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Abstract: An efficient approach to the synthesis of olefin metathesis HG‑type catalysts containing
an N→Ru bond in a six‑membered chelate ring was proposed. For the most part, these ruthenium
chelates can be prepared easily and in high yields based on the interaction between 2‑vinylbenzylamines
and Ind II (the common precursor for Ru‑complex synthesis). It was demonstrated that the increase
of the steric volume of substituents attached to the nitrogen atom and in the α‑position of the benzyli‑
dene fragment leads to a dramatic decrease in the stability of the target ruthenium complexes. The
bulkiest iPr substituent bonded to the nitrogen atom or to the α‑position does not allow the closing
of the chelate cycle. N,N‑Diethyl‑1‑(2‑vinylphenyl)propan‑1‑amine is a limiting case; its interaction
with Ind II makes it possible to isolate the corresponding ruthenium chelate in a low yield (5%).
Catalytic activity of the synthesized complexes was tested in RCM reactions and compared with
α‑unsubstituted catalysts obtained previously. The structural peculiarities of the final ruthenium
complexes were thoroughly investigated using XRD and NMR analysis, which allowed making a
reliable correlation between the structure of the complexes and their catalytic properties.

Keywords: ruthenium complexes; Hoveyda‑Grubbs‑type catalysts; ring‑closing metathesis (RCM);
nitrogen‑ruthenium coordinate bond; six‑membered chelate cycle; [1,3‑bis(2,4,6‑trimethylphenyl)im
idazolidin‑2‑ylidene](dichloro)[benzylidene]ruthenium

1. Introduction
In the last decade of the 20th century, the olefin metathesis took a worthy place among

the most important reactions of organic chemistry and in industrial processes [1]. To date,
along with common Hoveyda–Grubbs (HG) catalysts with a coordination bond O→Ru in a
five‑membered cycle, their heteroanalogues containing S→Ru, P→Ru, and N→Ru chelate
bonds have been described.

The history of nitrogen‑containing ruthenium derivatives including a six‑membered
chelate cycle began in 2000, when Van Der Scaaf proposed a simple synthesis of 2‑pyridylet
hanyl substituted ruthenium carbene complexes [2]. Afterwards, in 2004, the highly‑reactive
ruthenium complexes suitable for different metathesis reactions were obtained by Schrodi, who
was the first to introduce an N‑heterocyclic carbene ligand into the structure of six‑membered
N→Ru chelates [3]. Since then, changes of substituents around the heteroatom [4–11], the fine
tuning of NHC ligands [6,12–16], and the introduction of different functional groups into
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the benzylidene moiety of the chelate ring have become the main directions of improve‑
ment of practical and useful properties of aza‑HG‑type catalysts [8,9,14,15,17–19]. For ex‑
ample, such types of ruthenium derivatives were successfully applied in the synthesis of
natural compounds [20,21] and for stereoselective CM reactions [22–25].

Although the HG‑catalysts containing an O→Ru bond in a five‑membered chelate
cycle remain among the most popular, both in synthetic practice and in industry [26,27],
nitrogen‑bearing ruthenium complexes begin to play an increasingly prominent role. For
instance, at the beginning of the 21st century, the third‑generation Grubbs catalysts (like
G‑III‑Br, Figure 1) were implemented in laboratory practice. It should also be mentioned
that six‑membered N→Ru complexes are successfully used not only in fine synthesis for
RCM and ROMP reactions [28–33], but they have also been recently patented for commer‑
cial use including oil refining, gasoline reforming, and as catalysts for metathesis polymer‑
ization of dicyclopentadiene (DCPD) [34–38].
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of an α-position relative to the nitrogen atom in a benzylidene moiety [28,29,34–36] (see 
the bottom row in Figure 1). In the previous communications [28,29], it had been proved 
that catalytic properties of these N→Ru chelates are closely dependent on the steric vol-
ume of substituents surrounding the donating nitrogen atom (in Figure 1, the three most 
active catalytic complexes are shown). As a rule, with an increase in the volume of N-
substituents, the catalytic activity increased, but the stability of the complexes fell. 
Thereby, this work is the logical continuation of our previous articles [28,29]; in particular, 
here we investigate the influence of the volume of the substituent in the α-position (Figure 
1) on the possibility of the closing of the N→Ru chelate ring, as well as on the catalytic 

Figure 1. N–Rucomplexes that are closest to this study (the top row [8,37,38], the bottomrow [28,29,36]).

Despite the fact that the six‑membered N‑ruthenium chelates are less popular in com‑
parison with their five‑membered homologues, they have some important advantages. In
particular, they possess an additional site for structural modification due to the presence of
an α‑position relative to the nitrogen atom in a benzylidene moiety [28,29,34–36] (see the
bottom row in Figure 1). In the previous communications [28,29], it had been proved that
catalytic properties of these N→Ru chelates are closely dependent on the steric volume of
substituents surrounding the donating nitrogen atom (in Figure 1, the three most active cat‑
alytic complexes are shown). As a rule, with an increase in the volume of N‑substituents,
the catalytic activity increased, but the stability of the complexes fell. Thereby, this work is
the logical continuation of our previous articles [28,29]; in particular, here we investigate
the influence of the volume of the substituent in the α‑position (Figure 1) on the possibility
of the closing of the N→Ru chelate ring, as well as on the catalytic properties of the result‑
ing N→Ru complexes. In the beginning of this work, it was planned to introduce methyl,
ethyl, isopropyl, and tert‑butyl substituents into the α‑position, simultaneously varying
the volume of the radicals at the nitrogen atom.
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2. Results and Discussion
2.1. Synthesis of the Initial 2‑vinylbenzylamines 1, 2, and 3

In the beginning, we needed to synthesize the nitrogen‑containing ligands for the as‑
sembly of the benzylidene unit of the Ru‑complexes (Schemes 1–3). Based on the available
starting compounds, two close synthetic routes to the target 2‑vinyl benzylamines (1–3)
have been developed. Note that both methods can be used on an industrial scale.
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Synthesis of styrenes 1 and 2 was carried out by acylation of inexpensive phenethy‑
lamine, followed by the Bischler–Napieralski cyclization of the obtained amides [39]. The
resulting 1‑methyl and 1‑isopropyl‑3,4‑dihydroisoquinolines were sequentially alkylated
with dialkyl sulfates and reduced to give the corresponding 1‑methyl and 1‑isopropyl‑N‑
methyl‑1,2,3,4‑tetrahydroisoquinolines (THQs) [29]. Further, the repeated quaternization
of the nitrogen atom was carried out, followed by one‑pot with the Hofmann cleavage
(Scheme 1) [28,40]. The total yields of styrenes 1a–c and 2a–c obtained according to this
approach were 42–56% based on the initial phenethylamine. Yields of 1 and 2 after the last
two stages are given in Table 1 (based on 1‑alkyl‑3,4‑dihydroisoquinolines).

Interestingly, the above‑described method proved to be unsuitable for obtaining the
N‑isopropyl substituted benzylamines, similar to 1e (Scheme 2). Presumably, this is due to
a significant steric volume of the iPr group and the N‑alkylation step passes in a low yield.
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Table 1. Structures and yields of styrenes 1a–d, 2a–c, 3a–d.

Entry 1 Yield of 1, % 2 Yield of 2, % 3 Yield of 3, %

a
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Advantages of the styrene synthesis, proposed in Scheme 1, lie not only in the avail‑
ability of the initial and auxiliary reagents but also in the scalability of all stages, which do
not include the use of absolute or highly toxic reagents. In other words, this method is op‑
timal from the point of view of the industrial synthesis of HG‑catalysts. On the other hand,
more suitable reagents are available for laboratory synthesis that enable the reduction in
the number of stages.

An alternative synthetic approach has been elaborated on for the preparation of α‑
ethyl substituted styrenes 3 (Scheme 3). In this process, available 3,4‑dihydroisoquinoline
was quaternized according to a standard procedure [29] to giveN‑alkyl‑3,4‑dihydroisoquin
oline salts. The second C‑alkylation of the C=N double bond by the Grignard reagent leads
to the corresponding THQs. The last ones were introduced in two successive one‑pot steps,
the alkylation and the Hofmann cleavage, to form the target 2‑aminomethylstyrenes 3a–c
in overall yields greater than 60% (Table 1) [28,40]. The total yields of 3a–c after all steps,
according to Scheme 2, were 68–75% based on 3,4‑dihydroisoquinoline.

The last two styrenes, 1d and 3d, possessing a morpholine fragment were obtained us‑
ing the third synthetic approach presented in Scheme 4. After N‑protection, α‑alkylation,
and the deprotection of N‑Boc‑THQ, the intermediate 1‑R3‑substituted THQs were quat‑
ernized with 1‑chloro‑2‑(2‑chloroethoxy)ethane. The one‑pot Hofmann reaction completed
the sequence andprovided the target benzylamines 1dand3d in goodyields (Table 1) [40,41].
The total reaction yields of 1d and 3d based on 1,2,3,4‑tetrahydroisoquinoline were 85 and
81%, respectively.

Thus, all approaches to the synthesis of styrenes 1–3 shown in Schemes 1, 3 and 4
complement each other. Depending on the substituents needed and the available starting
reagents, a chemist can choose the most convenient route.

After purification with column chromatography, all 2‑vinylbenzylamines 1–3 were
obtained as yellowish oily liquids.
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2.2. Synthesis of Ruthenium Complexes
For the synthesis of metallo‑complexes, ligands 1–3 obtained in the first section were

introduced into the reaction with precursor Ind II [28,42,43] and were frequently used for
preparation of ruthenium chelates (Scheme 5). Boiling toluene turned out to be a good sol‑
vent for the preparation ofα‑methyl‑substituted 4a–c, but the yields of the other ruthenium
derivatives 4–6 were unsatisfactory under the same conditions. Therefore, the conditions
were optimized with varying solvents, temperature, and duration of synthesis (see the ESI).
A mixture of toluene/heptane in the V/V ratio of 1:5 at 110 ◦C proved to be the best medium
for the synthesis of the compounds 4d and 5a–d (Scheme 5). Under both mentioned condi‑
tions, a complex was completed in less than 1.5 h (Table 2). Catalysts 4a–c and 5a–c, with
α‑methyl orα‑ethyl group, usually precipitated from solutions after cooling of the reaction
mixtures to −20 ◦C (for detailed information, see the ESI).
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It should be noted that we were not able to isolate the ruthenium complexes 6 (Table 2)
synthesized on the base of α‑isopropyl benzylamines 2a–c (Table 1). Although they prob‑
ably exist in solutions, which is confirmed with TLC, they appear as bright green spots on
a chromatographic plate. These complexes are poorly crystallized after cooling of the re‑
action mixtures, and the resulting precipitates are soluble even in ice‑cold pentane. After
numerous attempts, we could not isolate the target isopropyl‑substituted chelates 6 in a
pure form.

According to previously publisheddata [28,29], the morpholine‑containing ruthenium
complex N‑Morph (see Figure 1) exhibits one of the best activities towards metathesis re‑
actions. To improve these useful properties, in this work, we inserted a substituent in the
α‑position of the morpholine‑substituted ruthenium chelate. We assumed that the steric
volume of any substituent R3 next to the ruthenium atom will loosen the N→Ru donor‑
acceptor bond, and that should help to increase catalytic properties. Formation of chelates
4d and 5d proceeded faster than similar transformations, providing analogues 4a–c and
5a–c (Scheme 5, Table 2).
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Table 2. Structures and yields of ruthenium complexes 4a–d, 5a–d.

Entry 4 Solvent,
Time

Yield of
4, % 5 Solvent,

Time
Yield of
5, % 6 Solvent,

Time
Yield of
6, %

a

Molecules 2023, 28, x FOR PEER REVIEW 6 of 17 
 

 

Table 2. Structures and yields of ruthenium complexes 4a–d, 5a–d. 

Entry 4 Solvent, 
Time 

Yield 
of 4, % 

5 Solvent, 
Time 

Yield of 
5, % 

6 Solvent, 
Time 

Yield of 
6, % 

a 

 

PhMe, 
1.5 h 

78 
 

X-ray* 

 

PhMe/ 
heptane 

(1:5), 
40 min 

74 
 

X-ray* 

 

PhMe/ 
heptane 

(1:5), 
0.5–2 h 

0 
 

b 

 

PhMe, 
1.5 h 

79 
 

X-ray* 

 

PhMe/ 
heptane 

(1:5), 
40 min 

58 
 

X-ray* 

 

PhMe/ 
heptane 

(1:5), 
0.5–2 h 

0 
 

c 

 

PhMe, 
1.5 h 

71 
 

X-ray* 

 

PhMe/ 
heptane 

(1:5), 
0.5–2 h 

5 
 

 

PhMe/ 
heptane 

(1:5), 
0.5–2 h 

0 
 

d 

PhMe/ 
heptane 

(1:5), 
40 min 

80 
 

PhMe/ 
heptane 

(1:5), 
40 min 

77 
 

X-ray* 

—the corresponding ruthenium 
complex can be synthesized 

—the corresponding ruthenium 
complex cannot be synthesized 

* XRD data were obtained for these compounds 

Complexes with methyl and ethyl groups in the α-position were isolated in good 
yields, except for 5c (Table 2). Attempts to change the solvent with absolute hexane, hep-
tane, benzene, toluene, or their mixtures did not lead to an increase in the yield of the 
target product. In the best cases, the yield of compound 5c did not exceed 5%. 

From the data of Table 2, it can be concluded that ruthenium chelates 6 with an iso-
propyl group in the α-position are unstable and could not be isolated in any case (even 
N,N-dimethyl substituted 6a cannot be synthesized). Presumably, the simultaneous pres-
ence of three ethyl groups in the benzylidene moiety of the complex 5c was the limiting 
case for the closing of the chelate ring. With a high probability, more sterically-loaded 
coordination compounds of type 4, 5 could not be assembled.  

All catalysts 4a–d, 5a–d were obtained as emerald green powders. The majority of 
them crystallized readily from a mixture of heptane/dichloromethane or chloroform/di-
chloromethane, with the formation of well-shaped crystals. An exception was catalyst 5c, 
which, in contrast to the others, was fairly soluble in nonpolar solvents, such as pentane 
and hexane. In this regard, this substance is quite difficult to isolate in a pure from. 

The structure of compounds 4–5 were established using NMR and, in the cases of 
4a,b,c, and 5a,b,d, using XRD analysis. The most well-defined signals of the key Ru=CH 
fragment were observed in the range of δ 18.70–19.10 ppm in 1H NMR and 312–324 ppm 
in 13C NMR spectra. Such downfield shifts are usual for chelates with a coordinating 
N→Ru bond [8,28,29,36] and are explained by the strong polarization of the Ru=C bond 
towards the metal atom. Otherwise, the obtained NMR spectra do not differ from those 
already described earlier for homologues [28,29]. It should be noted that the signals of the 
mesityl fragments (Mes) in both the proton and carbon spectra in some compounds turn 
out to be strongly broadened due to a slow rotation of the Mes-moieties around the C–N 
bond. To overcome this difficulty, the spectra of such ruthenium derivatives were addi-
tionally recorded in dichloromethane (CD2Cl2). 
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Table 2. Structures and yields of ruthenium complexes 4a–d, 5a–d. 

Entry 4 Solvent, 
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Time 
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0.5–2 h 
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(1:5), 
0.5–2 h 
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PhMe/ 
heptane 

(1:5), 
40 min 

80 
 

PhMe/ 
heptane 

(1:5), 
40 min 

77 
 

X-ray* 

—the corresponding ruthenium 
complex can be synthesized 

—the corresponding ruthenium 
complex cannot be synthesized 

* XRD data were obtained for these compounds 

Complexes with methyl and ethyl groups in the α-position were isolated in good 
yields, except for 5c (Table 2). Attempts to change the solvent with absolute hexane, hep-
tane, benzene, toluene, or their mixtures did not lead to an increase in the yield of the 
target product. In the best cases, the yield of compound 5c did not exceed 5%. 

From the data of Table 2, it can be concluded that ruthenium chelates 6 with an iso-
propyl group in the α-position are unstable and could not be isolated in any case (even 
N,N-dimethyl substituted 6a cannot be synthesized). Presumably, the simultaneous pres-
ence of three ethyl groups in the benzylidene moiety of the complex 5c was the limiting 
case for the closing of the chelate ring. With a high probability, more sterically-loaded 
coordination compounds of type 4, 5 could not be assembled.  

All catalysts 4a–d, 5a–d were obtained as emerald green powders. The majority of 
them crystallized readily from a mixture of heptane/dichloromethane or chloroform/di-
chloromethane, with the formation of well-shaped crystals. An exception was catalyst 5c, 
which, in contrast to the others, was fairly soluble in nonpolar solvents, such as pentane 
and hexane. In this regard, this substance is quite difficult to isolate in a pure from. 

The structure of compounds 4–5 were established using NMR and, in the cases of 
4a,b,c, and 5a,b,d, using XRD analysis. The most well-defined signals of the key Ru=CH 
fragment were observed in the range of δ 18.70–19.10 ppm in 1H NMR and 312–324 ppm 
in 13C NMR spectra. Such downfield shifts are usual for chelates with a coordinating 
N→Ru bond [8,28,29,36] and are explained by the strong polarization of the Ru=C bond 
towards the metal atom. Otherwise, the obtained NMR spectra do not differ from those 
already described earlier for homologues [28,29]. It should be noted that the signals of the 
mesityl fragments (Mes) in both the proton and carbon spectra in some compounds turn 
out to be strongly broadened due to a slow rotation of the Mes-moieties around the C–N 
bond. To overcome this difficulty, the spectra of such ruthenium derivatives were addi-
tionally recorded in dichloromethane (CD2Cl2). 
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40 min 
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(1:5), 
40 min 

77 
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X-ray* 

—the corresponding ruthenium 
complex can be synthesized 

—the corresponding ruthenium 
complex cannot be synthesized 

* XRD data were obtained for these compounds 

Complexes with methyl and ethyl groups in the α-position were isolated in good 
yields, except for 5c (Table 2). Attempts to change the solvent with absolute hexane, hep-
tane, benzene, toluene, or their mixtures did not lead to an increase in the yield of the 
target product. In the best cases, the yield of compound 5c did not exceed 5%. 

From the data of Table 2, it can be concluded that ruthenium chelates 6 with an iso-
propyl group in the α-position are unstable and could not be isolated in any case (even 
N,N-dimethyl substituted 6a cannot be synthesized). Presumably, the simultaneous pres-
ence of three ethyl groups in the benzylidene moiety of the complex 5c was the limiting 
case for the closing of the chelate ring. With a high probability, more sterically-loaded 
coordination compounds of type 4, 5 could not be assembled.  

All catalysts 4a–d, 5a–d were obtained as emerald green powders. The majority of 
them crystallized readily from a mixture of heptane/dichloromethane or chloroform/di-
chloromethane, with the formation of well-shaped crystals. An exception was catalyst 5c, 
which, in contrast to the others, was fairly soluble in nonpolar solvents, such as pentane 
and hexane. In this regard, this substance is quite difficult to isolate in a pure from. 

The structure of compounds 4–5 were established using NMR and, in the cases of 
4a,b,c, and 5a,b,d, using XRD analysis. The most well-defined signals of the key Ru=CH 
fragment were observed in the range of δ 18.70–19.10 ppm in 1H NMR and 312–324 ppm 
in 13C NMR spectra. Such downfield shifts are usual for chelates with a coordinating 
N→Ru bond [8,28,29,36] and are explained by the strong polarization of the Ru=C bond 
towards the metal atom. Otherwise, the obtained NMR spectra do not differ from those 
already described earlier for homologues [28,29]. It should be noted that the signals of the 
mesityl fragments (Mes) in both the proton and carbon spectra in some compounds turn 
out to be strongly broadened due to a slow rotation of the Mes-moieties around the C–N 
bond. To overcome this difficulty, the spectra of such ruthenium derivatives were addi-
tionally recorded in dichloromethane (CD2Cl2). 
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—the corresponding ruthenium 
complex can be synthesized 

—the corresponding ruthenium 
complex cannot be synthesized 

* XRD data were obtained for these compounds 

Complexes with methyl and ethyl groups in the α-position were isolated in good 
yields, except for 5c (Table 2). Attempts to change the solvent with absolute hexane, hep-
tane, benzene, toluene, or their mixtures did not lead to an increase in the yield of the 
target product. In the best cases, the yield of compound 5c did not exceed 5%. 

From the data of Table 2, it can be concluded that ruthenium chelates 6 with an iso-
propyl group in the α-position are unstable and could not be isolated in any case (even 
N,N-dimethyl substituted 6a cannot be synthesized). Presumably, the simultaneous pres-
ence of three ethyl groups in the benzylidene moiety of the complex 5c was the limiting 
case for the closing of the chelate ring. With a high probability, more sterically-loaded 
coordination compounds of type 4, 5 could not be assembled.  

All catalysts 4a–d, 5a–d were obtained as emerald green powders. The majority of 
them crystallized readily from a mixture of heptane/dichloromethane or chloroform/di-
chloromethane, with the formation of well-shaped crystals. An exception was catalyst 5c, 
which, in contrast to the others, was fairly soluble in nonpolar solvents, such as pentane 
and hexane. In this regard, this substance is quite difficult to isolate in a pure from. 

The structure of compounds 4–5 were established using NMR and, in the cases of 
4a,b,c, and 5a,b,d, using XRD analysis. The most well-defined signals of the key Ru=CH 
fragment were observed in the range of δ 18.70–19.10 ppm in 1H NMR and 312–324 ppm 
in 13C NMR spectra. Such downfield shifts are usual for chelates with a coordinating 
N→Ru bond [8,28,29,36] and are explained by the strong polarization of the Ru=C bond 
towards the metal atom. Otherwise, the obtained NMR spectra do not differ from those 
already described earlier for homologues [28,29]. It should be noted that the signals of the 
mesityl fragments (Mes) in both the proton and carbon spectra in some compounds turn 
out to be strongly broadened due to a slow rotation of the Mes-moieties around the C–N 
bond. To overcome this difficulty, the spectra of such ruthenium derivatives were addi-
tionally recorded in dichloromethane (CD2Cl2). 
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74 
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X-ray* 
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X-ray* 
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40 min 
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—the corresponding ruthenium 
complex can be synthesized 

—the corresponding ruthenium 
complex cannot be synthesized 

* XRD data were obtained for these compounds 

Complexes with methyl and ethyl groups in the α-position were isolated in good 
yields, except for 5c (Table 2). Attempts to change the solvent with absolute hexane, hep-
tane, benzene, toluene, or their mixtures did not lead to an increase in the yield of the 
target product. In the best cases, the yield of compound 5c did not exceed 5%. 

From the data of Table 2, it can be concluded that ruthenium chelates 6 with an iso-
propyl group in the α-position are unstable and could not be isolated in any case (even 
N,N-dimethyl substituted 6a cannot be synthesized). Presumably, the simultaneous pres-
ence of three ethyl groups in the benzylidene moiety of the complex 5c was the limiting 
case for the closing of the chelate ring. With a high probability, more sterically-loaded 
coordination compounds of type 4, 5 could not be assembled.  

All catalysts 4a–d, 5a–d were obtained as emerald green powders. The majority of 
them crystallized readily from a mixture of heptane/dichloromethane or chloroform/di-
chloromethane, with the formation of well-shaped crystals. An exception was catalyst 5c, 
which, in contrast to the others, was fairly soluble in nonpolar solvents, such as pentane 
and hexane. In this regard, this substance is quite difficult to isolate in a pure from. 

The structure of compounds 4–5 were established using NMR and, in the cases of 
4a,b,c, and 5a,b,d, using XRD analysis. The most well-defined signals of the key Ru=CH 
fragment were observed in the range of δ 18.70–19.10 ppm in 1H NMR and 312–324 ppm 
in 13C NMR spectra. Such downfield shifts are usual for chelates with a coordinating 
N→Ru bond [8,28,29,36] and are explained by the strong polarization of the Ru=C bond 
towards the metal atom. Otherwise, the obtained NMR spectra do not differ from those 
already described earlier for homologues [28,29]. It should be noted that the signals of the 
mesityl fragments (Mes) in both the proton and carbon spectra in some compounds turn 
out to be strongly broadened due to a slow rotation of the Mes-moieties around the C–N 
bond. To overcome this difficulty, the spectra of such ruthenium derivatives were addi-
tionally recorded in dichloromethane (CD2Cl2). 
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40 min 

58 
 

X-ray* 

 

PhMe/ 
heptane 

(1:5), 
0.5–2 h 

0 
 
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—the corresponding ruthenium 
complex can be synthesized 

—the corresponding ruthenium 
complex cannot be synthesized 

* XRD data were obtained for these compounds 

Complexes with methyl and ethyl groups in the α-position were isolated in good 
yields, except for 5c (Table 2). Attempts to change the solvent with absolute hexane, hep-
tane, benzene, toluene, or their mixtures did not lead to an increase in the yield of the 
target product. In the best cases, the yield of compound 5c did not exceed 5%. 

From the data of Table 2, it can be concluded that ruthenium chelates 6 with an iso-
propyl group in the α-position are unstable and could not be isolated in any case (even 
N,N-dimethyl substituted 6a cannot be synthesized). Presumably, the simultaneous pres-
ence of three ethyl groups in the benzylidene moiety of the complex 5c was the limiting 
case for the closing of the chelate ring. With a high probability, more sterically-loaded 
coordination compounds of type 4, 5 could not be assembled.  

All catalysts 4a–d, 5a–d were obtained as emerald green powders. The majority of 
them crystallized readily from a mixture of heptane/dichloromethane or chloroform/di-
chloromethane, with the formation of well-shaped crystals. An exception was catalyst 5c, 
which, in contrast to the others, was fairly soluble in nonpolar solvents, such as pentane 
and hexane. In this regard, this substance is quite difficult to isolate in a pure from. 

The structure of compounds 4–5 were established using NMR and, in the cases of 
4a,b,c, and 5a,b,d, using XRD analysis. The most well-defined signals of the key Ru=CH 
fragment were observed in the range of δ 18.70–19.10 ppm in 1H NMR and 312–324 ppm 
in 13C NMR spectra. Such downfield shifts are usual for chelates with a coordinating 
N→Ru bond [8,28,29,36] and are explained by the strong polarization of the Ru=C bond 
towards the metal atom. Otherwise, the obtained NMR spectra do not differ from those 
already described earlier for homologues [28,29]. It should be noted that the signals of the 
mesityl fragments (Mes) in both the proton and carbon spectra in some compounds turn 
out to be strongly broadened due to a slow rotation of the Mes-moieties around the C–N 
bond. To overcome this difficulty, the spectra of such ruthenium derivatives were addi-
tionally recorded in dichloromethane (CD2Cl2). 
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(1:5), 
40 min 
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X-ray* 

—the corresponding ruthenium 
complex can be synthesized 

—the corresponding ruthenium 
complex cannot be synthesized 

* XRD data were obtained for these compounds 

Complexes with methyl and ethyl groups in the α-position were isolated in good 
yields, except for 5c (Table 2). Attempts to change the solvent with absolute hexane, hep-
tane, benzene, toluene, or their mixtures did not lead to an increase in the yield of the 
target product. In the best cases, the yield of compound 5c did not exceed 5%. 

From the data of Table 2, it can be concluded that ruthenium chelates 6 with an iso-
propyl group in the α-position are unstable and could not be isolated in any case (even 
N,N-dimethyl substituted 6a cannot be synthesized). Presumably, the simultaneous pres-
ence of three ethyl groups in the benzylidene moiety of the complex 5c was the limiting 
case for the closing of the chelate ring. With a high probability, more sterically-loaded 
coordination compounds of type 4, 5 could not be assembled.  

All catalysts 4a–d, 5a–d were obtained as emerald green powders. The majority of 
them crystallized readily from a mixture of heptane/dichloromethane or chloroform/di-
chloromethane, with the formation of well-shaped crystals. An exception was catalyst 5c, 
which, in contrast to the others, was fairly soluble in nonpolar solvents, such as pentane 
and hexane. In this regard, this substance is quite difficult to isolate in a pure from. 

The structure of compounds 4–5 were established using NMR and, in the cases of 
4a,b,c, and 5a,b,d, using XRD analysis. The most well-defined signals of the key Ru=CH 
fragment were observed in the range of δ 18.70–19.10 ppm in 1H NMR and 312–324 ppm 
in 13C NMR spectra. Such downfield shifts are usual for chelates with a coordinating 
N→Ru bond [8,28,29,36] and are explained by the strong polarization of the Ru=C bond 
towards the metal atom. Otherwise, the obtained NMR spectra do not differ from those 
already described earlier for homologues [28,29]. It should be noted that the signals of the 
mesityl fragments (Mes) in both the proton and carbon spectra in some compounds turn 
out to be strongly broadened due to a slow rotation of the Mes-moieties around the C–N 
bond. To overcome this difficulty, the spectra of such ruthenium derivatives were addi-
tionally recorded in dichloromethane (CD2Cl2). 

PhMe,
1.5 h

712�
X‑ray *

Molecules 2023, 28, x FOR PEER REVIEW 6 of 17 
 

 

Table 2. Structures and yields of ruthenium complexes 4a–d, 5a–d. 

Entry 4 Solvent, 
Time 

Yield 
of 4, % 

5 Solvent, 
Time 

Yield of 
5, % 

6 Solvent, 
Time 

Yield of 
6, % 

a 

 

PhMe, 
1.5 h 

78 
 

X-ray* 

 

PhMe/ 
heptane 

(1:5), 
40 min 

74 
 

X-ray* 

 

PhMe/ 
heptane 

(1:5), 
0.5–2 h 

0 
 

b 

 

PhMe, 
1.5 h 

79 
 

X-ray* 

 

PhMe/ 
heptane 

(1:5), 
40 min 

58 
 

X-ray* 

 

PhMe/ 
heptane 

(1:5), 
0.5–2 h 

0 
 

c 

 

PhMe, 
1.5 h 

71 
 

X-ray* 

 

PhMe/ 
heptane 

(1:5), 
0.5–2 h 

5 
 

 

PhMe/ 
heptane 

(1:5), 
0.5–2 h 

0 
 

d 

PhMe/ 
heptane 

(1:5), 
40 min 

80 
 

PhMe/ 
heptane 

(1:5), 
40 min 

77 
 

X-ray* 

—the corresponding ruthenium 
complex can be synthesized 

—the corresponding ruthenium 
complex cannot be synthesized 

* XRD data were obtained for these compounds 

Complexes with methyl and ethyl groups in the α-position were isolated in good 
yields, except for 5c (Table 2). Attempts to change the solvent with absolute hexane, hep-
tane, benzene, toluene, or their mixtures did not lead to an increase in the yield of the 
target product. In the best cases, the yield of compound 5c did not exceed 5%. 

From the data of Table 2, it can be concluded that ruthenium chelates 6 with an iso-
propyl group in the α-position are unstable and could not be isolated in any case (even 
N,N-dimethyl substituted 6a cannot be synthesized). Presumably, the simultaneous pres-
ence of three ethyl groups in the benzylidene moiety of the complex 5c was the limiting 
case for the closing of the chelate ring. With a high probability, more sterically-loaded 
coordination compounds of type 4, 5 could not be assembled.  

All catalysts 4a–d, 5a–d were obtained as emerald green powders. The majority of 
them crystallized readily from a mixture of heptane/dichloromethane or chloroform/di-
chloromethane, with the formation of well-shaped crystals. An exception was catalyst 5c, 
which, in contrast to the others, was fairly soluble in nonpolar solvents, such as pentane 
and hexane. In this regard, this substance is quite difficult to isolate in a pure from. 

The structure of compounds 4–5 were established using NMR and, in the cases of 
4a,b,c, and 5a,b,d, using XRD analysis. The most well-defined signals of the key Ru=CH 
fragment were observed in the range of δ 18.70–19.10 ppm in 1H NMR and 312–324 ppm 
in 13C NMR spectra. Such downfield shifts are usual for chelates with a coordinating 
N→Ru bond [8,28,29,36] and are explained by the strong polarization of the Ru=C bond 
towards the metal atom. Otherwise, the obtained NMR spectra do not differ from those 
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(1:5),
40 min
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X‑ray *

4—the corresponding ruthenium complex cannot
be synthesized

* XRD data were obtained for these compounds.

Complexes with methyl and ethyl groups in the α‑position were isolated in good
yields, except for 5c (Table 2). Attempts to change the solvent with absolute hexane, hep‑
tane, benzene, toluene, or their mixtures did not lead to an increase in the yield of the target
product. In the best cases, the yield of compound 5c did not exceed 5%.

From the data of Table 2, it can be concluded that ruthenium chelates 6 with an iso‑
propyl group in the α‑position are unstable and could not be isolated in any case (even
N,N‑dimethyl substituted 6a cannot be synthesized). Presumably, the simultaneous pres‑
ence of three ethyl groups in the benzylidene moiety of the complex 5c was the limiting
case for the closing of the chelate ring. With a high probability, more sterically‑loaded
coordination compounds of type 4, 5 could not be assembled.

All catalysts 4a–d, 5a–d were obtained as emerald green powders. The majority of
them crystallized readily from a mixture of heptane/dichloromethane or chloroform/dichlo
romethane, with the formation of well‑shaped crystals. An exception was catalyst 5c,
which, in contrast to the others, was fairly soluble in nonpolar solvents, such as pentane
and hexane. In this regard, this substance is quite difficult to isolate in a pure from.

The structure of compounds 4–5 were established using NMR and, in the cases of
4a,b,c, and 5a,b,d, using XRD analysis. The most well‑defined signals of the key Ru=CH
fragment were observed in the range of δ 18.70–19.10 ppm in 1H NMR and 312–324 ppm in
13C NMR spectra. Such downfield shifts are usual for chelates with a coordinating N→Ru
bond [8,28,29,36] and are explained by the strong polarization of the Ru=C bond towards
the metal atom. Otherwise, the obtained NMR spectra do not differ from those already
described earlier for homologues [28,29]. It should be noted that the signals of the mesityl
fragments (Mes) in both the proton and carbon spectra in some compounds turn out to
be strongly broadened due to a slow rotation of the Mes‑moieties around the C–N bond.
To overcome this difficulty, the spectra of such ruthenium derivatives were additionally
recorded in dichloromethane (CD2Cl2).
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2.3. XRD Analysis of Ruthenium Complexes
All obtained structures for 4a–c and 5a,b contained one independent molecule of the

ruthenium complex, except for structure 5d where there were two crystallographically in‑
dependent molecules of the complex with the same conformation. One ethyl group in 4c is
disordered. In all complexes, the chlorine atoms were coordinated to the ruthenium atom
in the trans‑position (Cl atoms are on opposite sides of the N2Ru1C2 plane). The Cl‑Ru‑Cl
angles varied from 157.83◦ to 168.22◦ (see Table 3). The Ru–Cl distances are close to those
for the other N→Ru HG‑type trans‑catalysts [28,29] described earlier and are not of par‑
ticular interest for discussion. All complexes 4 and 5 contained intramolecular hydrogen
bonds of the C‑H···Cl type (see the ESI).

Table 3. Selected X‑ray data for ruthenium complexes 4a–c and 5a,b,d.

Entry Compound
Bond Lengths, Å Angle, ◦

N→Ru Ru=C Ru‑C Cl‑Ru‑Cl RuC4/RuNC
Planes

4a
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Table 3. Cont.

Entry Compound
Bond Lengths, Å Angle, ◦

N→Ru Ru=C Ru‑C Cl‑Ru‑Cl RuC4/RuNC
Planes

5b
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In complexes 4 and 5, the six‑membered rings containing N→Ru coordination bond
had a distorted conformation. As in the previously obtained analogs [28,29] in 4, 5a, and 5b,
the Ru atom and four carbon atoms formed one RuC4 plane (the maximum displacement
is 0.08 Å), but the sixth pyramidal nitrogen atom deviated from it and formed another
RuNC plane. The angle between the RuC4/RuNC planes varied from 55.26◦ to 58.84◦ and
was close to the previously described analogs [28,29]. In the sing crystal of 5d (in contrast
to the other 4, 5 and previously described complexes of this type) two other planes, CRuNC
and C4, were formed (the maximum deviation is 0.05 Å) with an angle between the planes
of 46.75◦ and 47.75◦ for two molecules.

The Ru–C bond length (2.01–2.06 Å) in all compounds differed insignificantly and
were close to what was published earlier [28,29]. From the point of view of potential activ‑
ity in metathesis reactions, the N→Ru bond in complexes 4, 5a, and 5b had practically the
same length (2.26–2.27 Å). In ethyl‑morpholine substituted 5d, an elongation of this bond
(2.35, 2.37 Å) was observed. This result is close to the previously described one for the
N‑chelate ruthenium complex with a morpholine moiety (N‑Morph, Figure 1) but with‑
out additional α‑methyl or α‑ethyl groups [28]. The observed Ru–N bond elongation can
affect the catalytic activity of the 5d complex [28,29] (Table 3).

It is also worth noting that two chelates, 4b and 5b, contain two chiral centers each
(the sp3‑hybridized nitrogen atom and the α‑carbon atom) and, thus, can exist as a pair
of diastereomers (Figure 2). According to 1H NMR data of the crude reaction mixtures,
only one diastereomer of 4b and 5b was formed and observed in all experiments. As it
was described earlier (Table 3), its spatial structures were unambiguously established with
XRD analysis. In the both structures, the bulkiest vicinal substituents (N‑Et/C‑Me in 4b
and N‑Et/C‑Et in 5b) occupied the most favorable pseudoequatorial positions in the six‑
membered ruthenium‑containing ring. The aforementioned fragment was noticeably flat‑
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tened and had a slightly distorted envelope conformation. With the exception of the nitro‑
gen, all of its atoms practically laid in one plane (the maximum displacement is 0.08 Å for
5b). Figure 2 clearly shows that the smallest substituents (N‑Me/C‑H in 4b and N‑Me/C‑H
in 5b) were pseudoaxial and occupied the anti‑periplanar positions.
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Figure 2. N–Ru complexes 4b (on the left) and 5b (on the right) with two stereogenic centers. All
H‑atoms except for the one in the α‑CH‑fragment are omitted everywhere for clarity.

From the data of XRD analysis, it can be concluded that the addition of methyl or
ethyl groups to the α‑position relative to the nitrogen atom did not lead to strong changes
in the structure of ruthenium complexes. Only the addition of the morpholine fragment
resulted in appreciable changes in the structure.

2.4. Evaluation of Catalytic Properties
In the final part of the work, the catalytic properties of the resulting ruthenium com‑

plexes 4–5were studied in the simplest ring‑closing metathesis (RCM) reactions to evaluate
its efficiency. For convenience, the rate of initiation and transformation of starting alkenes
into metathesis products will be hereinafter referred to as the catalytic activity.

Thus, the most common substrate, N,N‑diallyltosylamide (7), was chosen for the RCM
test experiments (Scheme 6). The reaction was carried out according to the previously
described procedure [28]. After adding the catalyst sample to a tosylate solution, aliquots
were taken at a certain time interval. Then, an excess of a catalytic “poison”, ethyl vinyl
ether (10% solution in THF), was immediately added to each aliquot to stop the metathesis
reaction and to prevent all possible post‑transformations. Next, volatile products were
removed and the conversion was analyzed with 1H NMR. Based on the NMR data, kinetic
curves were plotted (Figures 3–6).
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Figure 6. Exotherms of ROMP reactions of DBNB (10 g, 0.05 mol) under the action of catalysts 4a,
4d, 5a, and 5d. Reaction conditions: catalyst loading is 0.1 mol% (0.008 mmol), starting temperature
is 25 ◦C, neat.

Simultaneously, the catalytic efficiency of the new complexes 4–5was compared with
a range of commercially available HG‑II [44] or previously reported N‑Morph, NEt2 (see
Figure 1) catalysts of the same type. To achieve this goal, the two most different chelates,
4a and 4d, were chosen to describe the efficiency of the whole series of ruthenium deriva‑
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tives. The activity of N‑heterocyclic carbene complexes 4a and 4d in RCM reactions with
diene 7 turned out to be excellent and exceeded that of the reference catalysts (Figure 3).
It was shown that the RCM reaction proceeded reliably with 0.005 mol% catalyst load‑
ings; however, it was more convenient to use higher catalyst concentrations to plot kinetic
curves. The reverse side of the high activity was the elevated sensitivity of the solutions
of complexes 4–5 to the moisture and air (in the crystalline state, the resulting chelates are
stable when stored in air). In this regard, all metathesis reactions hereinafter were carried
out under an argon atmosphere using dry solvents.

Furthermore, the comparison of the activity of all N→Ru chelates 4–5 synthesized
in this work was carried out. However, a difference in efficiency between the complexes
turned out to be difficult to detect under the aforementioned conditions (0.1 mol% of a
catalyst). The data in Figure 4 permit the claim that only the morpholine ‑containing com‑
pounds 4d and 5d have a higher initiation rate compared with the other ones, due to an
increased steric environment of the donating nitrogen atom (Figure 4).

To overcome thedifficulty noted above, the catalyst amount was reduced to 0.01 mol%.
In this case, as can be clearly seen in Figure 5, all catalysts 4–5weredivided into three groups,
in accordance with the size of the substituents around the catalytic center. Similarly, as
with the previous results (see Figure 4), complexes 4d and 5d possessing bulky morpholine
moieties manifested the highest efficiency. The secondgroup consists ofα‑ethyl‑substituted
complexes 5a, 5b, and 5c, and the worst activity is exhibited by α‑methyl‑containing cat‑
alysts 4a, 4b, and 4c. As expected in the beginning of this work, an increase in the steric
volume of the substituent in the α‑position led to an increase in catalytic activity, albeit
insignificantly. However, the difference between the complexes 4a, 4b, 4c, and 5a–c carry‑
ing the same α‑substituent (R3) was so insubstantial that it is groundless to speak about
the essential effect of substituents on the nitrogen atom (R1, R2) on catalytic activity.

The high activity of ruthenium derivatives 4–5 in RCM reactions prompted us to in‑
vestigate its behavior in metathesis polymerization reactions. As is known, this is one of
the more often used processes in the polymer industry. For this purpose, the ring‑opening
metathesis polymerization (ROMP)of trans‑dibutoxycarbonyl substitutedbicyclo[2.2.1]hept‑
2‑ene (5‑endo‑6‑exo‑di(n‑butoxycarbonyl)norbornene, DBNB, 9), a monomer which is liq‑
uid under normal conditions, was chosen (Scheme 7 and Figure 6). The thermal effects of
the polymerization of 9 to 10 are the simplest and most easily observable, which makes it
possible to estimate the rate of the process.
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Scheme 7. ROMP polymerization of DBNB promoted by 4a, 4d, 5a, 5d catalysts.

A series of catalysts 4a, 4d, 5a, and 5dwas tested for comparative study of the polymer‑
ization ofDBNB. To study the ROMP, in each range, catalysts with the highest (4d, 5d) and
lowest (4a, 5a) steric load were selected. A reaction was carried out under constant stirring
(450 rpm) in a 30 mL glass vessel, with the temperature being controlled using two thermo‑
couples (one in a water bath and another in a reaction vessel). The catalysts were added as
solutions in DCM, and, for convenience of analysis, there was constant video recording of
the temperature sensor readings.

Under the selected conditions, polymerization reaction started after about 3–12 min
(Figure 6). The highest temperature of the exotherm was detected for sterically hindered
complex 5d, and the lowest one, 4a, possessed the smallest substituents in all positions.
From the performed experiments, it can be concluded that the steric load on the nitrogen
atom plays a more significant role in the activation of the complex than the substituents in
the α‑position.
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3. Materials and Methods
3.1. General Remarks

All reagentswere purchased fromcommercial suppliers (AcrosOrganics, Morris Plains,
NJ, USA and Merck KGaA, Darmstadt, Germany) and used without further purification.
The metathesis reactions required solvents (CH2Cl2 and CHCl3) pre‑dried over anhydrous
P2O5 and an inert atmosphere (dry Ar). The thin layer chromatography was carried out
on aluminum‑backed silica precoated plates «Sorbfil» or «Alugram». The plates were vi‑
sualized using a water solution of KMnO4 or UV (254 nm). After extraction, organic layers
were dried over anhydrous MgSO4. IR spectra were obtained in KBr pellets or in thin films
using an Infralum FT‑801 or Nicolet 6700 IR‑Fourier spectrometers. The NMR spectra were
run in deuterated solvents (>99.5 atom % D) on a Jeol JNM‑ECA 600 (600.1 MHz for 1H and
150.9 MHz for 13C) spectrometer for 2–5% solutions in CDCl3 at 22–23 ◦C using residual
solvent signals (7.26/77.0 ppm for 1H/13C in CDCl3) or TMS as an internal standard.

3.2. Experimental Procedures
The isoquinoline derivatives were synthesized using the Bischler–Napieralski reac‑

tion according to procedures described earlier [39].
The detailed methods for the preparation of new compounds obtained in this work is

given in the ESI section.

3.3. Single‑Crystal XRD Analysis
The crystal structure of all synthesized substances was determined with X‑ray struc‑

tural analysis using an automatic four‑circle area‑detector diffractometer, the Bruker KAPPA
APEX II with MoKα radiation. The crystal data, data collection, and structure refinement
details are summarized in Table S2 (see the ESI). All other crystallographic parameters of
the structures are indicated in Tables S3–S26 (see the ESI). The atomic coordinates were
deposited at the Cambridge Crystallographic Data Centre (CCDC) [44]. The CCDC num‑
bers are 2232047–2232052 for 4a, 4b, 4c, 5a, 5b, and 5d, respectively. The Supplementary
crystallographic data can be obtained free of charge from the Cambridge Crystallographic
Data Centre via www.ccdc.cam.ac.uk/data_request/cif (accessed on 21 December 2022).

4. Conclusions
In this work, we reported on the synthesis of a series of second‑generation HG‑type

complexes containing a nitrogen–ruthenium coordinate bond in the six‑membered chelate
ring, in which an alkyl group (Me, Et, iPr) is attached to the α‑position of the benzylidene
fragment. The majority of the aforementioned metal complexes can be synthesized easily
and in excellent yields based on the reaction between available (2‑vinyl)benzylamines and
Ind II. It has been experimentally shown that the steric volume of the substituents at the ni‑
trogen atom and in theα‑position of the 2‑vinylbenizamine ligands has a decisive influence
on the possibility of assembly of the chelate ring. The most sterically loaded ligand suit‑
able for chelate synthesis is N,N‑diethyl‑α‑ethyl‑2‑vinylbenzylamine. An isopropyl group
being introduced into the benzylamine ligand does not allow the chelate ring to close and
makes the existence of the corresponding ruthenium complex impossible.

Activity of the target ruthenium chelates towards the simplest ROMP and RCM re‑
actions was investigated in the concentration range of 0.1–0.01 mol%. It has been proven
that the substituents attached to the nitrogen atom have the greatest influence on the rate
of metathesis. The catalysts bearing an N‑morpholine moiety manifested the highest cat‑
alytic activity. The methyl or ethyl groups in the α‑position did not significantly affect
the rate of the metathesis reactions. The storage stability and the catalytic properties of
the ruthenium chelates turned out to be comparable to those of commercially available
metathesis catalysts (HG‑II).

Thus, the aforementioned range of ruthenium complexes completes our research [28,29],
which is devoted to the synthesis and properties of six‑membered HG‑type complexes
containing an N→Ru bond in the chelate ring.

www.ccdc.cam.ac.uk/data_request/cif
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Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/molecules28031188/s1, it includes all experimental procedures, NMR
data for new compounds and details of XRD experiments. Synthesis of 1‑substituted‑3,4‑dihydroquin
olines includes acylation of phenethylamine and a further cyclization of the resulting amide by
the Bischler‑Napieralski reaction according to previously described procedures [39]. Commercially
available second‑generation Hoveyda‑Grubbs catalyst [45] was used to compare its catalytic activ‑
ity with complexes 4a–d and 5a–d. The crystal structure of all synthesized substances was deter‑
mined by X‑ray structural analysis using an automatic four‑circle area‑detector diffractometer Bruker
KAPPA APEX II with MoKα radiation. The cell parameters were refined over the entire data set,
together with data reduction using SAINT‑Plus software [46]. Absorption corrections were intro‑
duced using the SADABS program [47]. The structures were solved using the SHELXT‑2018/2 pro‑
gram [48] and refined by full‑matrix least squares on F2 in the anisotropic approximation for all
non‑hydrogen atoms [49]. The H atoms were placed in geometrically calculated positions with
isotropic temperature factors equal to 1.2Ueq(C) for CH2 and CH‑groups, and 1.5Ueq(C) for CH3‑
groups, the orientation of CH3‑groups was refined. In structures 4a, 4b, 5a solvent molecules were
strongly disordered and therefore it was removed using the SQUEEZE routine of PLATON [50],
and the structure was then refined again using the data generated. Structure 5b was refined as an
inversion twin. Tables and figures for the structures were generated using Olex2 [51]. Schemes
S1–S6: reaction schemes for preparation of (2‑vinyl)benzylamines 1a–d, 2a–c, 3a–d and catalysts
4a–d, 5a–d; Figures S1–S4: time/conversion curves for RCM transformations of compounds 7 and 9;
Figures S5–S10: view showing intramolecular hydrogen bonds in complexes 4a, 4b, 4c, 5a and 5b;
Table S1: optimization of reaction conditions for the synthesis of catalysts 4, 5 and 6; Table S2: the crys‑
tal data, data collection, and structure refinement details for 4a–c, 5a, 5b and 5d; Tables S3–S24: angles
and bond lengths for compounds 4a, 4b, 4c, 5a, 5b and 5d.
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