different substituents on the aryl aldehydes exhibited good performance, affording
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compounds 6a–6e with 62–78% yield, and the electronic properties of the substituent did not
impact the reactivity. Strikingly, when heterocyclic aldehydes and aliphatic aldehydes were
used as input in the Ugi reaction, compounds 6f and 6g were also obtained, with 53% and
62% yields, respectively. Next, different isocyanides were used as Ugi inputs, and the results
showed that the corresponding indazolo-quinoxalines 6i–6h were generated smoothly
with a 56–76% yield. The substituents of the benzene of aniline were also investigated for
obtaining compounds 6m–6q. Further investigations of the substituents on carboxyindazole
revealed that different substituents didn’t make a significant difference in the reaction yield.
The Cl- or Me-substituted carboxyindazoles were involved in the protocol, and the products
6r–6u were obtained in 76–85% yields. It is worth noting that when formaldehyde was
used, the product 6v was obtained with a 77% yield. All the results showed that a variety
of different starting materials were successfully employed under the optimized conditions
for the construction of structurally diverse indazolo-quinoxalines 6a–6v, with yields in the
range of 53–78% (Scheme 2), indicating a good functional group tolerance.
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Scheme 2. Scope of the Ugi/Ullmann reaction route leading to indazolo-quinoxaline derivatives
6a–6v a. a Reaction conditions: 1 (1.0 mmol), 2 (1.0 mmol), 3 (1.0 mmol), and 4 (1.0 mmol) in MeOH
(2.0 mL) under air. After the solvent removed, added K2CO3 (2.0 mmol), CuI (0.1 mmol), and TMEDA
(0.2 mmol) in DMF (5.0 mL) under microwave irradiation at 150 ◦C for 30 min. Overall yield of
isolated product.
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To extend the application of the synthesized compound in medical chemistry for
developing a drug lead from compounds 6, the antiproliferative effect of compounds 6
was evaluated in several human cancer cell lines. To our delight, a significant cell growth
inhibitory effect was observed, especially compound 6e, which exhibited better anticancer
activities in the human colorectal cancer HCT116 cell lines than other cell lines (Figure 2). It
is worth noting that compounds 6e, 6h, and 6i showed excellent anticancer activities, with
IC50 of 2.1 µM, 2.7 µM, and 2.8 µM, respectively (Figure 3), which is comparable to 36.80
for etoposide, as reported in our previous work [44]. Further efforts are ongoing to explore
the mechanism of action of drug leads and optimize their potency and drug properties.
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Figure 2. Anticancer activities of compounds 6a–v against different cancer cell lines. All MTT assays
were repeated three times using six samples per assay. Proliferation inhibition activity of compounds
6a–v was assessed by MTT in breast cancer cells (MDA-MB-453), liver cancer cells (Hep3B), and colon
cells (HCT116). These cells were treated with compounds 6 at 10 µM for 48 h, respectively, then cell
viability was measured.
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mined in HCT116, MDA-MB-453, and Hep3B cell lines.
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3. Materials and Methods
3.1. General Information

1H and 13C NMR data were recorded on a Bruker (Billerica, MA, USA) 400 spectrome-
ter. 1H NMR data are reported as follows: chemical shift in ppm (δ), multiplicity (s = singlet,
d = doublet, t = triplet, m = multiplet), coupling constant (Hz), relative intensity. 13C NMR
data are reported as follows: chemical shift in ppm (δ). HPLC-MS analyses were performed
on a Shimadzu-2020 LC-MS instrument (Kyoto City, Japan) using the following conditions:
Shim-pack VPODS C18 column (reverse phase, 150 × 2.0 mm); 80% acetonitrile and 20%
water over 6.0 min; flow rate of 0.4 mL/min; UV photodiode array detection from 200 to
300 nm. The products were purified using Biotage (Uppsala, Sweden) Isolera™ Spektra Sys-
tems and hexane/EtOAc solvent systems. Unless otherwise specified, all chemicals were
purchased from commercial sources and used without further treatment. All microwave
irradiation experiments were carried out according to our previous report [44,45].

3.2. Cell Lines and Culture

The human tumor cells Hep3B, HCT116, and MDA-MB-453 were purchased from
the American Type Culture Collection (ATCC, Manassas, VA, USA). Hep3B cells were
cultured with MEM (Pricella, PM150410, Wuhan, China) and supplemented with 10%
fetal bovine serum (FBS, Gibco, 10100147, Waltham, MA, USA, Australian origin) and
1 mM sodium pyruvate (NaP). HCT116 cells were cultured in McCoy’s 5a medium (Gibco,
16600108, Waltham, MA, USA) supplemented with 10% FBS. MDA-MB-453 cells were
cultured with high-glucose DMEM medium (Hyclone, SH30022.01, Logan, UT, USA) with
10% FBS added. All used cells were incubated in an incubator at 37 ◦C and 5% CO2 in a
humidified atmosphere.

3.3. Cell Viability Assay

The cell viability and the IC50 value of compounds 6a–v in the human tumor cells were
evaluated using a 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT,
Beyotime, ST316, Shanghai, China) assay. Briefly, the tumor cells were harvested, counted,
and seeded into the 96-well plate, with a density of 2 × 103 cells per well. After incubation
for 24 h, 100 µL of medium with 20 µM compounds were added and incubated for 2 days
for the initial screening. To assess anticancer activity, 20 µL of MTT solution (5 mg/mL
in PBS) were added to each well and incubated for another 4 h. Then, the medium was
removed, and 200 µL of DMSO was added to each well to dissolve the formazan cystals.
The absorbance was measured at 570 nm using a microplate reader (Bio-Tek, Winooski, VT,
USA). The experiments were repeated three times, and growth inhibition curves and IC50
values were generated using GraphPad Prism 8.0.

3.4. General Procedure for Synthesis of Compounds 6a–v

Aldehyde (1.0 mmol, 1.0 eq.), MeOH (2 mL), and amine (1.0 mmol, 1.0 eq.) were
sequentially added to a 10 mL microwave vial and stirred for 10 min. under air. Then,
carboxylic acid (1.0 mmol, 1.0 eq.) and isocyanide (1.0 mmol, 1.0 eq.) were added separately.
The mixture was stirred for 6–12 h at room temperature and monitored with TLC. When
no isocyanide was present, the solvent was removed using rotary evaporation. The residue
was dissolved in DMF (5 mL) in a 10 mL microwave vial, then, K2CO3 (2.0 eq.), CuI
(20 mol%), and TMEDA (20 mol%) were added. The vial was sealed and heated in a
microwave at 150 ◦C for 30 min. The solvent was removed using rotary evaporation after
the reaction was completed. The residue was dissolved in EtOAc (15 mL) and washed with
brine. The EtOAc phase was dried over anhydrous Na2SO4 and concentrated. The residue
was purified using silica gel column chromatography using a gradient of EtOAc/hexane
(0–100%) to afford the relative product 6.

N-(tert-butyl)-2-(4-chlorophenyl)-2-(6-oxoindazolo[2,3-a]quinoxalin-5(6H)-yl)acetamide
(6a), purified by flash chromatography using a gradient of EtOAc/hexane (0–40%), white
solid, 289 mg, yield 62%. 1H NMR (400 MHz, CDCl3) δ 8.68 (dd, J = 7.8, 1.8 Hz, 1H), 8.38
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(d, J = 8.4 Hz, 1H), 8.00 (d, J = 8.7 Hz, 1H), 7.61–7.49 (m, 2H), 7.47–7.36 (m, 3H), 7.32 (q,
J = 8.9 Hz, 4H), 6.98 (s, 1H), 5.99 (s, 1H), 1.33 (s, 9H). 13C NMR (101 MHz, CDCl3) δ 166.50,
155.64, 149.05, 134.04, 132.56, 129.35, 129.27, 128.94, 128.30, 128.20, 125.23, 125.16, 124.51,
122.70, 121.85, 121.00, 118.47, 117.84, 117.73, 59.10, 52.24, 28.56. HRMS (ESI) m/z calcd. for
C26H24ClN4O2

+ (M + H)+ 459.1582, found 459.1580.
N-(tert-butyl)-2-(6-oxoindazolo[2,3-a]quinoxalin-5(6H)-yl)-2-phenylacetamide (6b), 1H

NMR (400 MHz, CDCl3) δ 8.66 (dd, J = 7.8, 1.9 Hz, 1H), 8.37 (d, J = 8.4 Hz, 1H), 7.98 (d,
J = 8.7 Hz, 1H), 7.60–7.51 (m, 2H), 7.46–7.27 (m, 8H), 6.94 (s, 1H), 6.02 (s, 1H), 1.35 (s, 9H).
13C NMR (101 MHz, CDCl3) δ 166.70, 155.70, 149.15, 134.16, 129.87, 128.97, 128.27, 128.09,
127.83, 125.17, 125.09, 124.28, 123.04, 121.94, 121.35 118.35, 117.79, 117.65, 60.54, 52.12, 28.57.
HRMS (ESI) m/z calcd. for C26H25N4O2

+ (M + H)+ 425.1972, found 425.1974.
N-(tert-butyl)-2-(6-oxoindazolo[2,3-a]quinoxalin-5(6H)-yl)-2-(p-tolyl)acetamide (6c),

1H NMR (400 MHz, CDCl3) δ 8.66 (d, J = 9.7 Hz, 1H), 8.39 (d, J = 8.4 Hz, 1H), 8.03–7.93 (m,
1H), 7.60–7.51 (m, 2H), 7.45–7.33 (m, 3H), 7.27–7.19 (m, 3H), 7.13 (d, J = 7.1 Hz, 1H), 6.85
(s, 1H), 5.98 (s, 1H), 2.31 (s, 3H), 1.35 (s, 9H). 13C NMR (101 MHz, CDCl3) δ 166.74, 155.69,
149.16, 138.87, 134.16, 130.02, 129.15, 128.88, 128.44, 128.09, 125.17, 125.05, 124.86, 124.22,
123.13, 121.94, 121.42, 118.26, 117.77, 60.81, 52.08, 28.58, 21.58. HRMS (ESI) m/z calcd. for
C27H27N4O2

+ (M + H)+ 439.2129, found 439.2129.
2-(4-Bromophenyl)-N-(tert-butyl)-2-(6-oxoindazolo[2,3-a]quinoxalin-5(6H)-yl)acetamide

(6d), 1H NMR (400 MHz, CDCl3) δ 8.67 (dd, J = 8.0, 1.7 Hz, 1H), 8.35 (d, J = 8.4 Hz, 1H),
7.99 (d, J = 8.7 Hz, 1H), 7.60–7.50 (m, 2H), 7.49–7.34 (m, 5H), 7.28 (s, 1H), 7.26 (s, 1H),
6.97 (s, 1H), 6.03 (s, 1H), 1.32 (s, 9H). 13C NMR (101 MHz, CDCl3) δ 166.33, 155.64, 149.18,
132.99, 131.92, 129.54, 129.33, 128.39, 128.25, 125.33, 125.20, 124.56, 122.79, 122.24, 121.99,
121.22, 118.39, 117.89, 117.78, 59.19, 52.24, 28.56. HRMS (ESI) m/z calcd. for C26H24BrN4O2

+

(M + H)+ 503.1077, found 503.1075.
N-(tert-butyl)-2-(4-methoxyphenyl)-2-(6-oxoindazolo[2,3-a]quinoxalin-5(6H)-yl)acetamide

(6e), 1H NMR (400 MHz, CDCl3) δ 8.68–8.59 (m, 1H), 8.38 (d, J = 8.4 Hz, 1H), 7.97 (d,
J = 8.7 Hz, 1H), 7.62–7.49 (m, 2H), 7.44–7.32 (m, 5H), 6.88 (d, J = 8.8 Hz, 2H), 6.81 (s,
1H), 5.96 (s, 1H), 3.78 (s, 3H), 1.35 (s, 9H). 13C NMR (101 MHz, CDCl3) δ 166.99, 159.43,
155.65, 149.13, 129.98, 129.36, 128.24, 128.08, 126.10, 125.17, 125.01, 124.19, 123.13, 121.90,
121.39, 118.10, 117.75, 117.66, 114.39, 60.37, 55.31, 52.05, 28.59. HRMS (ESI) m/z calcd. for
C27H27N4O3

+ (M + H)+ 455.2078, found 455.2086.
N-(tert-butyl)-2-(6-oxoindazolo[2,3-a]quinoxalin-5(6H)-yl)-2-(thiophen-2-yl)acetamide

(6f) 1H NMR (400 MHz, CDCl3) δ 8.69–8.62 (m, 1H), 8.39 (d, J = 8.4 Hz, 1H), 7.97 (d,
J = 8.7 Hz, 1H), 7.56 (ddd, J = 8.8, 4.9, 1.6 Hz, 2H), 7.46–7.37 (m, 3H), 7.32 (dd, J = 5.1, 1.1 Hz,
1H), 7.09 (d, J = 3.0 Hz, 1H), 6.94 (dd, J = 5.1, 3.7 Hz, 1H), 5.95 (s, 1H), 5.29 (s, 1H),1.33 (s,
9H). 13C NMR (101 MHz, CDCl3) δ 166.23, 155.20, 149.14, 135.75, 128.34, 128.09, 127.38,
126.49, 125.26, 124.44, 122.00, 121.28, 117.85, 53.45, 52.25, 28.52. HRMS (ESI) m/z calcd. for
C24H23N4O2S+ (M + H)+ 431.1536, found 431.1539.

N-(tert-butyl)-2-(6-oxoindazolo[2,3-a]quinoxalin-5(6H)-yl)-4-phenylbutanamide (6g),
1H NMR (400 MHz, CDCl3) δ 8.58 (dd, J = 8.1, 1.3 Hz, 1H), 8.30 (d, J = 8.4 Hz, 1H), 7.95 (d,
J = 8.7 Hz, 1H), 7.65 (d, J = 7.9 Hz, 1H), 7.58–7.52 (m, 1H), 7.51–7.46 (m, 1H), 7.45–7.36 (m,
2H), 6.94 (s, 5H), 6.27 (s, 1H), 5.87 (s, 1H), 2.80 (ddd, J = 21.6, 13.4, 7.2 Hz, 2H), 2.48 (dd,
J = 11.1, 6.1 Hz, 2H), 1.28 (s, 9H). 13C NMR (101 MHz, CDCl3) δ 168.93, 155.94, 149.01,
140.11, 128.29, 128.02, 127.99, 125.83, 125.22, 125.16, 124.42, 121.79, 121.04, 117.94, 117.80,
55.21, 51.82, 33.01, 28.55. HRMS (ESI) m/z calcd. for C28H29N4O2

+ (M + H)+ 453.2285,
found 453.2286.

2-(4-Chlorophenyl)-N-(2,6-dimethylphenyl)-2-(6-oxoindazolo[2,3-a]quinoxalin-5(6H)-
yl)acetamide (6h), 1H NMR (400 MHz, CDCl3) δ 8.67 (d, J = 8.0 Hz, 1H), 8.33 (d,
J = 8.3 Hz, 1H), 7.98 (d, J = 8.7 Hz, 1H), 7.68–7.52 (m, 3H), 7.49 (d, J = 8.4 Hz, 2H), 7.40
(ddd, J = 20.5, 10.5, 7.2 Hz, 5H), 7.22 (s, 1H), 7.04 (dt, J = 17.4, 6.6 Hz, 3H), 2.13 (s, 6H).
13C NMR (101 MHz, CDCl3) δ 165.72, 155.76, 149.19, 135.16, 134.41, 133.05, 132.14, 129.31,
128.47, 128.34, 127.64, 125.46, 125.31, 124.78, 122.69, 121.99, 121.13, 118.24, 117.96, 58.84,
18.47. HRMS (ESI) m/z calcd. for C30H24ClN4O2

+ (M + H)+ 507.1582, found 507.1572.



Molecules 2024, 29, 464 8 of 12

2-(4-Chlorophenyl)-2-(6-oxoindazolo[2,3-a]quinoxalin-5(6H)-yl)-N-(2,4,4-trimethylpentan-
2-yl)acetamide (6i), 1H NMR (400 MHz, CDCl3) δ 8.65 (d, J = 7.6 Hz, 1H), 8.34 (d, J = 8.4 Hz,
1H), 7.97 (d, J = 8.7 Hz, 1H), 7.55 (dd, J = 15.5, 7.6 Hz, 2H), 7.36 (ddd, J = 26.0, 16.2, 8.0 Hz,
7H), 6.97 (s, 1H), 6.11 (s, 1H), 1.64 (q, J = 15.0 Hz, 2H), 1.39 (d, J = 13.2 Hz, 6H), 0.80 (s, 9H).
13C NMR (101 MHz, CDCl3) δ 165.98, 155.55, 149.14, 134.04, 132.33, 129.36, 128.91, 128.36,
128.29, 125.28, 125.16, 124.56, 122.71, 121.93, 121.19, 118.37, 117.89, 117.77, 59.13, 56.19, 52.45,
31.50, 31.20, 28.85, 28.32. HRMS (ESI) m/z calcd. for C30H32ClN4O2

+ (M + H)+ 515.2208,
found 515.2210.

N-benzyl-2-(4-chlorophenyl)-2-(6-oxoindazolo[2,3-a]quinoxalin-5(6H)-yl)acetamide (6j)
1H NMR (400 MHz, CDCl3) δ 8.57 (dd, J = 7.9, 1.8 Hz, 1H), 8.10 (d, J = 8.4 Hz, 1H), 7.92 (d,
J = 8.7 Hz, 1H), 7.55–7.45 (m, 2H), 7.41–7.31 (m, 4H), 7.31–7.26 (m, 3H), 7.21–7.11 (m, 5H),
7.04 (s, 1H), 6.84 (t, J = 5.3 Hz, 1H), 4.55–4.42 (m, 2H). 13C NMR (101 MHz, CDCl3) δ 167.28,
155.65, 149.01, 137.50, 134.25, 132.08, 129.34, 129.18, 129.04, 128.61, 128.33, 127.72, 127.53,
125.32, 125.22, 124.58, 122.59, 121.79, 120.88, 118.13, 117.84, 117.80, 58.38, 44.08. HRMS (ESI)
m/z calcd. for C29H22ClN4O2

+ (M + H)+ 493.1426, found 493.1419.
2-(4-Chlorophenyl)-N-cyclohexyl-2-(6-oxoindazolo[2,3-a]quinoxalin-5(6H)-yl)acetamide

(6k), 1H NMR (400 MHz, CDCl3) δ 8.61 (d, J = 8.0 Hz, 1H), 8.21 (d, J = 8.3 Hz, 1H), 7.93
(d, J = 8.7 Hz, 1H), 7.57–7.48 (m, 2H), 7.42–7.25 (m, 7H), 7.03 (s, 1H), 6.36 (d, J = 7.6 Hz,
1H), 3.91–3.73 (m, 1H), 1.95 (d, J = 10.6 Hz, 1H), 1.72 (d, J = 11.9 Hz, 1H), 1.59 (dd, J = 35.6,
7.8 Hz, 3H), 1.38–1.20 (m, 2H), 1.19–1.09 (m, 1H), 1.01 (ddd, J = 14.9, 14.3, 4.2 Hz, 2H).
13C NMR (101 MHz, CDCl3) δ 166.32, 155.60, 149.03, 134.10, 132.40, 129.30, 128.96, 128.32,
128.25, 125.25, 125.16, 124.53, 122.67, 121.80, 121.00, 118.29, 117.84, 117.75, 58.58, 49.16, 32.69,
32.60, 25.34, 24.82, 24.75. HRMS (ESI) m/z calcd. for C28H26ClN4O2

+ (M + H)+ 485.1739,
found 485.1725.

N-butyl-2-(4-chlorophenyl)-2-(6-oxoindazolo[2,3-a]quinoxalin-5(6H)-yl)acetamide (6l),
1H NMR (400 MHz, CDCl3) δ 8.57 (d, J = 7.2 Hz, 1H), 8.16 (d, J = 8.3 Hz, 1H), 7.92 (d,
J = 8.7 Hz, 1H), 7.51 (dd, J = 14.9, 7.5 Hz, 2H), 7.40–7.26 (m, 7H), 7.01 (s, 1H), 6.57 (s, 1H),
3.23 (dd, J = 13.3, 6.6 Hz, 2H), 1.46–1.35 (m, 2H), 1.28–1.13 (m, 2H), 0.80 (t, J = 7.3 Hz, 3H).
13C NMR (101 MHz, CDCl3) δ 167.23, 155.63, 148.99, 134.13, 132.30, 129.33, 128.97, 128.32,
125.25, 125.16, 124.53, 122.62, 121.73, 120.88, 118.19, 117.84, 117.74, 58.45, 39.88, 31.27, 19.99,
13.66. HRMS (ESI) m/z calcd. for C26H24ClN4O2

+ (M + H)+ 459.1582, found 459.1571.
N-(tert-butyl)-2-(2-chloro-6-oxoindazolo[2,3-a]quinoxalin-5(6H)-yl)-2-(4-chlorophenyl)

acetamide (6m), 1H NMR (400 MHz, CDCl3) δ 8.63 (d, J = 2.1 Hz, 1H), 8.28 (d, J = 8.4 Hz,
1H), 7.95 (d, J = 8.7 Hz, 1H), 7.59–7.53 (m, 1H), 7.50 (d, J = 9.1 Hz, 1H), 7.44–7.38 (m, 1H),
7.34–7.25 (m, 5H), 7.02 (s, 1H), 6.15 (s, 1H), 1.34 (s, 9H). 13C NMR (101 MHz, CDCl3) δ
166.21, 155.40, 149.31, 134.25, 132.27, 130.30, 129.11, 129.08, 128.71, 128.12, 127.80, 125.78,
125.64, 122.76, 122.01, 121.11, 120.06, 117.97, 117.57, 58.86, 52.37, 28.59. HRMS (ESI) m/z
calcd. for C26H23Cl2N4O2

+ (M + H)+ 493.1193, found 493.1186.
2-(2-Bromo-6-oxoindazolo[2,3-a]quinoxalin-5(6H)-yl)-N-(tert-butyl)-2-(4-chlorophenyl)

acetamide (6n), 1H NMR (400 MHz, CDCl3) δ 8.73 (d, J = 1.2 Hz, 1H), 8.16 (d, J = 8.4 Hz,
1H), 7.90 (d, J = 8.7 Hz, 1H), 7.55–7.49 (m, 1H), 7.44 (dd, J = 13.4, 5.2 Hz, 2H), 7.38–7.25 (m,
5H), 7.04 (s, 1H), 6.32 (s, 1H), 1.34 (s, 9H). 13C NMR (101 MHz, CDCl3) δ 166.24, 155.39,
149.20, 136.73, 134.23, 132.33, 130.94, 129.09, 128.66, 128.27, 125.93, 125.59, 122.67, 121.90,
120.94, 120.42, 120.34, 117.92, 117.52, 87.50, 58.84, 52.38, 28.60. HRMS (ESI) m/z calcd. for
C26H23BrClN4O2

+ (M + H)+ 537.0687, found 537.0678.
2-(3-Bromo-6-oxoindazolo[2,3-a]quinoxalin-5(6H)-yl)-N-(tert-butyl)-2-(4-chlorophenyl)

acetamide (6o), 1H NMR (400 MHz, CDCl3) δ 8.51 (d, J = 8.7 Hz, 1H), 8.34 (d, J = 8.4 Hz,
1H), 7.96 (d, J = 8.7 Hz, 1H), 7.67 (s, 1H), 7.59–7.54 (m, 1H), 7.51 (d, J = 8.8 Hz, 1H), 7.46–7.41
(m, 1H), 7.37 (s, 4H), 6.83 (s, 1H), 5.91 (s, 1H), 1.37 (s, 9H). 13C NMR (101 MHz, CDCl3) δ
165.82, 155.33, 149.24, 134.62, 132.27, 130.59, 129.37, 128.59, 127.47, 125.54, 124.17, 122.68,
122.06, 121.78, 121.19, 120.76, 119.04, 117.88, 59.96, 52.38, 28.55. HRMS (ESI) m/z calcd. for
C26H23BrClN4O2

+ (M + H)+ 537.0687, found 537.0685.
N-(tert-butyl)-2-(2-methyl-6-oxoindazolo[2,3-a]quinoxalin-5(6H)-yl)-2-phenylacetamide

(6p), 1H NMR (400 MHz, CDCl3) δ 8.47 (d, J = 1.0 Hz, 1H), 8.36 (dd, J = 8.4, 0.9 Hz,
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1H), 7.97 (d, J = 8.7 Hz, 1H), 7.58–7.50 (m, 1H), 7.46–7.38 (m, 4H), 7.38–7.27 (m, 3H), 7.15 (dd,
J = 8.7, 1.5 Hz, 1H), 6.97 (s, 1H), 6.06 (s, 1H), 2.47 (s, 3H), 1.34 (s, 9H). 13C NMR (101 MHz,
CDCl3) δ 166.78, 155.60, 149.10, 134.61, 134.25, 129.13, 128.90, 128.24, 128.17, 127.81, 127.56,
124.97, 124.93, 123.10, 121.91, 121.37, 118.32, 117.68, 117.55, 60.21, 52.09, 28.59, 20.82. HRMS
(ESI) m/z calcd. for C27H27N4O2

+ (M + H)+ 439.2129, found 439.2127.
N-(tert-butyl)-2-(3-chloro-6-oxoindazolo[2,3-a]quinoxalin-5(6H)-yl)-2-phenylacetamide

(6q), 1H NMR (400 MHz, CDCl3) δ 8.58 (dd, J = 8.8, 1.2 Hz, 1H), 8.37 (dd, J = 8.4, 1.1 Hz,
1H), 7.96 (d, J = 8.7 Hz, 1H), 7.60–7.50 (m, 2H), 7.46–7.31 (m, 7H), 6.81 (s, 1H), 5.91 (s, 1H),
1.38 (s, 9H). 13C NMR (101 MHz, CDCl3) δ 166.15, 155.49, 149.23, 133.93, 133.91, 130.96,
129.33, 128.73, 128.47, 127.95, 125.33, 124.37, 123.78, 122.84, 122.02, 121.32, 118.77, 118.04,
117.80, 61.13, 52.26, 28.55. HRMS (ESI) m/z calcd. for C26H24ClN4O2

+ (M + H)+ 459.1582,
found 459.1557.

N-(tert-butyl)-2-(9-chloro-6-oxoindazolo[2,3-a]quinoxalin-5(6H)-yl)-2-phenylacetamide
(6r), 1H NMR (400 MHz, CDCl3) δ 8.55 (dd, J = 6.2, 3.5 Hz, 1H), 8.17 (d, J = 8.8 Hz, 1H),
7.90–7.84 (m, 1H), 7.56 (dd, J = 6.2, 3.4 Hz, 1H), 7.45–7.29 (m, 7H), 7.25 (dd, J = 5.1, 1.8 Hz,
1H), 6.92 (s, 1H), 6.19 (s, 1H), 1.34 (s, 9H). 13C NMR (101 MHz, CDCl3) δ 166.59, 155.42,
149.22, 134.17, 134.13, 129.94, 129.06, 128.42, 128.32, 127.88, 126.28, 124.92, 124.39, 123.33,
122.39, 120.13, 118.40, 117.66, 116.85, 60.78, 52.17, 28.58. HRMS (ESI) m/z calcd. for
C26H24ClN4O2

+ (M + H)+ 459.1582, found 459.1583.
N-(tert-butyl)-2-(9-chloro-2-methyl-6-oxoindazolo[2,3-a]quinoxalin-5(6H)-yl)-2-

phenylacetamide (6s), 1H NMR (400 MHz, CDCl3) δ 8.49 (d, J = 8.4 Hz, 1H), 8.28 (d,
J = 8.8 Hz, 1H), 7.93 (d, J = 1.1 Hz, 1H), 7.45–7.31 (m, 7H), 7.21 (d, J = 8.4 Hz, 1H), 6.80 (s,
1H), 5.94 (s, 1H), 2.37 (s, 3H), 1.35 (s, 9H). 13C NMR (101 MHz, CDCl3) δ 166.54, 155.44,
149.21, 139.05, 134.13, 134.04, 130.03, 129.08, 128.46, 127.95, 126.17, 125.50, 123.14, 122.92,
122.52, 120.21, 118.00, 117.57, 116.77, 61.16, 52.11, 28.53, 21.81. HRMS (ESI) m/z calcd. for
C27H26ClN4O2

+ (M + H)+ 473.1739, found 473.1733.
N-benzyl-2-(3-bromophenyl)-2-(9-chloro-6-oxoindazolo[2,3-a]quinoxalin-5(6H)-yl)

acetamide (6t), 1H NMR (400 MHz, CDCl3) δ 8.56–8.48 (m, 1H), 7.90–7.82 (m, 2H), 7.57
(s, 1H), 7.51–7.42 (m, 2H), 7.41–7.35 (m, 2H), 7.24 (s, 1H), 7.20–7.09 (m, 7H), 6.99 (s, 2H),
4.54–4.41 (m, 2H). 13C NMR (101 MHz, CDCl3) δ 166.89, 155.38, 149.12, 137.42, 135.73,
134.29, 131.59, 130.97, 130.38, 129.17, 128.66, 128.59, 127.73, 127.55, 126.57, 126.38, 125.01,
124.81, 123.05, 122.83, 121.83, 119.97, 118.22, 117.88, 116.96, 58.45, 44.13. HRMS (ESI) m/z
calcd. for C29H21BrClN4O2

+ (M + H)+ 571.0531, found 571.0534.
N-(tert-butyl)-2-(8-methyl-6-oxoindazolo[2,3-a]quinoxalin-5(6H)-yl)-2-phenylacetamide

(6u), 1H NMR (400 MHz, CDCl3) δ 8.62 (dd, J = 7.9, 1.6 Hz, 1H), 8.14 (s, 1H), 7.87 (d,
J = 8.8 Hz, 1H), 7.55 (dd, J = 8.0, 1.2 Hz, 1H), 7.37 (ddt, J = 18.2, 10.2, 7.2 Hz, 8H), 6.91 (s,
1H), 6.02 (s, 1H), 2.54 (s, 3H), 1.35 (s, 9H). 13C NMR (101 MHz, CDCl3) δ 166.79, 155.85,
148.07, 135.20, 134.22, 131.12, 129.75, 128.93, 128.22, 127.87, 127.83, 125.32, 124.22, 122.33,
122.25, 119.64, 118.29, 117.48, 117.43, 60.51, 52.08, 28.58, 22.00. HRMS (ESI) m/z calcd. for
C27H27N4O2

+ (M + H)+ 439.2129, found 439.2119.
N-benzyl-2-(6-oxoindazolo[2,3-a]quinoxalin-5(6H)-yl)acetamide (6v), 1H NMR

(400 MHz, DMSO-d6) δ 8.76 (s, 1H), 8.58 (d, J = 7.3 Hz, 1H), 8.27 (d, J = 7.5 Hz, 1H),
8.00 (d, J = 7.9 Hz, 1H), 7.71–7.40 (m, 5H), 7.38–7.14 (m, 5H), 5.10 (s, 2H), 4.31 (s, 2H). 13C
NMR (101 MHz, DMSO-d6) δ 167.08, 154.93, 148.74, 139.52, 131.13, 129.47, 128.73, 127.56,
127.30, 125.24, 124.66, 124.45, 123.68, 121.21, 121.18, 118.05, 117.43, 116.72, 44.74, 42.62.
HRMS (ESI) m/z calcd. for C23H19N4O2

+ (M + H)+ 383.1503, found 383.1487.

4. Conclusions

In summary, we developed a facile and efficient methodology for the construction of
an indazole-fused polyheterocycle using a unique Ugi/Ullmann cascade reaction strategy.
With this protocol, complex functionalized indazolo-quinoxaline derivatives were obtained
in good to excellent yields in one pot, with excellent functional group tolerance. Anti-
cancer activity evaluation revealed that the synthesized new compounds show potential
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anticancer activities that may have a wide range of applications in organic synthesis and
medicinal chemistry.
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