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Abstract: Neurodegenerative diseases are associated with oxidative stress, due to an imbalance
in the oxidation-reduction reactions at the cellular level. Various treatments are available to treat
these diseases, although they often do not cure them and have many adverse effects. Therefore, it is
necessary to find complementary and/or alternative drugs that replace current treatments with fewer
side effects. It has been demonstrated that natural products derived from plants, specifically phenolic
compounds, have a great capacity to suppress oxidative stress and neutralize free radicals thus,
they may be used as alternative alternative pharmacological treatments for pathological conditions
associated with an increase in oxidative stress. The plant species that dominate the Mediterranean
ecosystems are characterized by having a wide variety of phenolic compound content. Therefore,
these species might be important sources of neuroprotective biomolecules. To evaluate this potential,
24 typical plant species of the Mediterranean ecosystems were selected, identifying the most important
compounds present in them. This set of plant species provides a total of 403 different compounds.
Of these compounds, 35.7% are phenolic acids and 55.6% are flavonoids. The most relevant of
these compounds are gallic, vanillic, caffeic, chlorogenic, p-coumaric, and ferulic acids, apigenin,
kaempferol, myricitrin, quercetin, isoquercetin, quercetrin, rutin, catechin and epicatechin, which
are widely distributed among the analyzed plant species (in over 10 species) and which have been
involved in the literature in the prevention of different neurodegenerative pathologies. It is also
important to mention that three of these plant species, Pistacea lentiscus, Lavandula stoechas and Thymus
vulgaris, have most of the described compounds with protective properties against neurodegenerative
diseases. The present work shows that the plant species that dominate the studied geographic area can
provide an important source of phenolic compounds for the pharmacological and biotechnological
industry to prepare extracts or isolated compounds for therapy against neurodegenerative diseases.

Keywords: natural antioxidants; neuroprotective compounds; phenols; Mediterranean species

1. Introduction
1.1. Brief Description of Neurodegenerative Diseases and Their Causes

Neurodegenerative diseases, diabetes, cardiovascular diseases, sarcopenia, and cancer
are associated with the “free radical theory” of aging [1–3]. This theory is based on the
structural damage-based hypothesis claiming that tissue dysfunction due to aging can be
attributed to the accumulation of oxidative damage of macromolecules by free radicals [1].
Oxidative stress results from an imbalance in reduction and oxidation reactions at the
cellular level. The consequence of this imbalance is the formation of reactive oxygen or
nitrogen species (ROS/RNS) and sometimes it can be attributed to a decrease in the level
of antioxidant defense [4,5]. In particular, the excessive production of ROS contributes to
oxidative stress leading to neuronal cell death and an alteration of brain function [2,6]. The
central nervous system is vulnerable to oxidative stress since it has a large requirement for
oxygen and has a lower amount of antioxidant enzymes, compared with other tissues [7,8].
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Harman et al. [1] extended the “free radical theory” of aging to the “mitochondrial
theory of aging”, which states that ROS accumulation induces mitochondrial dysfunction,
which contributes to aging and the development of related diseases [9–11]. Over the last
decade, a connection between mitochondria and longevity has become increasingly evident.
Mitochondria are also regulators of some types of cell death, such as apoptosis, and thus,
their mitochondrial dysfunction might affect the lifespan of individuals presenting defects
in this organelle [11].

Neurodegenerative diseases are frequently associated with neuroinflammation, which
is a process related to oxidative and nitrosative stress. The inflammatory response is further
propagated by the activation of glial cells and the modulation of constitutively expressed
extracellular matrix proteins [12,13].

Many neurodegenerative diseases have been described to be highly prevalent in the
population and have a high socioeconomic impact. Alzheimer’s disease (AD), Parkinson’s
disease (PD), Huntington’s disease (HD), amyotrophic lateral sclerosis, and frontotemporal
dementia are some examples [14,15]. All these diseases, specifically AD and PD, are associ-
ated with high morbidity and mortality and represent a primary health problem, especially
in the aged population [16]. These disorders share common pathological characteristics,
such as the induction of oxidative stress, abnormal protein aggregation, perturbed Ca2+

homeostasis, excitotoxicity, inflammation and apoptosis [17,18].
AD is a progressive neurological condition and the world’s most common form of

dementia [19]. The pathological characteristics include extracellular deposits of amyloid
β, (Aβ), intracellular formation of neurofibrillary tangles and loss of neuronal synapses
and pyramidal neurons [20]. Aβ deposits derive from amyloid precursor protein and
the neurofibrillary tangles containing an abnormally phosphorylated form of tau, which
is a microtubule-associated protein [21]. A growing body of research supports that Aβ

aggregation and decreased Aβ clearance are the leading causes of this disease onset.
Different studies indicate that oxidative stress plays a fundamental role in the devel-

opment and evolution of AD. For example, elevated ROS production has been shown to
initiate toxic amyloid beta precursor protein processing, thereby triggering Aβ

generation [22]. These ROS are primarily generated via NADPH oxidase 2, which is
well associated with inflammation and amyloid plaque deposition, leading to mitochon-
drial dysfunction and decreased glutathione levels. Neurons contain a high amount of
polyunsaturated fatty acids that can interact with ROS, leading to a self-propagating
cascade of lipid peroxidation and molecular destruction [23]. Products of lipid peroxida-
tion have also been shown to be elevated in blood samples and brains of AD patients at
autopsy [24]. It has also been correlated with the initial stage of the disease DNA oxidative
damage in the AD brains, due to increased expression of ERCC-80 and 89 genes related to
DNA repair activity [25].

On the other hand, the “cholinergic hypothesis of AD” is based on acetylcholine
deficiency [26,27]. This neurotransmitter is involved in cognition and memory processes
that are known to be decreased in AD. Thus, cholinesterase inhibitors are the first line of
therapy for the management of AD [28,29].

PD is the second most common age-related neurodegenerative disorder in the central
nervous system. This disease is a clinical syndrome characterized by motor impairments,
including bradykinesia, resting tremor, muscle rigidity, loss of postural reflexes, freezing
phenomenon and flexed posture. PD involves the loss of dopaminergic neurons of the
pars compacta region of the substantia nigra and the accumulation of intracellular proteins
(synucleins), leading to cognitive and motor deterioration in people who suffer from
it [30–33].

It is possible that processes, such as oxidation, may be responsible for the gradual
dysfunction that can be manifested throughout the disease. Previous publications have
reported evidence of this oxidative stress through the detection of oxidized DNA, lipids,
and proteins in the brain tissues of PD patients [34]. Dopaminergic neurons contain large
amounts of ROS derived from dopamine’s enzymatic and non-enzymatic metabolism.
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Dopamine may be catabolized by monoamine oxidase (MAO) in a process that gen-
erates 3,4-dihydroxyphenyl-acetaldehyde, ammonia and H2O2, which reacts with Fe2+

to form hydroxyl radical. In addition, dopamine oxidation may spontaneously generate
6-hydroxydopamine, which is subsequently transformed into reactive electrophilic molecules
in the presence of oxygen [35]. On the other hand, several studies suggest that the overexpres-
sion or misfolding of α-synuclein increases ROS production and cell susceptibility to oxidative
stress [36,37].

In general, the treatments for neurodegenerative diseases tend to be limited in their
therapeutic approach, due to their symptom management but non-curative nature [38],
and the continuous use of certain conventional drugs generates many adverse effects, such
as nausea, diarrhea, eating disorders and kidney and liver affectations [39]. Therefore, it
is necessary to find complementary and/or alternative treatments. Several clinical trials
have proved the implication of natural products as antioxidant agents (e.g., ferulic and
p-coumaric acids, resveratrol, catechin, epi-catechin, quercetin, ginsenosides.) [40–43] and,
given the role of oxidative stress in the pathogenesis of neurodegenerative diseases, these
compounds can be a good therapeutic alternative against these diseases.

1.2. Phenolic Compounds: Their Importance and Implication in Neurodegenerative Diseases

Many studies have focused on natural phytocomponents as important bioactive
molecules against aging-related chronic diseases, including neurodegenerative
diseases [44–46]. The wide and countless number of natural compounds from plants, ani-
mals, fungi and microorganisms provide a rich and unique source for new drug search [47],
with plants being the main source of these compounds. In most cases, the biological ac-
tivity attributed to plant extracts derives from secondary metabolites, which include two
extensive categories: nitrogen-containing and non-nitrogen-containing compounds [48,49].
In the latter category, phenols are one of the most extensive groups of secondary metabo-
lites in the plant kingdom [50]. Structurally, they are characterized by the presence of at
least one hydroxyl functional group (-OH) linked to an aromatic ring [51]. Polyphenol
classification is based on the number of phenol rings in the molecule, and the main sub-
groups include phenolic acids, coumarins, stilbenes, flavonoids, tannins and lignans [50].
These compounds exert different biological activities, including antioxidant, antiallergic,
anti-inflammatory, antiviral, antiproliferative and anticarcinogenic effects [52,53].

One of the most remarkable functions of phenols is their capacity to suppress oxida-
tive stress and neutralize free radicals. They can act as reducing agents, metal chelators,
free-radical scavengers, enzyme modulators and regulators of diverse proteins and tran-
scriptional factors (Figure 1) [54,55]. The antioxidant potential of these compounds confers
therapeutic activities for a wide variety of diseases, such as cardiovascular diseases, cancer,
liver diseases, diabetes and neurodegenerative disorders [56,57].
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It has been demonstrated that phenols can inhibit the aggregation of proteins involved
in various neurodegenerative pathologies in which cognitive deterioration occurs, including
AD, PD, dementia with Lewy bodies, and multiple system atrophy [58]. In fact, studies
conducted with flavonoids show that these compounds would be involved in preventing
neurodegeneration [59]. Their bioactivity is attributed to their antioxidant effect and their
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capacity to inhibit acetylcholinesterase (AChE)/butyrylcholinesterase (BChE) [19] and the
GABA receptor [60], alleviate mitochondrial dysfunction [61], modulate neuronal signaling
pathways critical for the control of neuronal resistance to neurotoxic oxidants, inhibition
inflammatory mediators [62] and chelation of transition metal ions [59].

It has been shown that the interaction of flavonoids with these receptors depends on
the structure [63], implying that not all phenols have the same activity and importance as
agents to prevent or treat neurodegenerative diseases. It has been suggested that B-ring
hydroxylation is a differentiating element in the action exerted by flavonoids, particularly
the positive contribution of 5-dehydroxylation and 3′,4′-ortho-dihydroxylation on the
B-ring [64]. Furthermore, a study on flavonoid-PI3-kinase interaction has further confirmed
the pivotal role of B-ring hydroxylation [65], and highly sensitive allosteric modulation has
been proposed [60].

Other studies have reported the direct involvement of phenolic compounds in pre-
venting various pathologies associated with oxidative stress. One of these compounds
is resveratrol, a phenol that can directly target multiple signaling cascades involved in
neurodegenerative diseases, such as anti-inflammatory activity and inhibiting the aggre-
gation of toxic Aβ amyloid protein [66]. Another example is 3,4,5–trihydroxybenzoic
acid, a phenol that inhibits the plasma membrane Pdr5p efflux pump in AD124567 yeast
strain overexpressing the PDR5 gene [67]. Another study demonstrated that 4-hydroxy-3-
methoxybenzaldehyde represses translation in yeast, as concluded by the accumulation of
processing bodies and stress granules composed of non-translating mRNAs and proteins
after 4-hydroxy-3-methoxybenzaldehyde exposure [68].

In studies conducted in Saccharomyces, Sunthonkun et al. [69] observed the positive
effects of 3,4-dihydroxybenzoic acid against aging. In this sense, 3,4-dihydroxybenzoic
acid positively modulated the life span of Saccharomyces by reducing ROS, conferring cells
greater resistance against free radicals. According to these authors, regarding the reduction
of ROS levels, 3,4-dihydroxybenzoic acid seems to imitate the effect of the inactivation
of proteins such as Sir2 (silent information regulator 2), Tor1 (protein kinase) or Sch9
(protein kinase).

Considering all this information and the multifactor origin of neurodegenerative
disorders, it is interesting and necessary to delve into the study of natural multitarget
compounds and their bioavailability [70,71].

Mediterranean ecosystems show a great diversity of plant species derived from the
specific climatic conditions and the heterogeneity of their habitats [72]. The species that
dominate these habitats endure harsh conditions due to the frequency of wild fires, high
temperatures, water stress in summer and herbivory [73]. These unfavorable conditions
stimulate the production of compounds derived from secondary metabolism, specifically
phenolic compounds [74,75], which play an important ecological role in the adaptive
response to these unfavorable conditions. Therefore, the species of these ecosystems may
constitute an important and diverse source of compounds that should be studied.

This work aimed to evaluate the potential of Mediterranean shrub species as a source of
phenolic compounds. To this end, we selected the shrub species that dominate a particular
geographic area of the Iberian Peninsula.

2. Description of the Study Area and Article Search Strategy

The study area selected was Extremadura, a region of the Western Iberian Peninsula
with a surface of 41,635 km2. From a biogeographic perspective, it is in the Mediterranean
region and is characterized by a diverse set of plant associations that result from the
interaction of its biotic and abiotic factors. The bioclimatic floors and levels that may be
found in the region of Extremadura are mesomediterranean, supramediterranean and
orosubmediterranean [76], and they are associated with a rainfall of 200–2000 mm/year
and an average annual temperature of 4–19 ◦C. These conditions are responsible for the
wide variability of the plant landscape of this region, which is represented by the vegetation
sets described in “Plant Landscape and Dynamics in Extremadura” [77], with the following
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dominating shrub formations: orophilous laburnum and creeping juniper, heath and
rock rose, broom and rotem, thyme and cantuesar, gorse and basophilic rock rose, wild
olive and mastic, strawberry tree, arborescent juniper, kermes oaks, and garrigues and
thorny bushes (brambles and thorns). These groupings are characterized and dominated
by the following 24 species: Cistus ladanifer, Cistus salviifolius, Cistus monspeliensis, Cistus
crispus, Cistus albidus, Cistus populifoius, Cytisus multiflorus, Cytisus scoparius, Cytisus striatus,
Erica multiflora, Erica scoparia, Erica australis, Calluna vulgaris, Myrtus communis, Pistacea
lentiscus, Pistacea terebinthus, Rosmarinus officinalis, Quercus ilex, Quercus suber, Arbutus unedo,
Lavandula stoechas, Thymus mastichina, Thymus vulgaris and Rubus ulmifolius.

In this study, we reviewed the works conducted on the identification of phenolic
compounds in the 24 selected species. The data reflect the compounds identified in studies
published between 1996 and 2022 in the Pubmed, ScienceDirect and Scopus databases. We
selected the articles where the identification of these compounds was supported, at least,
by techniques such as high-performance liquid chromatography (HPLC)–photodiode array
detection (DAD)–mass spectrometry (MS), which provide reliable information about the
constitution of phenolic compounds. Articles that were not available in full-text were not
considered. Moreover, articles without a clear experimental procedure were also excluded.

3. Description and Classification of the Phenolic Compounds Present in the
Selected Species

Table 1 presents the list of phenolic compounds that have been identified by different
authors in the 24 species selected for this study. A total of 403 different phenolic compounds
can be found in this entire set of species. These compounds belong to different classes
or groups: phenolic acids, flavonoids, other polyphenols, lignans and stilbenes. Each of
these groups accounts for 35.7%, 55.6%, 5.7%, 2% and 0.7%, respectively (Table 2). As
can be observed, the largest group is constituted by flavonoids; thus, these species are an
important and diverse source of these phenols.
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Table 1. Phenolic compounds identified in the 24 species selected in this study.

Species
Cl Cs Cm Cc Ca Cp Cym Cys Cyst Em Es Ea Cv Mc Pl Pt Ro Qi Qs Au Ls Tm Tv Ru

Class: Phenolic acid. Sub Class:
Hydroxybenzoic acids
Acetovanillone +
Anisic acid + + +
Benzoic acid +
Benzyl benzoate +
Methyl benzoate +
Castalagin +
Cornusilin + + +
3-hydroxybenzoic acid + + +
4-hydroxybenzoic acid + + + + + + +
4-hydroxybenzoic acid glucuronide +
Glucose p-hydroxy benzoate +
Dihydroxy-methoxybenzoic acid + +
Dihydroxybenzoic acid di-pentoside +
Dihydroxybenzoic acid hexoside +
Ducheside A +
3,4′-dihydroxypropiofenone-3-glucoside + + +
3-O-galloylquinic acid (Theogallin) + + +
3-O-galloylshikimic acid +
3,4-Di-O-galloylquinic acid + + + +
5-O-galloylquinic acid + +
5-O-galloylshikimic acid +
Galloyl arbutin +
Galloyl glucose + + + +
Galloyl glucuronide +
Galloyl hexoside + +
Galloyl-bis-HHDP glucose +
Galloyl-HHDP-DHHDP-hexoside +
Galloyl-HHDP-hexoside +
Digallic acid +
Digalloyl glucose + +
Digalloyl shikimic acid +
Digalloyl-HHDP-hexoside +
Digalloylarbutin +
Digalloylquinic shikimic acid +
Tetra-galloyl-hexoside +
Trigalloylquinic acid + + +
Trigalloylshikimic acid +
Pentagalloyl glucose +
Ellagic acid + + + + + + + +
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Table 1. Cont.

Species
Cl Cs Cm Cc Ca Cp Cym Cys Cyst Em Es Ea Cv Mc Pl Pt Ro Qi Qs Au Ls Tm Tv Ru

Ellagic acid-7-xyloside + + + +
Ellagic acid arabinoside +
Ellagic acid diglucoside +
Ellagic acid glucoside +
Ellagic acid glucuronide +
Ellagic acid hexoside +
Ellagic acid mannopyranoside +
Ellagic acid pentoside + +
Ellagic acid xylofuranoside +
Ellagitannin +
Methylellagic acid rhamnoside +
3,3′-di-O-Methylellagic acid
4-O-β-D-(2′′-acetyl) glucoside +

Gallic acid (3,4,5-trihydroxybenzoic acid) + + + + + + + + + + + + + + + + +
Gallic acid dihexoside +
Gallic acid glucoside +
Gallic acid hexoside +
Gallotannin +
Ethyl gallate +
Methyl gallate +
Gentisic acid + + +
Gentisoyl glucoside + + +
Gentisoyl hexoside +
Glucogallin + + + +
Hexahydroxydiphenoyl-glucose + + + + + +
Isoeugenol +
Lambertianin C +
Methoxysalicylic acid +
Protocatechualdehyde
(3,4-dihidroxy-benzaldehyde) +

Protocatechuic acid (3,4-dihydroxy-benzoic
acid) + + + + + + + + +

Protocatechuic acid glucoside + +
Punicalagin + + + +
Punicalin + + + +
Punicalagin-gallate + + +
Sanguiin H-10 +
Sanguiin H-10 isomer +
Shikimic acid gallate +
Shikimic acid dimer + + +
Strictinin ellagitannin +
Syringic acid + + + + + + + +
Syringyl-shikimic acid + + +
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Table 1. Cont.

Species
Cl Cs Cm Cc Ca Cp Cym Cys Cyst Em Es Ea Cv Mc Pl Pt Ro Qi Qs Au Ls Tm Tv Ru

TriGG-dehydrohexahydroxydiphenoyl
(DHHDP)-glucose +

Uralenneoside +
Vanillic acid + + + + + + + + + +
Vanillic acid sulfoquinovoside +
Class: Phenolic acid. Sub Class:
Hydroxycinnamic acids
Caffeic acid (3,4-dihydroxycinnamic acid) + + + + + + + + + + + +
caffeic acid 4-O-glucoside +
Caffeic acid derivate + + + +
Caffeic acid hexoside + +
Caffeic acid trimer +
Dihydrocaffeic acid + +
Caffeoyl arbutin +
Caffeoyl ferulic acid +
Caffeoyl feruloyl tartaric acid +
Caffeoyl hexoside +
Caffeoyl hexoside derivative +
4-O-Caffeoyl quinic acid + + +
Caffeoyl quinic acid glucoside + + +
Caffeoyl quinic acid derivative + +
Caffeoyl tartaric acid (caftaric acid) + + +
Dicaffeoyl shikimic acid +
1,4-dicaffeoyl quinic acid + +
3,5-dicaffeoyl quinic acid +
6-Caffeoyl sucrose +
Chlorogenic acid (3-O-caffeoylquinic acid) + + + + + + + + + + + + +
Methyl caffeate +
Cinnamic acid + + + + + + +
Cinnamic acid derivative +
Methoxycinnamic acid +
Cinnamic acid-O xylosyl hexoside +
Hydrocinnamic acid +
Hydrocinnamic acid glucoside +
Hydroxycinnamoyl-quinic acid +
p-Coumaric acid + + + + + + + + + +
p-Coumaricacid derivate + +
Coumaroyl quinic acid + + + + +
Coumaroyl quinic acid derivative +
Coumaric acid hexoside + +
Chicoric acid +
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Table 1. Cont.

Species
Cl Cs Cm Cc Ca Cp Cym Cys Cyst Em Es Ea Cv Mc Pl Pt Ro Qi Qs Au Ls Tm Tv Ru

Ferulic acid + + + + + + + + + + + +
Ferulic acid derivative + +
3-O-Feruloylquinic acid + + + +
Feruloylquinic glucoside + + +
Feruloyl-glucoside +
Hydroxy-ferulic acid hexoside +
Hydroxy-ferulic acid rhamnoside +
Feruloyl tartaric acid (fertaric acid) + + + +
6′-O-Sinapoylsucrose + +
3,4-Dihydroxyphenyllactic acid hexoside +
3-(3,4-Dihydroxyphenyl)-2-
hydroxypropanoic acid +

Rosmarinic acid + + + + +
Rosmarinic acid hexoside + +
Rosmarinic acid-3-O-glucoside + +
Dihydroxy-dihydro feruloyl methyl
rosmarinic acid + + +

Methylrosmaric acid + + + + + +
p-Hydroxybenzylrosmarinic acid + +
Isosalvianolic acid A +
Methyl melitrate +
Salvianolic acid A
Salvianolic acid B +
Salvianolic acid C +
Sinapaldehyde + +
3-Sinapoylquinic acid +
Sinapic acid + + +
Yunnaneic acid F +
Verbascoside +
Class: Phenolic acid. Sub Class:
Hydroxyphenylacetic acids
p-Hydroxyphenylacetic acid + +
3,4-Dihydroxyphenylacetic acid + +
3,4-dihydroxyphenyllactic acid hexoside +
Class: Flavonoid. Sub Class: Flavanones
Eriodictyol + +
Eriodictyol 7-O-rutinoside + +
Eriodictyol-7-O-glucuronide +
Eriodictyol-O-di-hexoside + +
Eriodictyol-O-hexoside + +
Eriodictyol-O-hexuronide +
Glucodistylin +
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Table 1. Cont.

Species
Cl Cs Cm Cc Ca Cp Cym Cys Cyst Em Es Ea Cv Mc Pl Pt Ro Qi Qs Au Ls Tm Tv Ru

Glucodistylin isomer +
Hesperetin 7-O-rutinoside (Hesperidin) + + + + +
Methyleriodictyol-O-pentosylhexoside +
Naringenin + + + + + + + +
Naringenin-di-hexoside +
Naringenin 7-O-glucoside (Naringin-Prunina) + + + + + + + + +
Pinocembrin +
Class: Flavonoid. Sub Class: Flavones
Apigenin + + + + + + + + + + +
Apigenin 7-O-glucuronide + +
Apigenin glucuronide hexoside + + +
Apigenin 6,8-di-C-glucoside + + + +
Apigenin 7-O-glucoside + + + + + +
Apigenin C-hexoside + +
Apigenin pentoside + +
Apigenin-7-O-rutinoside +
Apigenin-O-hexoside + +
Apigenin-O-hexoside derivative +
Isovitexin 7-O-glucoside +
Apigenin 8-C-glucoside (Vitexin) + +
2′′-O-pentosyl-6-C-hexosyl-apigenin +
2′′-O-Pentosyl-8-C-hexoside apigenin isomer I +
2′′-O-Pentosyl-8-C-hexoside apigenin isomer
II +

2′′-O-pentosyl-8-C-hexosyl-apigenin +
2′′-O-Pentoxide-8-C-hexoside apigenin +
4′-O-Rutinoside of 7-O-methylated apigenin +
6′′-O-(3-hydroxy-3-methylglutaroyl)-2′′-O-
pentosyl-C-hexosyl-apigenin +

Apigenin 4′-methyl ether + + +
Apigenin 7-methyl ether (Genkwanin) + + +
Apigenin 4′,7-dimethyl ether + + + +
Chalcone +
Chrysin derivative +
Chrysin-7-O-glucoside +
Circimaritin
Hispidulin (Scutellarein 6-methyl ether) + +
Hispidulin 7-O-glucose (homoplantaginin) +
6′′-O-(E)-feruloylhomoplantaginin +
Hispidulin-rutinoside +
Hypolaetin di-glucuronide +
Hypolaetin 8-O-glucuronide +
Isoscutellarein 7-O-glucoside +
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Table 1. Cont.

Species
Cl Cs Cm Cc Ca Cp Cym Cys Cyst Em Es Ea Cv Mc Pl Pt Ro Qi Qs Au Ls Tm Tv Ru

Isoscutellarein 8-O-glucuronide +
Ladanein
(5,6-dihydroxy-7,4′-dimethoxyflavone) +

Luteolin (3′.4′.5.7-Tetrahydroxyflavone) + + + + + + + + +
Chrysoeriol-O-hexoside (Luteolin 3′-methyl
ether) +

Diosmetin (Luteolin 4′-methyl ether) +
Cirsilineol (6-Methoxyluteolin 3′,7-dimethyl
ether) +

Luteolin 7,3-dimethyl ether +
Luteolin 3′-O-glucuronide +
Luteolin-7-O-glucuronide + + + +
Luteolin 7,4′-di-glucuronide + +
Luteolin 4-O-glucoside +
Luteolin 7-O-glucoside + + + + +
Luteolin-5-O-glucoside +
Luteolin 8-C-glucoside (Orientin) + +
Luteolin 6-C-glucoside (Isoorientin) +
Luteolin-O-hexorunide +
Luteolin-7-O-rutinoside + + + + + +
Luteolin-hexoside + +
Luteolin 6-hydroxy-7-O-glucoside +
Luteolin-O-malonyl-hexoside) + + +
2′′-O-Pentosyl-8-C-hexoside luteolin +
2′′-O-pentosyl-6-C-hexosyl-luteolin +
2′′-O-pentosyl-8-C-hexosyl-luteolin +
6′′-O-(3-hydroxy-3-methylglutaroyl)-2′′-O-
pentosyl-C-hexosyl-luteolin +

Nepitrin (Nepetin 7-O-glucoside) +
6′′-O-(E)-feruloylnepitrin +
Salvigenin
(5-Hydroxy-6,7,4′-trimethoxyflavone)
Techtochrysin +
Class: Flavonoid. Sub Class: Flavonols
Isorhamnetin + +
Isorhamnetin 3-O-glucoside + + + +
Isorhamnetin 3-O-rutinoside + + +
Isorhamnetin-3-O-hexoside + + +
Isorhamnetin-O-(6′′-caffeoyl)hexoside +
Isorhamnetin-O-deoxyhexosyl-hexoside +
Isorhamnetin-O-hexoside-O-rhamnoside + +
Galangin (3,5,7-Trihydroxyflavone) +
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Table 1. Cont.

Species
Cl Cs Cm Cc Ca Cp Cym Cys Cyst Em Es Ea Cv Mc Pl Pt Ro Qi Qs Au Ls Tm Tv Ru

Kaempferol + + + + + + + + + + + + +
6-Hydroxykaempferol +
Dihydrokaempferol 3-O-glucoside +
Kaempferol 3-methyl ether + + +
Kaempferol 3 4′-dimethyl ether + +
Kaempferol 3 7-dimethyl ether + +
kaempferol 3,7,4′-trimmethyl ether + +
kaempferol methylether O-rutinoside +
Kaempferol dimethylether hexoside +
Kaempferol 3-O-(6′′-galloyl) glucoside + + +
kaempferol-3-O-(6′′-feruloyl)-β-D-
glucopyranoside +

Kaempferol 3-O-(6′′-p-coumaroyl) glucoside + +
kaempferol-3-O-(2′ ′,6′ ′-di-p-
coumaroyl)glucoside isomers +

kaempferol-3-O-(2′′,6′′-di-E-p-coumaroyl)-
glucopyranoside +

kaempferol-3-O-(3′ ′-acetyl-2′′,6′ ′-di-p-
coumaroyl)glucoside +

kaempferol-3-O-(3′ ′,4′ ′-diacetyl-2′ ′,6′ ′-di-p-
coumaroyl)glucoside isomers +

kaempferol-3-O-(6′′-p-coumaroyl)
glucopyranoside(Tiliroside) + + +

Kaempferol-3-galactoside-6′′-rhamnoside-
3′ ′′- rhamnoside +

kaempferol malonyl glucoside +
kaempferol 3-O-ramnopyranoside +
Kaempferol-O-rhamnoside + + + +
Kaempferol 7-O-(6′′-rhamnosyl) glucoside + + +
kaempferol 3-O-arabinofuranoside +
kaempferol-3-O-arabinopyranoside +
Kaempferol 3-O-glucoside (Astragalin) + + + +
Kaempferol 3-O-rutinoside + + + +
Kaempferol-acetyl-O-rutinoside +
kaempferol-acetyl-O-rahmnoside +
Kaempferol-acetyl-O-hexoside + + + +
Kaempferol O-glucuronide + +
Kaempferol 7-O-hexuronide +
Kaempferol 3-O-pentoside + +
Kaempferol O-hexoside + + + + +
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Table 1. Cont.

Species
Cl Cs Cm Cc Ca Cp Cym Cys Cyst Em Es Ea Cv Mc Pl Pt Ro Qi Qs Au Ls Tm Tv Ru

Kaempferol O-pentosyl hexoside + +
Kaempferol-3-O-hydroxybenzoyl glucoside +
kaempferol-3-O-galactoside +
Kaempferol xyloside +
Kaempferol-O-di-hexoside + +
Morin +
Myricetin (3.3′.4′.5.5′.7-Hexahydroxyflavone) + + + + + + + + +
Myricetin 3-O-(6′′-rhamnosyl) glucoside +
Myricetin-O-(6′′-benzoyl) hexoside +
Myricetin-O-(6′′-cinnamoyl) hexoside +
Myricetin-O-(6′′-p-coumaroyl) hexoside +
Myricetin-O-(galloyl) hexoside + + + +
Methoxy-myricetin-O-rhamnoside +
Myricetin 3,7,4′,5′-tetramethyl ether +
Myricetin-3-arabinoside +
myricetin 3-O-arabinofuranoside +
Myricetin-3-O-galactoside +
Myricetin-3-O-glucoside + + + +
Myricetin-3-O-glucuronide + + +
Myricetin 3-O-hexoside + + + + + +
Myricetin 7-O-hexuronide +
Myricetin 3-O-pentoside +
Myricetin 7-O-pentoside + + +
Myricetin-O-rhamnoside (Myricitrin) + + + + + + + + + + + +
Myricitrin-2′ ′-O-gallate (Desmanthin) +
Myricetin-O-rutinoside + + + + +
Myricetin 3-O-xyloside + +
Pinobanksin (bioflavonoide) +
Quercetin (3.3′.4′.5.7-Pentahydroxyflavone) + + + + + + + + + + + + + + +
Quercetin-(acetyl) rutinoside +
Quercetin-(acetyl) hexoside + +
Quercetin-(acetyl)-O-rhamnoside +
Quercetin-O-(6′′-cinnamoyl) hexoside + +
quercetin 3-O-(2′-coumaroyl) rutinoside + + +
Quercetin 3-O-(6′′-p-coumaroyl) hexoside +
Quercetin 3-O-(6′′-galloyl) hexoside +
Quercetin-O-(6′′-p-hydroxybenzoyl) hexoside + +
Quercetin-O-(malonyl) hexoside +
Quercetrin-O-gallate + +
Quercertin methyl ether-3-O-galactoside +
Quercetin 4′,5′-dimethyl ether +
Quercetin 3,7,4′,5′-tetramethyl ether +
Quercetin 3-O-arabinoside +
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Table 1. Cont.

Species
Cl Cs Cm Cc Ca Cp Cym Cys Cyst Em Es Ea Cv Mc Pl Pt Ro Qi Qs Au Ls Tm Tv Ru

quercetin 3-O-arabinofuranoside + +
Quercetin 3-O-galactoside (Hyperoside) + + + +
Quercetin 3-O-glucoside (Isoquercetin) + + + + + + + + + + + + + + + +
Quercetin 3-O-glucuronide + + + +
Quercetin-O-hexoside + + + + + + + +
Quercetin 3-O-hexuronide + +
Quercetin hexose protocatechuic acid +
Quercetin-O-rhamnoside (Quercetrin) + + + + + + + + + + +
Quercetin 3-O-rutinoside (Rutin) + + + + + + + + + + + + + + + +
Quercetin 3-O-pentoside + + + +
Quercetin 3-O-xyloside +
Quercetin 3-O-rhamnoside-7-O-glucoside +
Quercetin 3,4-diglucoside + + + +
Quercetin-O-deoxyhexosyl-hexoside +
Quercetin-O-dihexoside + +
Quercetin-pentosyl-hexoside + +
Taxifolin (dihydroquercetin) + + +
Taxifolin-3-O-glucoside + +
Taxifolin 3-O-rhamnoside +
Taxifolin-O-hexoside + +
Taxifolin pentoside +
Class: Flavonoid. Sub Class: Flavanols
Catechin + + + + + + + + + + +
Catechin 3-gallate +
4,3′,4′-Trimethylcatechin + +
Catechin derivates +
Catechin glucose +
Catechin-( 4α→8)-Catechin (Procyanidin B3) + +
Dehydrodicatechin A +
Epicatechin + + + + + + + + + +
Epicatechin derivatives +
Epicatechin methyl gallate +
Epicatechin gallate + + + + +
epicatechin-4,6-catechin +
epicatechin-4,8-catechin +
epicatechin-4,8-epicatechin-4,8-catechin +
Epicatechin-4,8-epicatechin-4,8-Epicatechin +
Epicatechin-A-epicatechin + + + +
Epicatechin-B-epicatechin-A-epicatechin +
Epicatechin-epicatechin 3-O gallate +
Epicatechin-epigallocatechin + + +
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Table 1. Cont.

Species
Cl Cs Cm Cc Ca Cp Cym Cys Cyst Em Es Ea Cv Mc Pl Pt Ro Qi Qs Au Ls Tm Tv Ru

Epigallocatechin + + + +
Epigallocatechin gallate(Teatannin II) + + + +
Epigallocatechin–catechin +
Epigallocatechin–epicatechin +
Epigallocatechin–epigallocatechin + + +
Fzelechin-catechin-3-O-rhamnoside
(proanthocyanidin) +

Gallocatechin + + +
Gallocatechin-4,8-catechin +
Procyanidin B2 +
Tannic acid +
Class: Flavonoid. Sub Class: Anthocyanins
Cyanidin 3-O-arabinoside + +
Cyanidin-3-galactoside +
Cyanidin 3-O-glucoside + + + + + +
Cyanidin-3-O-rutinoside +
Cyanidin 3-O-xyloside +
Cyanidin dihexoside +
Cyanidin-3,5-diglucoside +
Delphinidin 3-O-galactoside +
Delphinidin 3-O-glucoside + + + +
Malvidin-3-O-glucoside/Oenin + + + +
Pelargonidin 3-O-(6′′-malonyl) glucoside + +
Pelargonidin-3-O-glucoside +
Pelargonidin 3-rutinoside +
Peonidin 3-O-(6′′-p-coumaroyl) glucoside + +
Peonidin-3-O-glucoside +
Petunidin + +
Petunidin-3-O-glucoside + +
Class: Flavonoid. Sub Class: Isoflavonoids
Daidzein
3′-Hydroxydaidzein +
Genistein + +
2′-Hydroxygenistein +
Glycitin 6′′-O-malonate + +
Class: Other polyphenols. Sub Class:
Hydroxybenzaldehydes
4-hydroxybenzaldehyde + +
4-hydroxybenzoic acid 4-(6-O-sulfo)glucoside +
Syringaldehyde + +
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Table 1. Cont.

Species
Cl Cs Cm Cc Ca Cp Cym Cys Cyst Em Es Ea Cv Mc Pl Pt Ro Qi Qs Au Ls Tm Tv Ru

Vanillin + + +
Class: Other polyphenol. Sub Class:
Hydroxycoumarins
4-methylumbelliferone +
6,7-Dihydroxycoumarin 3O-glucoside
(Aesculin) +

Coumarin +
Class: Other polyphenol. Sub Class: Tyroslos
Oleuropein +
Class: Lignans. Sub Class: Lignans
Carnosic acid + +
Carnosol + + +
Isolariciresinol 3-glucoside +
Methyl carnosic acid +
Pinoresinol + +
Rosmanol +
Rosmanol derivate +
Sagerinic acid +
Thymol +
Class: Other polyphenols. Sub Class: Other
polyphenols
5-Nonadecylresorcinol +
Arbutin +
Catechol + + + +
Coniferaldehyde + +
Hydroquinone derivative +
Salvianolic acid +
Salvianolic acid A + +
salvianolic acid B (lithospermic acid B) + + +
Salvianolic acid B/E/L +
Salvianolic acid C +
Salvianolic acid C isomer +
Salvianolic acid F +
Salvianolic acid K +
Salvianolic acid I +
Sculetin +
Class: Stilbenes. Sub Class: Stilbenes
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Table 1. Cont.

Species
Cl Cs Cm Cc Ca Cp Cym Cys Cyst Em Es Ea Cv Mc Pl Pt Ro Qi Qs Au Ls Tm Tv Ru

Piceid +
Resveratrol + + +
Stilbericoside +

References
[75,
78–
86]

[81,
87,
88]

[81,
83,
88–
90]

[81]
[81,
88,
91]

[81,
82]

[92–
96]

[97–
99] [100] [100] [101] [102,

103] [101] [83,
104]

[105–
107]

[108,
109]

[110–
115]

[116–
118] [117] [119–

133]
[134–
139]

[140–
142]

[143–
152]

[92,
153–
162]

Cl: C. ladanifer; Cs: C. salviifolius; Cm: C. monspeliensis; Cc: C. crispus; Ca: C. albidus; Cp: C. populifolius; Cym: C. multiflorus; Cys: C. scoparius; Cyst: C. striatus; Em: E. multiflora; Es: E.
scoparia; Ea: E. australis; Cv: C. vulgaris; Mc: M. communis; Pl: P. lentiscus; Pt: P. terebinthus; Ro: R. officinalis; Qi: Q. ilex; Qs: Q. suber; Au: A. unedo; Ls: L. stoechas; Tm: T. mastichina; Tv: T.
vulgaris; Ru: R. ulmifolius.
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Table 2. Number and percentage of phenolic compounds, grouped by class and subclass, found in
the 24 species selected in this study.

N◦ Compound Percentage
(%)

Class: Phenolic acid 144 35.72%
Sub Class: Hydroxybenzoic acids 82 20.34%

Sub Class: Hydroxycinnamic acids 59 14.64%
Sub Class: Hydroxyphenylacetic acids 3 0.74%

Class: Flavonoid 224 55.56%
Sub Class: Flavanones 13 3.22%

Sub Class: Flavones 59 14.64%
Sub Class: Flavonols 103 25.55%
Sub Class: Flavanols 28 6.94%

Sub Class: Anthocyanins 16 3.97%
Sub Class: Isoflavonoids 5 1.24%
Class: Other polyphenols 23 5.69%

Sub Class: Hydroxybenzaldehydes 4 0.99%
Sub Class: Hydroxycoumarins 3 0.74%

Sub Class: Tyrosols 1 0.24%
Sub Class: Other polyphenols 15 3.72%

Class: Lignans. Sub Class: Lignans 9 2.23%
Class: Stilbenes. Sub Class: Stilbenes 3 0.74%

There is a clear difference in the number of compounds identified in each species.
The species with the largest number of compounds is A. unedo (142 compounds), whereas
only 5 to 8 compounds have been identified in C. crispus, C. striatus and C. vulgaris. The
identification of more or fewer compounds in a species is due to the number of studies
conducted on each, which is determined by their commercial interest. Some of them, such
as A. unedo, have a high commercial interest, which explains the existence of many studies
on this species and, therefore, a larger number of compounds identified in it.

Furthermore, the compounds are unequally represented. Some phenols have only been
cited in one species, while others have been reported in many species (Table 1). Considering
the compounds that appear in more than 5 species (Table 3), 38 phenolic compounds are
found in these species, 15 of which are phenolic acids and 23 are flavonoids.

Table 3. Identified phenolic compounds in more than 5 species among the 24 species selected in this
study. The percentage of representation in these species is also shown.

Phenolic Compound Species in Which It Appears Percentage (%)

Class: Phenolic acid. Sub Class: Hydroxybenzoic acids
4-hydroxybenzoic acid 7 29.16%

Ellagic acid 8 33.33%
Gallic acid

(3,4,5-trihydroxybenzoic acid) 17 70.83%

Hexahydroxydiphenoyl-glucose 6 25.00%
Protocatechuic acid

(3,4-dihydroxy-benzoic acid) 9 37.50%

Syringic acid 8 33.33%
Vanillic acid 10 41.66%

Class: Phenolic acid. Sub Class: Hydroxycinnamic acids
Caffeic acid

(3,4-dihydroxycinnamic acid) 12 50.00%

Chlorogenic acid
(3-O-caffeoylquinic acid) 13 54.16%

Cinnamic acid 7 29.16%
p-Coumaric acid 10 41.66%
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Table 3. Cont.

Phenolic Compound Species in Which It Appears Percentage (%)

Coumaroyl quinic acid 5 20.83%
Ferulic Acid 12 50.00%

Rosmarinic acid 5 20.83%
Methylrosmaric acid 6 25.00%

Class: Flavonoid. Sub Class:
Flavanones

Hesperetin 7-O-rutinoside
(Hesperidin) 5 20.83%

Naringenin 8 33.33%
Naringenin 7-O-glucoside

(Naringin-Prunina) 9 37.50%

Class: Flavonoid. Sub Class:
Flavones
Apigenin 11 45.83%

Apigenin 7-O-glucoside 6 25.00%
Luteolin

(3′.4′.5.7-Tetrahydroxyflavone) 9 37.50%

Luteolin 7-O-glucoside 5 20.83%
Luteolin-7-O-rutinoside 6 25.00%

Class: Flavonoid. Sub Class:
Flavonols

Kaempferol 13 54.16%
Kaempferol O-hexoside 5 20.83%
Myricetin (3.3′.4′.5.5′.7-
Hexahydroxyflavone) 9 37.50%

Myricetin 3-O-hexoside 6 25.00%
Myricetin-O-rhamnoside

(Myricitrin) 12 50.00%

Myricetin-O-rutinoside 5 20.83%
Quercetin

(3.3′.4′.5.7-Pentahydroxyflavone) 15 62.50%

Quercetin 3-O-glucoside
(Isoquercetin) 16 66.66%

Quercetin-O-hexoside 8 33.33%
Quercetin-O-rhamnoside

(Quercetrin) 11 45.83%

Quercetin 3-O-rutinoside (Rutin) 16 66.66%
Class: Flavonoid. Sub Class:

Flavanols
Catechin 11 45.83%

Epicatechin 10 41.66%
Epicatechin gallate 5 20.83%

Class: Flavonoid. Sub Class:
Anthocyanins

Cyanidin 3-O-glucoside 6 25.00%

4. Neuroprotective Effect of the Most Represented Phenolic Compounds in the
Selected Species

The most distributed phenolic compounds among the selected species belong to
two classes (Table 3): phenolic acids and flavonoids. Activity against neurodegenerative
disorders has been attributed to most of these compounds. In fact, one of the activities
most strongly associated with phenolic acids is their antioxidant capacity. This activity
depends on the number of hydroxyl moieties attached to the aromatic ring of benzoic
or cinnamic acid molecules. For example, Rice-Evans et al. [163] reported that the total
antioxidant activity of phenolic acids, in decreasing order, is gallic > p-coumaric > ferulic
> vanillic > syringic > caffeic > m-coumaric > protocatechuic > gentisic > o-coumaric >
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salicylic > p-hydroxybenzoic. Free-radical scavenging is the activity that confers them with
the protective function against neurodegenerative disorders.

Six phenolic acids (gallic, chlorogenic, ferulic, caffeic, vanillic and p-coumaric acids)
are represented in more than 40% of the species studied. These compounds have been
assigned neuroprotective functions (Figure 2). Some of the properties attributed to them
are described below.
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Gallic acid (GA) is present in 70% of the species that dominate the ecosystems of
Extremadura. GA is a well-known 5,4,3-trihydroxybenzoic acid found abundantly in
free and conjugated (hydrolyzable tannins) or esterified forms in many plants [164]. It
is a phenol with great interest for the treatment of patients with AD and PD, due to its
antioxidant, anti-inflammatory, and anti-amyloidogenic properties [165]. Different studies
have shown its application as a therapy to interact with amyloid (Aβ) monomers and fibrils.
These studies have proved that GA-loaded transferrin-functionalized liposomes could
inhibit Aβ1–42 aggregation and fibrillation and disrupt preformed fibrils, and thus it could
be considered for AD therapy [166]. GA has been demonstrated to reduce memory deficit
and cerebral oxidative stress in a unilateral 6-hydroxydopamine-induced PD model in
rats [167]. Moreover, its neuroprotective effect has been shown in models of traumatic brain
injury [168] and glutamate-induced neurotoxicity in rats [169], due to the improvement in
the antioxidant profile and the inhibition of proinflammatory cytokine generation [168,169].

The mechanisms by which GA exerts its prophylactic action in these processes have
been analyzed in several studies. For instance, refs. [170,171] reported that, in animals with
multiple sclerosis (MS), the administration of GA improved the oxidative and inflammatory
response and induced dendritic hyperplasia. This causes an increase in the number of
dendritic spines, which could explain the positive response in the dendritic morphology of
the three regions (CA1-CA3-DG) of the rat hippocampus with MS. It has been indicated
that GA inhibits Aβ-induced neurotoxicity via suppressing microglial-mediated neuroin-
flammation and decreasing cytokine generation [172]. Studies conducted by [173] show
that GA treatment maintains Ca2+ homeostasis and insulin-like growth factor 1 (IGF-1)
expression and protects neurons from glutamate-induced neurotoxicity.

A recent study conducted by [174] estimated the neuroprotective effects of (GA)
against aluminum chloride-induced AD in adult Wistar rats. The trials performed showed
that there was a significant decrease in antioxidant enzymes, serum electrolyte and neuro-
transmitter levels with a corresponding increase in stress markers (MDA, H2O2 and NO)
among the rats treated with aluminum, which were restored to nearly normal levels after
GA administration. Histological observation showed neurofibrillary tangles and amyloid
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plaques in the external granular layer of the rats treated with aluminum, although this
effect disappeared after GA administration [174].

These studies suggest that structural and functional alterations in the neurons of
animals with neurodegenerative diseases are reverted after GA treatment; consequently,
neurochemical processes are restored, improving recognition memory [175].

Chlorogenic acid (CGA) is another type of polyphenol that has demonstrated potent
anti-inflammatory and antioxidant activities [176]. CGA is present in 54.1% of the species
analyzed in this study. Its mechanism of action could be related to the attenuation of
mRNA and protein expression levels of proinflammatory and profibrotic mediators, and
the reduction of the levels of serum proinflammatory cytokines, such as TNF-α (tumor
necrosis factor-alfa) IL-6 (interleukin-6) and IL-1β, as is reported in studies conducted in
female rats [177]. CGA treatment also suppressed CCl4-induced NF-κB (nuclear factor
kappa-B) activation and reduced the expression levels of Toll-like receptor 4, myeloid
differentiation factor 88, inducible nitric oxide synthase and cyclooxygenase in rats exposed
to CCl4 [178].

Ferulic acid (FA) is present in 50% of the 24 species selected in this study. This com-
pound has been reported to increase neuronal survival, enhance antioxidant enzyme func-
tion, modulate multiple neuronal signal transduction, and impair cholinesterase activity
(ChAT) [179].

FA has been identified as an effective ROS and RNS scavenger, reducing the likelihood
of attack of radicals on proteins and thereby preventing oxidative changes. The antioxidant
and anti-inflammatory potential of FA could be due to its ability to suppress leukotriene
synthesis and reduce oxidative stress in the brain [180].

Several studies have highlighted the anti-inflammatory effects of FA [181,182]. Par-
ticularly, FA has been shown to reduce the neuroinflammation induced by chronic unpre-
dictable mild stress in the prefrontal cortex through the inhibition of NF-κB activation [183].

The potential role of FA against AD has also been investigated in cell models. In
particular, Kikugawa et al. [184] showed that the pretreatment of primary cerebral cortical
neurons with FA exerted a protective effect toward Aβ25–35-induced cytotoxicity; moreover,
FA was able to inhibit the aggregation of Aβ25–35, Aβ1–40 and Aβ1–42 and to destabilize
pre-aggregated Aβ.

It is worth highlighting that the potential usefulness of FA in AD has also been
investigated in in vivo studies [185]. Yan et al. [186] reported that IL-1β production, neu-
roinflammation and gliosis, induced by the intracerebroventricular injection of Aβ in the
mouse hippocampus, were counteracted by pretreatment with FA, and this phenolic acid
was able to improve memory loss. Kim et al. [41] also showed that FA prevented the Aβ1–42-
induced increase in endothelial nitric oxide synthase and 3-nitrotyrosine and suppressed
IL-1α immunoreactivity in the hippocampus [187]. Along with the amelioration of Aβ

plaque deposition, Wang et al. [188] recently found that FA prevented the reduction in the
density and diameter of hippocampal capillaries, thus favoring the oxygen and nutrient
supply and the removal of metabolic wastes from the brain, which finally led to improved
spatial memory.

Caffeic acid (CA) is another phenol that is present among 50% of the selected species.
It has been shown that CA reduces elevated oxidative stress and neuroinflammation and
improves synaptic/memory dysfunctions in AD mice [189]. Studies conducted in mice
have reported that CA has strong antioxidative and anti-inflammatory properties and
prevents the mice brain from AB-induced oxidative stress and neuroinflammation [190].
These findings suggest that CA significantly reduces activated microglia and astrocytes in
the brains of AD mice.

There are markers clearly related to neurodegenerative conditions and memory dys-
functions, such as phosphatidylinositol 3-kinase /protein kinase b signaling pathway,
and downregulation of neuronal growth factors, such as brain-derived neurotrophic
factor [191–193]. It has been proved that CA considerably upregulates the expression
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of these markers in the brains of Aβ-injected mice, and a significant improvement was
observed with CA treatment [194].

Vanillic acid (VA) is present in 42% of the species analyzed in this study, and this
phenolic acid has been reported to have a clear anti-inflammatory function [195]. Stud-
ies conducted with VA have shown that this compound significantly increases neurite
outgrowth after 48 h in culture. This compound significantly reduces the expression of
cyclooxygenase-2, NF-κB, tenascin-C, chondroitin sulfate proteoglycans and glial fibrillary
acidic protein in astrocytes in the LPC-induced model of inflammation. This study supports
the hypothesis that VA has anti-inflammatory activities, and, since axonal and synaptic
damage is present in most and possibly all neurodegenerative diseases, including AD,
PD, and HD [196], the effects of VA on neurite outgrowth make it a potential candidate to
encourage the regeneration of neurites after demyelination.

p-coumaric acid (PCA) is present in over 40% of the studied species. In recent years,
this compound has been the focus of numerous studies due to its wide variety of bio-
logical activities: antioxidant [197], anti-inflammatory [198], neuroprotective [199] and
memory-ameliorating effects [200]. Authors such as Rashno et al. [201] explored the effects
of oral administration of PCA on passive avoidance memory function, LTP (long-term
potentiation) induction in the hippocampal dentate gyrus and hippocampal Aβ plaque
formation following AlCl3 exposure in male rats, a condition that resembles the symptoms
of AD. The results obtained by this group demonstrated that treatment with PCA alleviated
passive avoidance deficit, improved hippocampal LTP impairment and prevented Aβ

plaque formation in the AlCl3-exposed rats. Cognitive-improving effects of PCA have
been reported in various neuropathological conditions, such as cerebral ischemia [202],
lipopolysaccharide-induced neurological changes [200] and scopolamine-induced neuro-
toxicity [42].

In addition to the group of phenolic acids, the other group of phenols widely dis-
tributed among these species is that of flavonoids. Of the 224 different flavonoids that
can be found in the entire set of species selected in this study, 23 are present in over 20%
of them. Within this group, quercetin and its derivatives quercetin 3-O-rutinoside and
quercetin 3-O-glucoside (isoquercetin) stand out, as they are present in over 60% of the
selected species. Other flavonols and flavones that are also widely distributed include
quercetin-O-rhamnoside (quercetrin), apigenin, kaempferol and myricetin-O-rhamnoside
(myricitrin), being present in 45–55% of the selected species.

Different in vitro and in vivo experiments found that these polyphenols may exert a
beneficial effect in the prevention and treatment of neurodegenerative diseases associated
with oxidative stress, shown in Figure 3, and that the activity of flavonoids such as galan-
gin, kaempferol, quercetin, myricetin, fisetin, apigenin, luteolin and rutin was correlated
with the number of OH groups and their side on their phenyl ring [63,203]. It is worth
highlighting that these phenolic compounds and their metabolites can enter the brain at
detectable levels in mammals, which supports their direct neurological action [204].

Flavonoids, depending on the degree of oxidation and saturation in the heterocyclic
C-ring, can be divided into different subclasses, varying in their bioavailability. Thus,
flavanols, flavanones and flavonol glycosides have intermediate rates of absorption and
bioavailability, while proanthocyanidins, flavanol gallates and anthocyanins have the low-
est absorption [205]. According to different studies, epicatechin metabolites seem to reach
the brain of rodents at levels that might be physiologically effective [206], and some conju-
gated forms of quercetin can also accumulate in the brain after oral administration [207,208].

Among flavonoids, flavonols and flavones constitute the largest group and have been
associated with a clear neuroprotective role [70,209–213]. It has been demonstrated in
numerous studies that flavonols such as quercetin, myricetin and kaempferols, as well as
their derivatives, have strong antioxidant activity [209] and also demonstrate that their
glucosylated derivatives have greater activity than the corresponding aglycones [213]. The
radical scavenging and metal chelating activity of flavonols contribute to ameliorating
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oxidative stress [167,214]; in turn, this activity depends on the number of the hydroxyl and
the sugar moiety associated [213,215].
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Figure 3. Diagram with neuroprotective mechanisms of flavonoids. ↑: increase, ↓: decrease,
(−): inhibition, ROS: reactive oxygen species, RNS: reactive nitrogen species, NFkB: nuclear factor
kappa B, AB: amyloid beta-peptide, Nrf2: nuclear factor erythroid-derived 2, JNK (Jun-NH2-terminal
kinase), MAPK (the mitogen-activated protein kinase), PI3K/Akt (phosphoinositide 3-kinase), COMT
(catechol-O-methyltransferase), MAO (monoamine oxidase), AChE (acetylcholinesterase), BchE
(butyrylcholinesterase), BACE1 (amyloid precursor protein cleaving enzyme I).

In addition to the antioxidant capacity of these compounds as free-radical scavengers,
the mechanisms involved in the neuroprotector effect of these compounds would be associ-
ated with their capacity to inhibit Aβ aggregation, the amyloid precursor protein cleaving
enzyme (BACE1) [216] and AChE [217]. Studies on AChE inhibition in the brain of oxidative
stress-induced rats report that AChE activity significantly decreases [218,219]. Specifically,
treatment with flavonol quercetin in hippocampal neurons has resulted in the elevation of
neurogenesis, synaptogenesis, and cell proliferation, as well as restoration of Aβ-induced
synaptic loss [220]. This flavonol also exerts positive effects on PD, as it can inhibit the
activity of catechol-O-methyltransferase and monoamine oxidase enzymes, which can lead
to an increase in the bioavailability of L-dopa in the brain [4]. Quercetin has also been
attributed to the capacity to act through different signaling pathways, including regulation
of cytokines via Nrf2 (nuclear factor erythroid-derived 2), JNK (Jun-NH2-terminal kinase),
protein kinase C, MAPK (the mitogen-activated protein kinase) signaling cascades, and
PI3K/Akt (phosphoinositide 3-kinase) pathways [221].

Another flavonoid with clear antioxidant functions is flavan-3-ol catechin [222], which,
along with its isomers and/or conjugates of gallic acid, is a naturally occurring constituent
in plants [223]. This has been observed among the studied species, as this flavonoid is
present in 46% of the species. Different studies report the neuroprotective properties of
catechins, mostly through antioxidative and anti-inflammatory effects, mainly involving
Nrf2 and NF-kB signaling pathways [222,224,225]. One in vivo study has revealed that
it can improve cognitive impairment induced by doxorubicin via increasing antioxidant
defense, preventing neuroinflammation and inhibiting AChE [226]. Catechin has also
been indicated to inhibit the late stages of Aβ-soluble aggregate growth change in the
fibrillar form of Aβ [227]. It has also prevented neurotoxin-induced dopamine neuron
loss in substantia nigra in a mouse model of PD [228]. The other flavanol with a high
representation among the studied species is epicatechin, which is present in 42% of them.
It has been demonstrated that epicatechin treatment prevents oxidative damage to the hip-
pocampus induced by Aβ25–35 [229]. This flavanol may reduce Tau hyperphosphorylation,
downregulate BACE1 and Aβ1–42 expression and boost AD rats’ antioxidant system, as
well as their cognition and memory [230,231].
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5. Main Species with Neuroprotective Activity

As can be observed, the species considered in this study can be an important source of
phenolic compounds with activity against neurodegenerative diseases. However, focusing
on the most represented compounds (in over 40% of the analyzed species) and the species
that contain all or most of these compounds (Table 4), 7 of these species stand out: C.
multiflorus, P. lentiscus, A. unedo, L. stoechas, R. ulmifolius and T. vulgaris contain the 6 most
frequent phenolic acids (gallic, chlorogenic, ferulic, caffeic, vanillic and p-coumaric acids)
and C. salviifolius and P. lentiscus contain the main flavonoids.

Table 4. Species with the most represented phenolic compounds (present in over 10 of the
24 analyzed species).

Phenolic Compounds
GA VA CA CHA p-CA FA Ap K MOR Q QOG QOR QORU Ca Epi

C. ladanifer + + + + + + + + + +
C. salviifolius + + + + + + + + + + + + +
C. monspeliensis + + + + + + +
C. crispus + + +
C. albidus + + + + + + + +
C. populifolius + +
C. multiflorus + + + + + + + + + +
C. scoparius + + + + + + + +
C. striatus +
E. multiflora + + + +
E. scoparia + +
E. australis + + + + + + + + +
C. vulgaris + + +
M. communis + + +
P. lentiscus + + + + + + + + + + + + + +
P. terebinthus + + + + + + + + + +
R.officinalis + + + + + + + + +
Q. ilex + + + + + + + + + +
Q. suber + + + +
A. unedo + + + + + + + + + + + + +
L. stoechas + + + + + + + + + + + + +
T. mastichina + + + + + +
T. vulgaris + + + + + + + + + + + + +
R. ulmifolius + + + + + + + + + + + + + +

GA: Gallic acid; VA: Vallic acid; CA: Caffeic acid; CHA: Chlorogenic acid; p-CA: p-coumaric acid; FA: Ferulic
acid; Ap: Apigenin; K: Kaemferol; MOR: Myricetin-O-rhamnoside; Q: Quercetin; QOG: Quercetin-O-glucoside;
QORU: Quercetin-O-rutinoside; Ca: Catechin; Epi: Epicatechin.

Of these 7 species, studies have been conducted with extracts of P. lentiscus, L. stoechas and
T. vulgaris to demonstrate their activity against neurodegenerative diseases [107,136,138,151,232].
These studies have reported the in vitro AChE inhibitory activity of P. lentiscus and its
extract exhibited a significant dose-related AChE inhibitory activity. This extract also
showed the ability to prevent neurodegeneration and improve memory and cognitive
function. This indicates that P. lentiscus inhibited Al-induced neurodegeneration of neurons
in the brain cortex, which is known to be susceptible in AD and to play an important role
in learning and memory functions [107,233,234]. These findings explain the protective
effects of P. lentiscus on cognitive deficit. Moreover, the capability of the extract to correct
the in vivo disorders may be explained by its ability to inhibit oxidative stress and lipid
oxidation induced by Al [213,235].

The extracts of L. stoechas also significantly (p < 0.001) enhanced the retention power
and learning capacity of mice brains. Similarly, treatment of animals with extracts of la-
vender showed a significant (p < 0.001) reduction in the level of AChE and relieved the
patient of memory loss [136,139].

On their part, studies conducted with the extract of T. vulgaris also indicate that
this species can present neuroprotective effects [151,152]. The results obtained by [236]
suggest that the antiamnesic effect of T. vulgaris extract on scopolamine-induced memory
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impairment may be related to the antioxidant activity of the extract or mediation of the
cholinergic nervous system [148,150].

The protective activities attributed to these species can be inherent to the presence of
these phenolic compounds (flavonoids and phenolic acids), where the presence of all of
them may exert a synergistic effect as neuroprotective agents.

6. Conclusions

This review highlights the relevance of the species of Mediterranean ecosystems as
a diverse source of phenolic compounds. Among these compounds, phenolic acids and
flavonoids stand out. The most represented compounds among the species studied are
gallic, vanillic, caffeic, chlorogenic, p-coumaric and ferulic acids, apigenin, kaempferol,
myricitrin, quercetin, isoquercetin, quercetrin, rutin, catechin and epicatechin, which have
been attributed neuroprotective functions. Given this information, these Mediterranean
scrub species could be considered as sources of compounds for use in therapy against
neurodegenerative diseases such as AD and PD.
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