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Abstract: Mid-high-frequency ultrasound (200–1000 kHz) eliminates organic pollutants and also gen-
erates H2O2. To take advantage of H2O2, iron species can be added, generating a hybrid sono-Fenton
process (sF). This paper presents the possibilities and limitations of sF. Heterogeneous (a natural
mineral) and homogeneous (Fe2+ and Fe3+ ions) iron sources were considered. Acetaminophen,
ciprofloxacin, and methyl orange were the target organic pollutants. Ultrasound alone induced the
pollutants degradation, and the dual competing role of the natural mineral (0.02–0.20 g L−1) meant
that it had no significant effects on the elimination of pollutants. In contrast, both Fe2+ and Fe3+

ions enhanced the pollutants’ degradation, and the elimination using Fe2+ was better because of
its higher reactivity toward H2O2. However, the enhancement decreased at high Fe2+ concentra-
tions (e.g., 5 mg L−1) because of scavenger effects. The Fe2+ addition significantly accelerated the
elimination of acetaminophen and methyl orange. For ciprofloxacin, at short treatment times, the
degradation was enhanced, but the pollutant complexation with Fe3+ that came from the Fenton
reaction caused degradation to stop. Additionally, sF did not decrease the antimicrobial activity
associated with ciprofloxacin, whereas ultrasound alone did. Therefore, the chemical structure of the
pollutant plays a crucial role in the feasibility of the sF process.

Keywords: contaminants degradation; Fenton reaction; opportunities and challenges; sonochemistry;
water treatment

1. Introduction

Hybrid systems, where two or more advanced oxidation processes (AOPs) are applied
simultaneously, are known to promote the effective degradation of pollutants [1]. The
sono-Fenton process (sF) is a very popular hybrid AOP that combines the Fenton reaction
with ultrasound waves [US, 20–2000 kHz, represented by the symbol “)))”] to deal with
recalcitrant contaminants. The ultrasound-based process involves using the acoustic cavi-
tation phenomenon, i.e., the formation, growth, and implosive collapse of microbubbles
in aqueous media, to produce chemical effects. The implosion of micro-bubbles generates
localized hot spots with transient temperatures up to 5000 K and pressures ~1000 atm.
Such extreme conditions lead to the cleavage of water molecules and dissolve oxygen into
radicals (Equations (1)–(4)). These radical species can either react with pollutants within the
bubble or in the bubble-liquid interface. Large nonvolatile and very hydrophilic molecules
cannot enter the cavitation bubbles or come close to the interfacial zone, and consequently,
they react slowly with a few radicals that reach the solution bulk [2]. In addition to the
reaction with the pollutants, some sonogenerated hydroxyl radicals can recombine, lead-
ing to the accumulation of H2O2 (Equation (5)) [3]. In turn, the Fenton process involves
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reactions of peroxides (usually hydrogen peroxide) with iron ions to form active oxygen
species (such as HO•) that oxidize organic pollutants (Equations (6) and (7)) [4].

H2O + )))→ •H + HO•, (1)

O2 + )))→ 2 •O, (2)

H2O + •O→ 2 HO•, (3)

O2 + •H→ •O + HO•, (4)

2HO• → H2O2, (5)

Fe2+ + H2O2 → Fe3+ + HO• + HO−, (6)

Fe3+ + H2O2 → Fe2+ + HOO• + H+, (7)

The hybrid sF process takes advantage of H2O2 accumulated from the HO• recom-
bination during the ultrasonic treatment (Equation (5)) to promote Fenton-type reactions
(Equations (6) and (7)) enhancing the degradation kinetics, minimizing the use of reagents
(iron and hydrogen peroxide), and thus limiting secondary pollution and costs [5].

Diverse experimental configurations are possible for the sF process. Low (20–150 kHz)
and mid-high (200–2000 kHz) frequency ultrasound reactors can be used [2,6–8]. It should
be mentioned that at low-ultrasound frequencies there is a low generation of hydroxyl
radicals, and consequently, a small accumulation of H2O2 (particularly very low at low
applied power, i.e., <100 W). Then, hydrogen peroxide from an external source should be
added to the reaction systems [6,7].

The sF systems can also use homogeneous or heterogeneous iron sources. For ho-
mogeneous systems, salts such as FeCl3× 6H2O and FeSO4× 7H2O are typically uti-
lized [9]. Meanwhile, for the heterogeneous systems, Fe3O4 magnetic nanoparticles [9],
Fe3O4/ZnO/graphene nanocomposites [10], pyrite nanorods [11], Fe2O3 on SBA-15 meso-
porous silica [8], zero-valent iron (ZVI) [12,13], and iron-containing zeolites [2] or iron
oxides supported on zeolites [14], among others, have been evaluated. It is reported
that the ultrasonic component can decrease the mass transfer limitations for solid–liquid
heterogeneous systems [9].

Many studies report successful application of the sF process to degrade organic pol-
lutants. However, most of this research primarily focuses on the hybrid sF process using
low ultrasound frequency (i.e., below 150 kHz) [6,9–17]. Furthermore, since most studies
consider only one pollutant, the role of the pollutant’s nature in the sF process is not
well examined [2,8,18]. Therefore, we developed systematic research, applying mid-high
ultrasound frequency (200–1000 kHz) to degrade three representative pollutants, i.e., an
antibiotic (ciprofloxacin), an analgesic (acetaminophen), and a dye (methyl orange), to eval-
uate the role of the pollutant’s nature. Both heterogeneous and homogeneous sF systems
were considered. For the heterogeneous system, a natural mineral from Colombia was
tested. This material was selected because of its high feasibility for use in Fenton-based
systems according to previous research [19]). Ferrous and ferric salts were employed for the
homogeneous sources. Special attention was paid to the interaction of the pollutant with
iron, the decrease of biological activity, and the primary transformations experienced by
the pollutants. Moreover, the advantages and limitations of the different sF configurations
are discussed.

2. Results and Discussion
2.1. Suitable Conditions for the Operation of the Ultrasound Reactor to Produce H2O2

Initially, the capability of the sonochemical reactor to produce hydrogen peroxide
(Equation (5)) in distilled water at different frequencies (375, 575, 858 kHz) was established.
From Figure 1a, it can be noted that, as the ultrasound frequency increased, the accumu-
lation of H2O2 diminished. In general, the size of the bubble decreases as the ultrasonic
frequency increases [20,21]. Hence, at high frequencies (e.g., 858 kHz), the cavitation
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bubbles collapse so quickly that they do not achieve maximum size; this decreases the
production of hydroxyl radicals [22], and a low level of hydrogen peroxide formation is
observed. Therefore, the accumulation of H2O2 is more favored at 375 kHz than at 858 kHz.
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Figure 1. Capability of the ultrasound reactor to produce H2O2 in distilled water at 20 min of
sonication. (a) Effect of the ultrasound frequency (V: 250 mL, P: 11.2 W); (b) Effect of ultrasound
power (V: 250 mL, f: 375 kHz).

At 375 kHz of frequency, the effect of the actual acoustic power on the accumulation
of H2O2 was evaluated. As seen in Figure 1b, more hydrogen peroxide accumulated as
the power was augmented from 4.0 to 24.4 W. In the literature, it is proposed that, at high
power, the bubble could expand more during the rarefaction stage of the acoustic cycle
and increase the bubble radius, allowing the bubble to cavitate, which can also increase the
population of cavitation bubbles [20,21]. Furthermore, as the acoustic power is augmented,
more violent cavitation events occur [23]. Consequently, more radicals are formed at higher
acoustic power values, leading to a higher H2O2 accumulation. Considering the results in
Figure 1, 375 Hz and 24.4 W were selected as suitable operational conditions to perform
the sF process.

2.2. Heterogeneous Sono-Fenton Processes for the Elimination of Pollutants

After determining the suitable operational conditions for the hydrogen peroxide
sonoproduction, the conditions were applied through ultrasound alone and with the sF
process, using the natural mineral as a heterogenous source of iron at two concentrations
(0.02 and 0.20 g L−1, Figure 2a) and starting with MO as a model organic pollutant. The
sonochemical process alone degraded ~56% of the pollutant at 30 min of treatment. How-
ever, the addition of the natural mineral did not enhance the MO degradation. At the
two concentrations of the natural solid, the pollutant evolution was very close to that
obtained in its absence. It is important to mention that MO is not adsorbed on the mineral
(Figure S1 in the Supplementary Materials), which is explained by the very low surface
area (19.79 m2 g−1) of this solid material. Furthermore, if the MO pollutant is replaced by
ACE (Figure 2b), a low effect of the solid on the pseudo-first-order kinetic constants for the
treatments was observed. Similar to the results observed for MO, ACE was not adsorbed
on the mineral surface (Figure S2a).

We should mention that another work in the literature reports that the addition of
a heterogenous iron source to high-frequency ultrasound improves the degradation of
organic pollutants (Table 1). However, such a system only truly works if a high concen-
tration of H2O2 from an external source is also added at the beginning of the process [8].
MO and ACE are non-volatile and soluble compounds; thus, they are degraded by the
sonogenerated hydroxyl radicals that reach the solution bulk. Concomitant to the interac-
tion of these pollutants with HO•, the recombination of radicals leads to the formation of
hydrogen peroxide (Equation (5)). The interaction of the heterogeneous iron source with
hydrogen peroxide is therefore expected [24]. Moreover, the solid particles could promote
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the degradation of pollutants by providing additional nuclei for the formation of cavitation
bubbles. However, the attenuation of the ultrasound waves by the particles may have
adverse effects, which could reduce the degradation of the pollutant. Then, the net effect is
dependent on the ultrasound system and solid material [2,25–28].
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Figure 2. Heterogeneous sono-Fenton for degrading organic pollutants. (a) Effect of mineral con-
centration on the MO degradation; (b) Effect of the natural mineral (at 0.20 g L−1) on ACE degra-
dation; (c) Hydrogen peroxide evolution in distilled water in the absence (DW) and presence of
the solid iron source (DW + mineral) at 0.20 g L−1. Experimental conditions: f: 375 kHz, P: 34.4 W,
[MO]initial = [ACE]initial: 30.6 µmol L−1, pHinitial: 5.6, and V: 250 mL.

To better understand the role of the tested solids, a control experiment (distilled water
without pollutants) was carried out. The evolutions of the sonogenerated H2O2 in the
presence and absence of the natural mineral were compared (Figure 2c). It was found
that the hydrogen peroxide accumulation was lower when the solid was present than
in its absence. The decrease of the H2O2 concentration can therefore be associated with
the quenching of waves by the presence of the solid particles of the mineral and/or the
interaction among H2O2 and the ferric (=Fe3+) or ferrous species (=Fe2+) in the mineral
(Figure S2b presents the XRD pattern of this mineral, demonstrating the predominance of
hematite “Fe2O3”, with some traces of siderite “FeCO3”), which can produce degrading
radicals (Equations (8) and (9)).

=Fe2+ + H2O2 → =Fe3+ + HO• + HO−, (8)

=Fe3+ + H2O2 → =Fe2+ + HOO• + H+, (9)
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Table 1. Comparison of the tested heterogeneous sono-Fenton system with other cases reported in
the literature.

Heterogeneous
Iron Source

Ultrasound
System

Target
Pollutant Main Results Reference

Fe2O3/SBA-15
(0.6 g L−1)

20, 382, 584, and 1142 kHz,
with external addition of

H2O2
(1.19 g L−1)

Phenol

Highest elimination of aromatic compounds and
mineralization at 584 kHz due to its highest
acoustic power and elevated production of

degrading radicals.
Iron ions are leached from the solid catalyst.

[8]

ZSM-5 zeolite
containing iron

(0.1 mmol L−1 of iron)

850 kHz, with the external
addition of H2O2
(5.0 mmol L−1)

Orange II

The degradation of Orange II induced by the
sono-Fenton system was very similar to that

obtained under the combination of ultrasound
with hydrogen peroxide.

[2]

4A-zeolite supported
α-Fe2O3

(0.5 g L−1)
40 kHz Orange II

The removal of the pollutant is related to
adsorption on the catalyst, heterogeneous, and
homogeneous (iron dissolved into the solution)

Fenton reaction.

[14]

Zero valent iron-ZVI
(0.5 g L−1)

28 kHz, without and with
external addition of H2O2

(30–100 µmol L−1)
Orange G

Ultrasound promotes the leaching of iron ions,
which enhances the dye degradation regarding

ultrasound alone or adsorption on the ZVI.
Moreover, the external addition of H2O2

increases the degradation and mineralization.
However, an excess of H2O2 induces

scavenging effects.

[13]

Zero valent iron-ZVI
(1.0 g L−1)

60 kHz, with the external
addition of H2O2
(10.3 mmol L−1)

Reactive Black 5

Synergistic effects for the dye degradation by the
ZVI/H2O2/ultrasound combination.

Hydrogen peroxide produced from sonolysis in
contact with Fe (II), coming from ZVI corrosion,

triggers the Fenton reaction.

[12]

Pyrite nanorods
(0.6 g L−1)

40 kHz, with the external
addition of H2O2
(1.0 mmol L−1)

Reactive Blue 69

The sono-elimination of the target dye is
significantly improved by the addition of pyrite
nanorods and H2O2, reporting synergy for the

combination of ultrasound with pyrite and
hydrogen peroxide. Synergy is explained

considering that ultrasound waves increase the
turbulence and mass transfer and also promote

particle disaggregation by augmenting the active
sites on the catalyst surface. In turn, the crevices

of the solid particles act as cavitation nuclei.

[11]

Fe3O4/ZnO/graphene
composites

40 kHz is added to a
Fenton process

Methylene blue and
Congo-red

The addition of ultrasound irradiation to the
Fenton process improves the degradation of

both dyes.
[10]

Fe3O4 magnetic
nanoparticles
(0.585 g L−1)

40 kHz, with the external
addition of H2O2
(160 mmol L−1)

Bisphenol-A

No adsorption of the pollutant on the catalyst.
The decomposition of H2O2 into radicals

promoted by ultrasound plus disaggregation of
particles favors the Fenton reaction, leading to

synergistic effects on the degradation
of bisphenol-A.

[9]

Natural mineral
containing iron oxides,

mainly hematite (Fe2O3)
(0.20 g L−1)

375 kHz MO and ACE
Degradation of the pollutants by sono-Fenton

was very close to that obtained by
ultrasound alone

This work

It is also important to consider that small amounts of iron could be leached from
the solid. Indeed, in our research team’s previous work regarding the use of this natural
mineral in a photo-Fenton system, we found that less than 0.1 mg L−1 is leached from the
solid material [19]. Thereby, in the sono-Fenton system, the involvement of the homogenous
component of Fenton (Equations (6) and (7)) is plausible, and this also contributes to the
decrease in the H2O2 concentration observed in Figure 2c.

Hence, the results of degradation in Figure 2 suggested that, despite the solids which
may induce some attenuation of the ultrasound waves, the reaction system in the presence
of the iron species in the solid particles and the leached iron can generate enough radicals
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to degrade the target pollutant. A balance among the contrary phenomena is proposed to
explain the similar pollutants degradations in the absence and presence of a heterogeneous
iron source (i.e., the Colombian natural mineral). Furthermore, these results also indicate
that the sonochemical processes could be applied to treat polluted water even if it contains
a high concentration of suspended solids (e.g., 0.20 L−1).

However, when this work is compared with other reports in the literature (Table 1), it
can be noted that our results were similar to those reported for the heterogeneous sono-
Fenton process at mid-high-frequency (e.g., 850 kHz) [2]. Moreover, results in the literature
also show that the performance of the sono-Fenton at mid-high-frequency can be enhanced
by the addition of H2O2. At low frequencies (<150 kHz), the physical effects of ultrasound
(which are stronger than at high frequencies) play a relevant role, favoring the iron leaching,
increasing the turbulence and mass transfer, and promoting particle disaggregation which
augments the active sites on the catalyst surface (Table 1).

2.3. Homogeneous Sono-Fenton to Degrade Diverse Organic Pollutants
2.3.1. Effect of Iron (II) Concentration and Iron Species (II or III)

The other strategy to perform an sF process is the addition of soluble iron salts
(e.g., iron sulfates or iron chlorides) obtaining a homogeneous system. Herein, the homo-
geneous sF involving ferrous ion (from FeSO4× 7H2O) was assessed first. Three different
amounts of Fe2+ (1.0, 3.0, and 5.0 mg L−1) were added to the sonochemical reactor, and the
sF process was developed using MO as the probe molecule (Figure 3a). The presence of
ferrous ions at 1 mg L−1 augmented the pseudo-first-order rate constant (k) regarding the
system with no iron, and when the Fe2+ was increased up to 3 mg L−1, a higher acceleration
of the pollutant degradation was observed. However, if the ferrous iron concentration is
5 mg L−1, the k-value is lower than the one obtained at 1 mg L−1.
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(II) ions concentration; (b) Effect of the iron species (II or III, at 1 ppm (mg L−1)). Experimental
conditions: f: 375 kHz, P: 34.4 W, [MO]initial: 30.6 µmol L−1, pHinitial: 5.6, and V: 250 mL.

The presence of ferrous ions in the solution bulk of the sonochemical system promotes
the production of extra hydroxyl radicals through the Fenton reactions with the sono-
generated H2O2 (Equations (5) and (6)), improving the degradation of the pollutants [2]
according to Figure 3a. As the Fe2+ concentration increases, higher production of radicals
and degrading effects are seen. Nonetheless, an excess of ferrous ions (e.g., 5 mg L−1)
induced a scavenging interaction between iron and hydroxyl radical (Equation (10), [4,29]),
and the radicals are consumed, competing with the pollutant degradation. Thereby, the sF
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process at low or moderate concentrations of ferrous ions has excellent possibilities, but at
a high Fe2+ concentration, its ability to degrade pollutants could be limited.

Fe2+ + HO• → Fe3+ + HO−, (10)

Once the effect of the iron (II) concentration on the sF process was established, the
treatment of MO as a probe pollutant, under the substitution of ferrous ions by ferric ions,
was performed. Figure 3b compares the pseudo-first-order kinetics constants (k-values) for
the treatment of MO by sF using Fe2+ or Fe3+. The ferric ion also improved the degradation
kinetics of the pollutant, but the enhancing effect induced by Fe2+ is superior to that
obtained when Fe3+ is added (Figure 3b). Such findings are explained by considering the
interaction between the two iron species with hydrogen peroxide and the formed radicals,
respectively. The reaction of Fe2+ with H2O2 (Equation (6), k: 53–76 M−1 s−1) is faster than
the Fe3+-H2O2 interaction (Equation (7), k < 10−2 M−1 s−1) [29–31]. The former reaction
(Equation (6)) also produces the hydroxyl radical (E◦: 2.73 V, [4]), and this oxidizing agent
is stronger than hydroperoxyl radical (E◦: 1.44–1.65 V, [32]), which is formed from the
Fe3+-H2O2 interaction (Equation (7)).

2.3.2. Degradation of Diverse Organic Pollutants by Homogeneous Sono-Fenton

The results in the previous sections showed that soluble salts of iron (II) at low
concentrations are more convenient to obtain positive effects on the sF process. Therefore,
such conditions (1.0 mg L−1 of Fe2+) were used to treat other organic pollutants aiming to
evaluate the effect of the nature of the contaminant on the performance of the process. The
degradation of the pharmaceuticals ACE and CIP were considered (Figure 4). Figure 4a
compares the ACE evolution under the action of ultrasound alone and with sF. The addition
of soluble iron (II) to the sonochemical reaction increased the ACE degradation from 43%
to 80% (after 30 min of treatment) compared to the action of ultrasound alone. To better
support the role of the ferrous ions in the system, the accumulation of H2O2, after 30 min
of ACE treatment in the absence and presence of the ferrous ions was measured.

As seen in Figure 4b, the accumulation of hydrogen peroxide in the sF process
(US + Fe (II)) is lower than in the sonochemical system alone (US), indicating the gen-
eration of extra radicals by the Fenton reaction (Equations (6) and (7)), which is responsible
for the acceleration of the ACE degradation. In turn, Figure 4c depicts the case of CIP
treatment using the sonochemical system and sF process. In contrast to the results observed
for ACE or MO, the addition of iron (US + Fe (II), sF) improved the antibiotic degradation
in the first 5 min of treatment, but the pollutant elimination stopped after this. Even at
30 min after the process began, the removals of CIP by sonochemistry and sF were the
same. In the sF system, it is possible that the Fe3+, which is produced from the Fenton
reaction (Equation (6)), interacted with the non-degraded molecules of CIP, thus limiting
the iron availability.

As shown in Figure 4d, the interaction of ferric ions with CIP produced a new band
between 400 and 600 nm in the UV-Vis spectrum. Moreover, the mixture of the antibiotic
and the ferric ions induced an intense yellow coloration of the solution. These results
evidenced the formation of a CIP-Fe3+ complex [33]. However, no interaction between
ferrous ions and CIP was observed (Figure S3). Recent studies have also reported that
the interaction between fluoroquinolones (CIP belongs to this antibiotics class) and ferric
ions leads to the formation of stable complexes [33,34]. It can be noted that CIP has the
keto-carbonyl moiety (structure with a higher number of lone electron pairs), which favors
the interaction between this fluoroquinolone and ferric ion through chelation [35–37]. This
contrasts with the case of ACE, which is not able to form complex iron ions. In fact, the
presence of ferric or ferrous ions in the ACE solution did not generate new adsorption
bands, as supported by the UV-Vis spectra in Figure S4.

Therefore, the results in Figure 4b could be explained by considering that, at the
beginning of the CIP treatment by sF, the ferrous ions reacted with the sonogenerated
H2O2 inducing an acceleration of the pharmaceutical degradation and producing ferric
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ions (Equation (6)). Subsequently, the ferric ions are complexed by the remaining molecules
of CIP. The formed complex is a charged hydrophilic molecule [33,38] that is placed far
away from the cavitation bubble and the hydroxyl radicals. Consequently, the complex
is recalcitrant to the sonochemical action, and the CIP concentration remains constant, as
observed in Figure 3b. Thus, the above results from the degradation of CIP, ACE, and MO
by the sF system indicate that the nature of the pollutant strongly influenced the process
performance. Thereby, sF is more suitable for degrading organic contaminants that have no
complexation capability toward the iron species.
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Figure 4. Treatment of ACE and CIP by the homogeneous sono-Fenton process (a) Degradation of
ACE; (b) H2O2 accumulation during the treatment of ACE; (c) Degradation of CIP, (d) Experimental
evidence based on the UV-Vis spectrum for the formation of the CIP-Fe3+ complex. Experimental con-
ditions: f: 375 kHz, P: 34.4 W, [ACE]initial: [CIP]initial: 30.6 µmol L−1, [Fe2+]: 1.0 mg L−1, pH initial: 5.6,
and V: 250 mL.

A comparison of the homogeneous sono-Fenton process with the existing literature
(Table 2) shows that our system had similar results to those obtained using mid-high-
frequency ultrasound by the single addition of Fe2+, which accelerates the elimination of
the contaminant. It is also reported that an excess of ferrous ions induces scavenging effects.
From information available in the literature, it can also be noted that the performance of
the sono-Fenton process at high frequencies is improved by the external addition of H2O2.
Other studies indicate that low-frequency ultrasound in combination with Fe2+ and H2O2 is
also useful for degrading organic contaminants, even presenting better results than Fenton
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systems or ultrasound alone. Most studies utilize ferrous ions, and a few of them report
that ferric ions have a lower enhancing rate in eliminating pollutants. Additionally, the
complexation of the target pollutant with iron species is not reported or discussed in the
previous literature about the sono-Fenton process (Table 2).

Table 2. Comparison of the tested homogeneous sono-Fenton system with other cases reported in
the literature.

Homogeneous
Iron Source

Ultrasound
System

Target
Pollutant Main Results Reference

Fe2+

(10 mg L−1)

35 and 53 kHz, with the
external addition of

H2O2
(50 mg L−1)

Reactive Blue 181

The sono-Fenton process has superior
performance compared to the Fenton system in
terms of degrading the target pollutant because
of the production of some oxidizing agents as a

result of sonication.

[6]

Fe2+

(3.0 mg L−1)

20 kHz, with the
external addition of

H2O2
(0.5 mmol L−1)

Reactive Blue 19

The combination of ultrasound with Fe2+ and
H2O2 leads to a higher degradation of the dye

than the individual components (even more than
the Fenton system) of the sono-Fenton process.

[16]

Fe2+

(0.134 mmol L−1)

20 kHz, with the
external addition of

H2O2
(6.4 mmol L−1)

Ibuprofen
The addition of Fe2+ and H2O2 to the ultrasound

reactor increases both the degradation and
mineralization of the pharmaceutical.

[18]

Fe2+

(Different
concentrations)

850 kHz, without and
with the external
addition of H2O2

(Diverse concentrations)

Orange II

Acceleration of the pollutant degradation by
adding Fe2+, taking advantage of the

sono-generated H2O2. The external addition of
both Fe2+ and H2O2 lead to the best dye

degradation. However, an excess of Fe2+ and
H2O2 leads to scavenging effects.

[2]

Fe2+

(0.1 mmol L−1)
300 kHz Bisphenol-A

The degradation and mineralization of
bisphenol-A are enhanced by the presence of

ferrous ions due to the Fenton reaction using the
H2O2 coming from the sonochemical system.

[39]

Fe2+

(90 µmol L−1)
600 kHz Fluoxetine

The degradation of fluoxetine is enhanced by the
presence of ferrous ions that react with the

sonogenerated H2O2.
[40]

Fe2+

(90 µmol L−1)
375 kHz Ampicillin

The degradation and mineralization of ampicillin
are enhanced by the presence of ferrous ions due

to the Fenton reaction using the H2O2 coming
from the sonochemical system.

[3]

Fe2+ (1.0, 3.0,
and 5.0 mg L−1)

and Fe3+ (1.0 mg L−1)
375 kHz MO, ACE, and CIP

Acceleration of the MO and ACE degradation by
adding Fe2+ by taking advantage of the

sono-generated H2O2. However, an excess of Fe2+

leads to scavenging effects. Ferrous ions are more
efficient than Ferric ions at accelerating the

degradation of pollutants. Furthermore, CIP is
complexed by Fe3+, limiting the performance of

the sono-Fenton process.

This work

2.4. A Strategy for the Treatment of CIP

As shown in Section 2.3.2, the sF system was not able to degrade CIP because of the
production of an organo-complex stable to the sonochemical action. Therefore, considering
the capability of the formed complex to absorb ultraviolet light (Figure 4d), the photo-
treatment was tested using very energetic irradiation (i.e., UVC light at 254 nm). This type
of light was selected for its ability to photolyze H2O2 (Equation (11)) and promote the
photo-reduction of aqua-complex of ferric ions (Equation (12)), producing hydroxyl radicals
profitable for the degradation of the pollutant [41,42]. Hence, after 20 min of application of
the sF process, the resultant solution was removed from the ultrasound reactor, transferred
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into a beaker, and subsequently irradiated using UVC light (a sequential treatment, i.e., sF
followed by the UVC action).

H2O2 + hv254 nm → 2 HO•, (11)

Fe3+ + H2O + hv254 nm → Fe2+ + HO• + H+ (12)

From Figure 5a, it can be noted that the treatment using ultraviolet irradiation had a
low degrading action on the complexed CIP. the H2O2 evolution presented in Figure 5b
also indicated a low consumption of hydrogen peroxide. The low photodegradation of the
complexed CIP can be associated with the relocation of part of the electron density from
the organic structure (i.e., CIP) on the metal ion [33,43]. Indeed, previous theoretical works
have reported that the interaction of fluoroquinolones with the metal cations increases the
activation energy for some photo-transformation pathways, thus making the complex more
recalcitrant than the free antibiotic to the light action [43–45]. Furthermore, as the complex
had strong adsorption of the UVC light, this may affect the production of radicals by the
hydrogen peroxide photolysis (Equation (11)) or the photo-reduction of aqua-complex of
ferric ions (Equation (12)). Hence, the degradation of the complexed CIP and the H2O2
consumption are low under the UVC light action, as observed in Figure 5.
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Figure 5. Sequential application of sF and UVC. (a) Evolution of CIP under the action of US fol-
lowed by UVC irradiation; (b) Evolution of the H2O2 accumulation during the CIP treatment under
the action of US followed by UVC irradiation. Experimental conditions: f: 375 kHz, P: 34.4 W,
[CIP]initial: 30.6 µmol L−1, [Fe2+]: 1.0 mg L−1 (18.0 µmol L−1), pHinitial: 5.6, V: 250 mL, and
UVC: 3.02 × 1017 photons s−1.

To analyze the treatment extent, the antimicrobial activity (AA) evolution correspond-
ing to the sequential treatment (sF followed by UVC) was also stated (Figure 6a). It can
be noted that the initial ultrasound step led to a decrease in the AA (~30% after 20 min of
treatment). However, the photochemical component had no significant effect on the AA
decrease. These results regarding the AA evolution were consistent with those observed
in Figure 5. As the elimination of the antibiotic stopped, the AA remained approximately
constant. Hence, the decrease in antimicrobial activity was related to the diminution in
the concentration of CIP. Moreover, it should be remarked that the sequential system was
unable to decrease the AA completely.



Molecules 2023, 28, 1113 11 of 16

Molecules 2023, 28, x FOR PEER REVIEW 14 of 20 
 

 

Time (min)

0 10 20 30 40 50

A
A

/A
A

o

0.0

0.2

0.4

0.6

0.8

1.0

1.2

UVCUS+Fe (II)

 CIP removal (%)

0 20 40 60 80 100

A
A

/A
A

o

0.0

0.2

0.4

0.6

0.8

1.0

1.2

 

(a) (b) 

Figure 6. Evolution of the antimicrobial activity (AA). (a) Evolution of AA associated with CIP un-

der the action of sF (US+ Fe (II)) followed by UVC irradiation; (b) Evolution of AA associated with 

CIP under the action of the sonochemical process alone. Experimental conditions: f: 375 kHz, P: 34.4 

W, [CIP]initial: 30.6 µmol L−1, [Fe2+]: 1.0 mg L−1 (18.0 µmol L−1), pHinitial: 5.6, V: 250 mL, and UVC: 

3.02x1017 photons s−1. 

As the sF process is limited, the capability of the ultrasound system alone to decrease 

the AA associated with CIP was also assessed (Figure 6b). This process achieved a com-

plete decrease in AA. Indeed, at 90% of CIP removal, the AA was 100% decreased, sug-

gesting that the residual CIP amount (i.e., ~3.1 µmol L−1) is below its minimum inhibitory 

concentration (MIC), and the degradation products could have lower AA than the parent 

antibiotic because of structural modifications on the antibiotic, which would be induced 

by the action of the process [38]. Therefore, to better understand the AA evolution under 

the US action, the primary transformation products were elucidated (Figure 7). 

N

OH

N

NH

OO

F

CIP

[M+H]+ = 332 N

OH

N

NH

OO

OH

Product 3

[M+H]+ = 330

Product 2

[M+H]+ = 334

Product 1

[M+H]+ = 348

N

OH

N

NH

OO

F

OH

N

OH

N

NH2

OO

F

O

 

Figure 7. Primary transformation products for CIP under the action of ultrasound process alone. 

The mass spectra of CIP and its primary transformation products are presented in Figures S5–S8. 

The sonochemical action induced a hydroxylation of the quinolone nucleus (Product 

1), cleavage plus oxidation of the piperazyl ring (Product 2), and substitution of the fluo-

rine on CIP (Product 3, Figure 7). These products come from the attacks of the sonogener-

ated hydroxyl radicals. They have also been detected during the treatment of CIP by other 

oxidative processes, such as pulsed radiolysis [46], photocatalysis using bismuth oxybro-

mide [47], electrochemical [48], and persulfates-based systems [49,50], in addition to pho-

tolytic and photocatalytic treatments [51]. The modifications on the quinolone (Product 1) 

and piperazyl (Product 2) rings may alter the acid/base speciation and decrease the lipo-

philicity and the cell permeability [51], thus diminishing the AA. In turn, the fluorine re-

placement on the CIP structure (as shown for Product 3) could also diminish the 

Figure 6. Evolution of the antimicrobial activity (AA). (a) Evolution of AA associated with CIP
under the action of sF (US+ Fe (II)) followed by UVC irradiation; (b) Evolution of AA associated
with CIP under the action of the sonochemical process alone. Experimental conditions: f: 375 kHz,
P: 34.4 W, [CIP]initial: 30.6 µmol L−1, [Fe2+]: 1.0 mg L−1 (18.0 µmol L−1), pHinitial: 5.6, V: 250 mL, and
UVC: 3.02 × 1017 photons s−1.

As the sF process is limited, the capability of the ultrasound system alone to decrease
the AA associated with CIP was also assessed (Figure 6b). This process achieved a complete
decrease in AA. Indeed, at 90% of CIP removal, the AA was 100% decreased, suggesting that
the residual CIP amount (i.e., ~3.1 µmol L−1) is below its minimum inhibitory concentration
(MIC), and the degradation products could have lower AA than the parent antibiotic
because of structural modifications on the antibiotic, which would be induced by the action
of the process [38]. Therefore, to better understand the AA evolution under the US action,
the primary transformation products were elucidated (Figure 7).
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mass spectra of CIP and its primary transformation products are presented in Figures S5–S8.

The sonochemical action induced a hydroxylation of the quinolone nucleus (Prod-
uct 1), cleavage plus oxidation of the piperazyl ring (Product 2), and substitution of the
fluorine on CIP (Product 3, Figure 7). These products come from the attacks of the sono-
generated hydroxyl radicals. They have also been detected during the treatment of CIP
by other oxidative processes, such as pulsed radiolysis [46], photocatalysis using bismuth
oxybromide [47], electrochemical [48], and persulfates-based systems [49,50], in addition to
photolytic and photocatalytic treatments [51]. The modifications on the quinolone (Prod-
uct 1) and piperazyl (Product 2) rings may alter the acid/base speciation and decrease
the lipophilicity and the cell permeability [51], thus diminishing the AA. In turn, the
fluorine replacement on the CIP structure (as shown for Product 3) could also diminish
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the antimicrobial action as the fluorine atom on CIP plays a determinant role in the cell
permeation [51] as well as inhibiting the DNA gyrase (which is the action mode of this
antibiotic on bacteria [52]). Such structural transformations on CIP by the sonochemical
explain the AA decrease observed in Figure 6b. Therefore, the sF has limited performance
for eliminating ciprofloxacin, and it is more convenient for this antibiotic treatment to use
ultrasound alone.

3. Materials and Methods
3.1. Reagents

Ciprofloxacin (CIP) and acetaminophen (ACE) were provided by Laproff laboratories
(Medellín, Colombia). Acetonitrile, hydrochloric acid, Iron (III) chloride hexahydrate, Iron
(II) sulfate heptahydrate, methyl orange (MO), and nutrient agar were purchased from
Merk (Darmstadt, Germany). Formic acid was obtained from Carlo Erba (Barcelona, Spain).
Peptone and yeast extract powders were purchased from Oxoid (Basingstoke, UK). All the
culture media and broths were sterilized at 121 ◦C using an autoclave. All solutions were
prepared using distilled water.

As the heterogeneous iron source, a natural mineral was used. This material was
obtained from an iron mine in Colombia (Duitama, Boyacá). It was used without any
pretreatment. The specific surface area was estimated at 19.79 m2 g−1 by the Brunauer–
Emmett–Teller (BET) theory, and N2 physisorption measurements on a Micromeritics 3Flex
apparatus were used for the measurements. The natural mineral contained 81.3% by mass
of iron (as iron oxides, mainly hematite with traces of siderite, see Figure S2b) [19].

3.2. Reaction System

Sonochemical experiments were carried out in a high-frequency Meinhardt Ultrasonics
reactor (i.e., >200 kHz) equipped with a cylindrical glass vessel containing 250 mL of
pharmaceutical solution. The ultrasound waves were emitted from a transducer (with the
possibility of operation at three different frequencies: 375, 575, and 858 kHz) placed at the
bottom of the reactor. In this reactor, both frequency and power can be changed (Figure 8a).
The actual ultrasound power was determined by the calorimetric method [53].
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Figure 8. Scheme of the experimental setups. (a) Ultrasound reactor for the sono-Fenton process, in
this reactor, frequency and power can be adjusted. (b) Reactor for the photo-treatment.

For the photo-treatment of the solutions previously treated by ultrasound, a home-
made reflective reactor was used that was equipped with three Osram Puritec (HNS G5,
60 W) UVC lamps (Wilmington, MA, USA) and a main emission peak at 254 nm. A beaker
containing 250 mL of the sample that was under constant magnetic stirring was submitted
to the UVC action (Figure 8b). The actual photon flux of UVC light in the reactor was
3.02 × 1017 photons s−1 (determined by actinometry using ferrioxalate [54]).
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3.3. Analyses

The evolution of the pharmaceuticals during treatments was followed by using a
UHPLC Thermo Scientific (Waltham, MA, USA) Dionex UltiMate 3000 instrument equipped
with an Acclaim™ 120 RP C18 column (5 µm, 4.6 mm × 150 mm) and a diode array
detector. The chromatographic conditions of each pharmaceutical, such as composition
mobile phase, flow, and detection wavelength, are detailed in Table 3. In the case of the
methyl orange, its degradation was followed by measuring the absorbance at 465 nm using
a UV5 Mettler-Toledo spectrophotometer. During the pollutants’ treatment, samples of
0.5 mL were periodically taken from the reaction systems (the total taken volume was
always lower than 10% of the initial volume in each system). The degradations fitted well
to pseudo-first-order kinetics, and the rate constants (k) were obtained as the slope of the
ln (C/Co) vs. time plots, as illustrated in Figure S9. Table S1 summarizes the k-values
associated with the degradation of the target pollutants, with their corresponding errors
and correlation coefficients.

Table 3. Chromatographic conditions for analyses of CIP and ACE.

Pharmaceutical Acetonitrile/Formic Acid
(%/%)

Detection Wavelength
(nm)

Flow
(mL min−1)

Ciprofloxacin
(CIP) 15/85 278 1.0

Acetaminophen
(ACE) 15/85 243 0.6

Accumulation of sonogenerated hydrogen peroxide was estimated by iodometry [40].
An aliquot of 600 µL from the reactors was added to a quartz cell containing 1350 µL of
potassium iodide (0.1 M) and 50 µL of ammonium heptamolybdate (0.01M). After 5 min,
the absorbance at 350 nm was measured using a spectrophotometer (UV5 Mettler Toledo).

The evolution of the antimicrobial activity of CIP was analyzed by the diffusion
agar method [55], using 30 µL of the sample, S. aureus (ATCC 25923) as the indicator
microorganism, and the incubation was performed at a Memmert incubator at 37 ◦C
during 24 h.

The primary transformation products were established using an HPLC Agilent 1200 se-
ries coupled to an Agilent LC/MSD VL SQ mass spectrometer (Santa Clara, CA, USA).
The column and mobile phase were operated under the same conditions presented in
Table 3. The injection volume was 10 µL and the mass spectrometer detector was operated
in positive ion mode [56].

XRD analysis for the natural mineral was carried out in an X’Pert MPD PRO from
PANalytical (Malvern, UK) apparatus using Cu Kα radiation at a grazing incident angle of
4◦. The sample was sieved to separate the large aggregates and avoid X-ray reflection due
to size. It was then suspended in MQ-water and dropped/fixed on a glass slide [19].

4. Conclusions

The heterogeneous iron source had a low effect on the degrading action of the sono-
chemical process because, despite the solid particles of the natural mineral could induce
some attenuation of the ultrasound waves, the system can generate enough radicals to
degrade the target pollutants. In the homogenous sF performance, a strong dependence on
both the oxidation state and concentration of iron was observed, where the use of ferrous
ions, at relatively low concentrations, promotes the formation of extra hydroxyl radicals
beneficial to enhance the degradation of the pollutants. Finally, it must be considered that
the interaction of the pollutants with the iron species can alter the degrading action. In
fact, the formation of ferric complexes makes some pollutants recalcitrant to the action of
ultrasound or UVC light. In this last case, it is convenient to utilize ultrasound alone, which
can efficiently degrade the non-complexed pollutant. In fact, in the case of antibiotics such
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as CIP, the ultrasound alone is even able to decrease the antimicrobial activity thanks to
transformations induced by the sonochemical process to the parent pollutant.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/molecules28031113/s1, Figure S1: Adsorption of MO on the natural
mineral; Figure S2: (a) Adsorption of ACE on the natural mineral, (b) XRD pattern of the Colom-
bian natural mineral, Figure S3: UV-Visible spectrum of CIP and its interaction with ferrous ions;
Figure S4: UV-Visible spectrum of ACE and its mixture with ferric and ferrous ions; Figure S5: Mass
spectrum of CIP; Figure S6: Mass spectrum of Product 1; Figure S7: Mass spectrum of Product
2; Figure S8: Mass spectrum of Product 3. Figure S9: pseudo-first-order rate constant (k) deter-
mination example, Table S1: Values of pseudo-first-order constants (k) for the degradation of the
target pollutants.
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