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Abstract: The aim of this work is to review the application of bioceramic materials in the context of
current regenerative dentistry therapies, focusing on the latest advances in the synthesis of advanced
materials using the sol–gel methodology. Chemical synthesis, processing and therapeutic possibilities
are discussed in a structured way, according to the three main types of ceramic materials used
in regenerative dentistry: bioactive glasses and glass ceramics, calcium phosphates and calcium
silicates. The morphology and chemical composition of these bioceramics play a crucial role in
their biological properties and effectiveness in dental therapeutics. The goal is to understand their
chemical, surface, mechanical and biological properties better and develop strategies to control their
pore structure, shape, size and compositions. Over the past decades, bioceramic materials have
provided excellent results in a wide variety of clinical applications related to hard tissue repair and
regeneration. Characteristics, such as their similarity to the chemical composition of the mineral
phase of bones and teeth, as well as the possibilities offered by the advances in nanotechnology, are
driving the development of new biomimetic materials that are required in regenerative dentistry. The
sol–gel technique is a method for producing synthetic bioceramics with high purity and homogeneity
at the molecular scale and to control the surfaces, interfaces and porosity at the nanometric scale.
The intrinsic nanoporosity of materials produced by the sol–gel technique correlates with the high
specific surface area, reactivity and bioactivity of advanced bioceramics.

Keywords: bioactive glasses; calcium phosphates; calcium silicates; bioceramics; regenerative dentistry

1. Introduction

Oral diseases remain the most dominant conditions globally [1]. Overall, the estimated
number of cases of oral diseases is about 1 billion times higher than the cases for all five of
the main noncommunicable diseases (NCDs) combined: mental disorders, cardiovascular
disease, diabetes mellitus, chronic respiratory diseases and cancers [2]. Untreated caries
in permanent teeth are the most prevalent, which is followed by severe periodontal dis-
ease, and then untreated caries in deciduous teeth and edentulism [2]. In addition, one of
the most interesting aspects currently facing dentistry is the possible connection between
chronic oral inflammatory processes of infectious origin (chronic apical periodontitis and
periodontal disease) and systemic health status [1,3,4]. Several epidemiological studies
highlight the connection between chronic oral inflammation and systemic diseases, such
as ischemic heart disease [5], hypertension [6], diabetes [7], metabolic syndrome [8], renal
disease [9,10], inflammatory bowel disease [11,12], rheumatoid arthritis [13], osteoporo-
sis [14], memory loss [15], adverse pregnancy outcomes [16], cancer [17,18], respiratory
diseases [19] and COVID-19 [20].

To improve the oral and dental health of the population, regenerative dentistry is
a very promising approach that aims both to prevent oral–dental deterioration and to
restore the anatomy and functionality of diseased teeth [21]. To this end, it draws on new
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advances in procedures based on cell biology and new biomaterials [22,23]. Synthetic
biomimetic materials, and particularly bioceramics are undoubtedly fundamental elements
in the development of these advanced dental therapies, as the calcium phosphate type
formulations are the natural bioceramic components of dental and bone tissues [24,25]. To
this must be added the breakthrough achieved with the new silica-based bioactive ceramic
compositions, capable of stimulating biological mineralization processes [26,27].

Initially, and still in use in most of the products that are currently applied in the
clinic, bioceramic materials have been synthesized from precursor salts using traditional
industrial processes that required high temperatures, followed by the casting of bulk
implants or the quenching of powders. However, since the early 1990s, research has begun
on bioactive ceramics using an alternative process, the sol–gel technique [28,29]. The
synthesis of nanomaterials can be broadly classified into two approaches: “top-down” and
“bottom up”. Top-down synthesis involves the deconstruction of larger materials to produce
nanostructures. Bottom-up synthesis constructs nanomaterials from basic building blocks
like atoms and molecules. The sol–gel technique is an example of a bottom-up approach
for producing bioceramics from small molecules. The method consists of several stages
involving chemical and physical processes. The chemical process begins with the reaction
of precursor monomers to form oligomers in solution (sol), which in turn polymerize
into a network (gel) in the form of an integrated network of discrete particles or network
polymers [30]. In general, the mechanism of hydrolysis of the precursor monomers and
their condensation to oligomers are the most critical steps in sol–gel chemical synthesis.
These mechanisms determine the structure and composition of the resulting material. The
synthesis parameters that bias the structure toward linear or branched structures are also
critical issues, which play a crucial role in determining the properties and performance of
the final material.

A major advantage of the sol–gel method is that it is possible to obtain materials with
high purity and homogeneity at the molecular scale and to control the surfaces, interfaces
and porosity of the materials obtained at the nanometric scale [31]. The sol–gel method
produces homogeneous sols that can be converted into gels with a very high volume of
nanopores. This nanoporosity is undoubtedly one of the most important characteristics of
advanced bioceramics, as it translates into a higher specific surface area, greater reactivity
and, therefore, faster kinetics in the bioactive response [32]. The sol–gel method can be
used to synthesize bioceramics with different chemical compositions, which enables the
production of a wide range of materials. Besides, it is a cost-effective technique, as it
requires lower reaction temperatures and simpler equipment than other high temperature
burning and thermal industrial processes. The low reaction temperature reduces the energy
consumption and gas emissions, which contribute to its environmental sustainability.

On the other hand, control of the processing method makes it possible to vary the
morphology of the synthesized materials and, thus, obtain particles, films, monoliths
or fibers [33,34]. Additionally, the whole process can be easily scaled up for large-scale
production. All these characteristics make it possible to obtain bioceramics with high added
value, and there is much interest in finding new synthesis routes and processes that align
these advantages with other equally important commercial aspects, with respect to the
economic viability of scaling up sol–gel production [31].

The aim of this work is to review the application of bioceramic materials in the context
of current regenerative dentistry therapies, focusing on the latest advances in the synthesis
of advanced materials using the sol–gel methodology. Chemical synthesis strategies and
important parameters, and the processing and therapeutic possibilities are discussed for
the three most relevant types of bioceramic-based materials: bioactive glasses and glass
ceramics, calcium phosphates and calcium silicates.

2. Commercial Bioceramics Currently in Use

There are a large number of bioceramic materials on the market that are used in den-
tistry to stimulate the repair and regeneration of dental tissues, such as enamel, dentin and
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pulp, as well as bone defects in oral and maxillofacial surgeries. Most of them correspond to
ceramic products obtained by conventional methods, such as melting in the case of vitreous
materials or high temperature heat treatment of precursor salts. There are, however, a
few commercially available products, such as NovaBone or NanoBone, that have begun to
incorporate advances in sol–gel synthesis, giving them new textural properties in terms of
surface and porosity. Figure 1 represents the commercial products based on bioceramics
in clinical use that are most studied in the literature, marked in different colors according
to the main type of bioceramic material component, namely bioactive glass (BG), calcium
phosphate (CaP) or calcium silicate (CaSi), as detailed in the following subsections.
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Figure 1. Commercial products based on bioceramics in clinical use that are most studied in the
literature. Based on a search of the Scopus database, the products are represented with a font size
according to their frequency in the title of an article and with a color code corresponding to the
different types of bioceramics classified in the work: blue for bioactive glass (BG); yellow for glass
ionomeric; pink for calcium phosphate (CaP); green for calcium silicate (CaSi).

2.1. Bioactive Glasses

Bioactive glasses (BGs) were discovered by Hench in 1969 [35]. His team at the
University of Florida found that these materials elicited a biological response when they
came into contact with the physiological environment, which led to a new approach for
the application of biomaterials in clinical practice [36–38]. The original bioactive glass
composition, 45S5, formulated on weight bases from 45% SiO2, 24.5% Na2O, 24.5% CaO
and 6% P2O5, was commercially trademarked as Bioglass® [35] and many of the commercial
products still available use this composition. Variations in this formulation, including other
compounds such as K2O, MgO, CaF2 and B2O3, have been implemented and have shown
altered properties such as dissolution rates and bioactivity. In addition to variations in
their composition, different processing methods have also been reformed, such as their
manufacture in the form of implant-like monoliths, granules or particles, pastes and
cements. An excellent recent paper reviews all of the commercial BGs devices approved
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for therapeutic application, including hard tissue scaffolding, dental remineralization, soft
tissue repair and cancer treatment [39].

In the field of dentistry, Endosseous Ridge Maintenance Implant (ERMI®), PerioGlas®,
BioGran®, NovaBone® and NovaMin® are commercialized bioactive glass products based
on the 45S5 composition. ERMI® is used in the form of a monolith to be implanted into the
void left following tooth extraction to encourage bone formation and to provide a stable
ridge for future tooth replacement [40–42]. PerioGlas® is used for the repair of periodontal
and smaller oral defects. It was the first product to be delivered as glass powder, ranging
from 90 to 710 µm, which makes surgery easier by allowing the operator to pack the wound
with powder rather than fit a premade product into the void [43–45]. BioGran® has a
similar application to PerioGlas®, but with a narrow particle size of 300 to 360 µm [46–49].
NovaBone® is available in the form of dental putty combined with a binder to improve
handling for grafting, and also as interconnected porous granules for faster bone integration
and remodeling for reconstructive surgeries, such as ridge maintenance and augmentation,
extraction sites, implant preparation and placement [50–52]. NovaMin® is applied to
toothpaste for treating tooth hypersensitivity. It has a fine particle size with a D50 of 18 µm,
which allows the glass to have a higher probability of entering the dentin tubules in the
teeth [53–58]. Besides, NovaMin® is used in polishing and teeth whitening procedures to
stimulate mineralization [33] and has been shown to help to treat gingivitis [59]. BioMin®

is a modification of the 45S5 composition containing either fluorine (BioMin F) or chlorine
(BioMin C) to aid in apatite precipitation for dentin hypersensitivity [60,61]. Another glass
composition variation (wt.%), 48.5% SiO2, 23.75% Na2O, 23.75% CaO and 4% P2O5, is
used to produce the Biosilicate® glass ceramic. Biosilicate, engineered under a controlled
double-stage heat treatment, is effective in the clinical reduction of sensitivity in enamel
and dentine [62–64].

Bioactive glasses of undisclosed exact composition are also marketed as components
in composite formulations with resins, polymers and other agents for use as restorative
esthetic composites and biomaterials for endodontics. Activa™ BioACTIVE contains a
shock-absorbing component, making it resistant to fracture and wear. It chemically bonds
to the tooth and releases and recharges calcium, phosphate and fluoride ions, providing
long-term benefits [65,66]. GuttaFlow® is composed of gutta-percha, polydimethylsilox-
ane, platinum catalyzer, zirconium dioxide and BG, showing low solubility, low porosity,
alkalization capacity, dentin penetrability and cytocompatibility [67]. A newly developed
bioactive glass-based cement, Nishita Canal Sealer BG (NCS-BG), is now being commer-
cially marketed as a root canal sealer and applied within clinical endodontic treatments [68].

Finally, Ting et al. [69] reported that the 58S glass (nominal composition 60 mol%
SiO2, 36 mol% CaO and 4 mol% P2O5) was one of the first sol–gel-derived bioactive glass
compositions developed and commercialized by NovaBone Products LLC (Alachua, FL,
USA), although hydroxyapatite (HA) was found to form within the 58S glass during sol–gel
synthesis after thermal stabilization, where it was heated to 700 ◦C.

Although with a distinctive bioactive ability in restorative dentistry, glass-ionomer
materials also deserve a separate mention. They are a group of materials composed of silicate
glass powder and an aqueous solution containing polyacrylic acid that solidifies due to an
acid–base reaction [21]. Glass-ionomer cements (GICs) are considered bioactive because they
release biologically active ions, such as fluoride, calcium, strontium, sodium, phosphate
or silicon, that result in long-term durable bonds at the tooth–restoration interface [70,71].
Commercial GICs, Fuji IX [72–75], Ketac Molar [76,77], Glass Carbomer® [78–81], have been
shown to promote remineralization in the mouth. Resin-modified products, Fuji II [82–84]
and Vitremer™ [85–87], also contain ion-leachable glass powder, as well as the water-soluble
organic monomer 2-hydroxyethyl methacrylate (HEMA), and are widely used as alternatives
to amalgam.
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2.2. Calcium Phosphates

Synthetic calcium ortho-phosphate (CaP) materials can be prepared with a chemical
composition very similar to that of the inorganic part of human bones and teeth. They
are widely used in medicine for their biocompatibility, bioactivity and osteoconductivity
properties [88]. Bone and dentine contain about 70% calcium phosphate (CaP) mineral
in the form of a poorly crystalline, highly substitute apatite phase, consisting of very
small crystallites, with a thickness of only 5 nm. Enamel, on the other hand, consists
almost exclusively of hydroxyapatite prisms up to 100 µm in length and oriented in
structures that confer resistance to abrasion [24]. Several dental specialties deal with
the invasion into or the treatment of the surrounding bones, such as the filling and/or
reconstruction of a traumatic or degenerative multi-walled bone defect, augmentation
of the sinus floor, augmentation of alveolar ridges, the filling of periodontal or other
alveolar bone defects, tooth sockets, osteotomies and the preservation of the alveolus for the
preparation of an implant site. Depending on the application, different compounds, such
as monocalcium phosphate (MCP; Ca(H2PO4)2), dicalcium phosphate (DCPA; CaHPO4),
tricalcium phosphate (TCP; Ca3(PO4)2) or hydroxyapatite (HA; Ca10(PO4)6(OH)2), as
well as their processing in different formats, such as particles, granulates, dense blocks,
porous parts, pastes or coatings, have been developed. Research on this type of material is
very extensive, as some recent reviews in the bibliography show [89–91]. Dorozhkin [89]
highlights that the first publications on the application of CaPs in dentistry deal with
their inclusion in toothpaste formulations to promote remineralization and reduce tooth
sensitivity, and reviews these materials according to two types of classification, namely
the CaP compound formulation and the specific application for the different specialties in
dentistry [89].

The first reported commercial CaP products are based on β-TCP and
HA, such as Synthograft® (β-TCP) [92–95], Durapatite® (HA) [96–99], Calcitite®

(HA) [100,101] and Alveograft® (HA) [102]. Also, β-TCP based products are subsequent
to Cerasorb™ [103–105] and OSferion™ [106]. Actifuse® is a porous silicate-substituted
calcium phosphate [107,108]. Synthetic nano-crystalline HA is commercialized as a single
component bone graft by Sybograft® [109], and as a composite formulation NanoBone®

consisting of nanocrystalline HA embedded in a silica gel matrix, produced using a sol–gel
process [110–112]. Besides, CaPs are incorporated as components in self-setting products,
such as Endo Sequence® BD Sealer, a premixed ready-to-use injectable cement for sealing
applications, which contains MCP [89,113].

2.3. Calcium Silicates

Calcium silicates, mainly Ca3SiO5 and Ca2SiO4, are the basic compounds in bioactive
endodontic cements (BECs) [26,114]. BECs are bioceramics widely used in endodontics
as restorative cements used in vital pulp therapy and endodontic sealers, due to their
high biocompatibility, intrinsic osteoconductive activity and ability to induce regenerative
responses as dentin bridges that promote better sealing of the pulp-capped site [66,115].
These calcium silicates compounds are capable of reacting with water at a physiological
temperature, causing a hydraulic setting reaction. Originally the first product formulation
was described as a powder composed of calcia, silica and alumina oxides and was then
named mineral trioxide aggregate (MTA), which is still a generic name used for BECs
in dentistry [116]. In fact, MTA is based on Portland cement, which was revisited by
Torabinejad et al. [117] for its use in endodontics. Despite its excellent properties, some
problems in its clinical application, such as the long setting time, tooth discoloration, high
cost and difficult handling, have driven the development of new formulations.

The first clinically approved formulation was ProRoot MTA [118]. The initial setting
time has been reported from 70 to 74 min [114]. In 2002, the gray ProRoot MTA (GMTA)
was substituted by the new white ProRoot MTA (WMTA), free from tetracalcium alumino-
ferrite to reduce the problems concerning tooth discoloration [119]. MTA Angelus [120,121]
followed with a similar composition based on Portland cement, but without the calcium
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sulphate dehydrate (gypsum). Further products marketed with shorter setting times are
Biodentine [122–129], Endocem MTA [130–133], MTA Bio [134,135], EndoSeal MTA [136,137]
and MTA Fillapex [138–143]. A setting time of as little as 0.3 min has been reported for
TheraCal [144–148] because of the use of resin and light cure technology. The radiopacify-
ing agent used is another important element that has been studied for the improvement of
these products. ProRoot MTA contains about 2 at.% Bi [119], which may not only produce
tooth discoloration but also reduce its biocompatibility [149]. As an alternative to bismuth
oxide, other compounds have been used, such as tantalum oxide Ta2O5, which is used in
BioAggregate [150–154] and NeoMTA Plus [26,155–157]. ZrO2 is another agent widely used in
products such as Endocem Zr [131,158], EndoSequence [159,160], iRoot SP [161–164], BioRoot
RCS [165–168] and the previously mentioned Biodentine. MTA Repair HP, notable for its low
setting time and fast bioactive response in vitro [25], contains CaWO4 as a radiopacifying
agent and consists of tricalcium silicate nanoparticles with high aspect ratio, which provide to
the precursor material an elevated surface area to maximize the hydration reaction [169,170].

3. Current Research on Sol–Gel Bioceramics for Application in Dentistry

The chemistry of the sol–gel technique offers great versatility and can be used for the
preparation of a wide variety of bioceramic compositions and different macro-, micro- and
nanostructure features for application in regenerative dentistry.

3.1. Basics of the Sol–Gel Synthesis Technique

The sol–gel method is a wet-chemistry process, which involves several stages from the
initial precursors solution (sol) to the gelation (gel) phase. The interest in and development
of this process dates back more than 150 years, when it was discovered that hydrolysis
under acidic conditions of the compound tetraethyl orthosilicate (TEOS) produced SiO2
in the form of a glass-like material [30,171]. A typical process starts with the hydroly-
sis and polycondensation reactions of the precursor alkoxide-type compounds. Silicon
alkoxides represent the main network forming agents in sol–gel preparation methods
and tetraethyl orthosilicate (TEOS) is still the most widely used silicate precursor, while
water and/or ethanol are used as solvents. The formation of the silicate network follows a
widely accepted two-stage process [30,172]: hydrolysis (Equation (1)) and condensation
(Equations (2) and (3)). Hydrolysis and condensation may occur simultaneously as silanol
groups on partially hydrolyzed molecules that undergo condensation:

Si(OR)4 + 4 H2O→ Si(OH)4 + 4 ROH (1)

2 Si(OH)4 → (OH)3Si-O-Si(OH)3 + H2O (2)

Si(OR)4 + Si(OH)4 → (OH)3Si-O-Si(OR)3 + ROH (3)

By modifying the synthesis parameters, the properties of the final materials, such
as the morphology and composition, can be controlled and designed. In general, the
rate of hydrolysis is fast compared to that of condensation in strong acid conditions and,
alternatively, a higher pH favors condensation. However, a higher and lower pH is able to
promote condensation and hydrolysis and, in silica based systems, the reactions proceed
as a result of acid catalysis at a pH < 2 and basic catalysis when the pH > 2, around
the isoelectric point of silica at pH = 2 [173]. Silicon alkoxides tend to form a 3D gelled
structure under acid conditions or individual particles under basic conditions [31,174]. The
controlled growth of monodisperse silica spheres was first achieved by Stöber et al. [175],
using a base-catalyzed sol–gel synthesis route involving silica alkoxide precursors and an
ammonium hydroxide catalyst. Moreover, using appropriate template molecules a well-
ordered hexagonal arrangement of mesopores is formed at low pH acid conditions [176].

Other silane oligomers capable of taking part in the hydrolysis and condensation
reactions can be also used, apart from TEOS [177]. Besides, network modifier elements,
such as calcium or magnesium, can be introduced in the form of inorganic salt or as alkoxide
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precursors [28,178,179]. Like silicon, phosphorous can be used a network former within
the sol–gel process [28]. However, the σ-π double bond reduces the expected coordination
number and produces a more relaxed network structure when compared to silica-based
materials [31]. Besides, the low reactivity to acid-catalyzed hydrolysis of triethyl phosphate
(TEP) should be noted, which is the most commonly used phosphorous precursor. Studies
have shown a large loss of phosphorous for the TEP-prepared gels, most likely due to the
much lower rate of hydrolysis of TEP than the silica precursor TEOS [180,181].

In short, by varying the different synthesis variables in the process, such as the silicon
or phosphorus monomers, the salt precursors, the use of template molecules, co-solvents,
pH catalysts, the temperature and reaction times, as well as the different post synthesis
treatments and processing routes, a large number of formulations in different useful
morphologies and formats can be produced (Figure 2).
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Although the synthesis of bioceramics using the sol–gel technique is considered safe,
there are some health and safety hazards that must be considered. Thus, as mentioned,
the synthesis involves the use of alkoxides, acids and solvents, which might require ap-
propriate safety protocols, such as wearing protective clothing and gloves, working in a
well-ventilated area and using fume hoods when necessary. Some sol–gel precursors and
reaction by-products may release toxic fumes during the synthesis process. Besides, the
sol–gel process may generate fine particles or dust, which can pose a respiratory hazard if
inhaled. It is, therefore, advisable to wear appropriate respiratory protection equipment,
such as masks or respirators.

3.2. Progress in Bioactive Glasses Research
3.2.1. Compositions and Chemical Routes

The original 45S5 composition, 45%SiO2—24.5%Na2O—24.5%CaO—6%P2O5 [36],
was obtained by a process of melting the precursor salts, followed by the casting of the
bulk implants or cooling to get a material in particulate form. This conventional melt
processing has a major limitation in terms of the compositional variability, as it must be
limited to phase diagram formulations that are within the glass-forming region. In 1991,
the first stable bioactive-gel glass could be made by sol–gel processing without sodium
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from the composition [28], reducing the glass from a four- to a three-component system.
The material was prepared from TEOS, TEP, calcium nitrate, Ca(NO3)24H2O (CaN) and
nitric acid to accelerate the hydrolysis of TEOS. After mixing the components, the sol was
gelled, aged and dried at 60–180 ◦C [28]. Finally, the dried gels were heated at 600–700 ◦C,
which allows the glassy materials to be obtained using heat treatment of the gels at more
moderate temperatures than required for melting. A series of compositions within the
SiO2-CaO-P2O5 system were further studied, and in vitro bioactivity in simulated body
fluid (SBF) was demonstrated for sol–gel glass compositions with nearly 90% SiO2. In
fact, the rate of surface biomimetic hydroxy carbonate apatite (HCA) formation for the
60%SiO2-36%CaO-4%P2O5, named the 58S composition, was even more rapid than from
the melt-derived 45S Bioglass® [28]. The first suggested explanations for these good results
were the presence of nanopores and, consequently, their high specific surface area, above
200 m2 g−1 for these sol–gel materials. These textural characteristics were related to an
increase in the density of potential sites for the nucleation and growth in the superficial
hydroxyapatite layer [182].

Going back to the pioneering sol–gel formulations by Li et al. [28], all synthesized
bioactive compositions were not fully glassy, as they contained some crystalline phases.
Hence, to produce a completely amorphous 45S5 BG composition without crystalline
inclusions using the sol–gel technique has been a challenge so far and several authors
have reported the presence of calcium sodium silicate phases [183–186]. Faure et al. [183]
explored the use of citric acid instead of the usual nitric acid for the synthesis of the
45S5 formulation, but revealed a partial crystallization of Na2Ca2Si3O9, Na2Ca3Si6O16 and
Na2CaSi2O6 inside the amorphous structure of the BG. However, Esfahanizadeh et al. [187]
showed that zinc-doped BG had a much lower crystalline phase compared to 45S5 BG,
and Shankhawar et al. [188] demonstrated that when using (NH4)2HPO4 as the phosphate
precursor, it is possible to obtain fully amorphous material with a composition close to
45S5 BG.

Vallet-Regí’s group used the sol–gel route for the preparation of bioactive glasses in
the ternary SiO2-CaO-P2O5, quaternary SiO2-CaO-P2O5-MgO and the binary SiO2-CaO
systems [189]. The results obtained for the ternary system compositions using SiO2 content
from 55 to 80 mol%, indicated significant variations in the textural properties, such as
the pore size, pore shape and specific surface area in relation to the relative proportions
of the three components. Besides, the addition of MgO to obtain quaternary glasses was
performed to investigate the role of magnesium to improve the mechanical features of the
glasses, while the binary SiO2-CaO compositions were studied to determine the role of
phosphorous in the glasses’ bioactivity. The ternary system, SiO2-CaO-P2O5, is perhaps one
of the most studied and, particularly, the formulation referred to in the literature is 58S. This
formulation can be found in several works, in a narrow range of compositions expressed in
% molar for SiO2 (58–60), CaO (36–38) and P2O5 (4) [28,182,189,190]. The effect of using
ethanol and ammonia solution in 58S glass synthesis for dental applications has recently
been studied and found to produce small glassy grains and more porous surfaces [190].

Perhaps one of the most interesting contributions of Prof. Hench’s work on BGs, is
the finding that Ca and Si ionic dissolution products released from BG stimulate the genes
of cells towards a path of regeneration and self-repair [191]. Closely related to this, there
is growing evidence in the literature that the dissolution products from other chemical
elements, such as Zn, F, Sr or Cu, can help enhance the biological response to assist tissue
regeneration processes [192]. In this sense, it is worth highlighting the great versatility of sol–
gel chemistry to extend the composition of BG with other elements that can produce ionic
dissolution products with therapeutic functionality. Fluoride-containing sol–gel BGs have
the potential to release F, Ca and PO4 ions promoting remineralization. F-BG (~5% mol.%)
synthesis routes based on the 45S5 [193,194], 60S [195] and 77S [196] formulations have
been tested using, respectively, NaF, CaF or HF reagents. The bactericidal properties of
the elements Zn, Cu, Sr, Ag, Mg and Li have been exploited for their incorporation in
sol–gel synthesis by means of nitrate precursor salts for the formulations 45S5 [186,187],
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58S [197] and 50S (50 M% SiO2) [198]. The search for improvement in the mechanical
properties of 45S5 and 58S sol–gel synthesis has been studied with the incorporation of
Al(NO3)39H2O [199] and ZrO2 [200] precursors, respectively. Also, to improve the micro-
hardness of enamel, sol–gel synthesis of 70STi-modified glass (71.4 wt% SiO2–23.6 wt%
CaO–5 wt% TiO2) has been carried out using titanium isopropoxide [201].

But a major breakthrough in the development of these materials has undoubtedly been
the achievement of multicomponent bioactive glasses with ordered mesopores, known as
mesoporous bioactive glasses (MBG) or “glasses obtained by template or structure-directing
molecules”. MBGs are nanostructured bioceramics that are ordered at the mesoscale
yet disordered at the atomic scale. They have been engineered in formulations of the
ternary systems (SiO2-CaO-P2O5) and the simplest binary systems (SiO2-CaO), but also
for the more complex extended compositions including other elements (such as Sr, Cu,
Co, Zn, Mg, etc.). In these bioceramics, the material is distributed on the walls separat-
ing channel-shaped pores, which are arranged periodically in highly ordered structures.
This ordered arrangement of mesopores, in the range between 2 and 50 nm and with
uniform distribution, produces materials with textural properties (surface area and pore
volume) approximately double those of conventional sol–gel BGs [202]. The 58S BG for-
mulation has been synthesized in the form of mesoporous nanoparticles, with sizes in the
300–500 nm range, using dodecylamine (DDA) [203] or hexadecyltrimethyl ammonium
bromide (CTAB) [204] as template molecules. Also, using CTAB, a variation of the ternary
60SiO2-30.8CaO-9.2P2O5 composition with the incorporation nitrogen was achieved us-
ing a different amount of ethylenediamine, C2H8N2 as a nitrogen source [205]. MBG
nanoparticles of 85SiO2-15CaO (mol%) have been synthesized using CTAB as a template
and aqueous ammonia as a catalyst and a different combination of reactives, including
ethanol and 2-ethoxyethanol [206] or poly(ethylene glycol) (PEG) [207]. Expanded boron-
containing MBGs, based on (60-x)SiO2-xB2O3-30.2CaO-9.8P2O5 (x = 0, 5, 10, 20 mol.%),
using a CTAB template [208] and Sr-MBG nanoparticles of 85Si:10Ca:5Sr, were synthesized
by the ultrasound-assisted sol–gel method (alkali-mediated), using PEG as a structural tem-
plate [209]. The synthesis of combined supramolecular chemistry using block copolymers
as structure directing agents, with evaporation-induced self-assembly (EISA), is another
successful route for the preparation of MBGs. Pluronics® are a class of commercial synthetic
block copolymers, which consist of hydrophilic poly(ethylene oxide) (PEO) and hydropho-
bic poly(propylene oxide) (PPO), arranged in an A-B-A triblock structure. Silver-containing
MBG, in which the mole percentages of Si, Ca and P are 80, 15 and 5 and to which 1 mol%
Ag was added, has been achieved using Pluronic F-127 [210,211]. Cu-containing meso-
porous bioactive glass (MBG) microparticles, with a Si:Ca:P:Cu molar ratio of 80:10:5:5,
were successfully prepared using Pluronic P123 [212].

3.2.2. Processing and Final Formatting of Materials

The first sol–gel compositions obtained in the SiO2-CaO-P2O5 ternary system were
obtained in the form of particles of the order of 100–700 microns [28]. Spherical particles of
0.65 µm in size with the binary 30CaO-70SiO2 composition were obtained, after the intro-
duction of the precursor sol into a tube furnace at 600 ◦C by an ultrasonic nebulizer [213].
The textural properties of high specific surface area and pore volume of the spherical
mesoporous nanoparticles, as opposed to irregular microparticles, are being exploited for
the manufacture of dental cements with good handling and setting times. Spherical, sub-
micron bioactive glasses with final compositions close to 82%SiO2-15%CaO-3%P2O5 (M%),
and rapid setting time properties of 10 min when mixed with PBS, have been achieved
using dodecylamine (DDA) (serving as both a catalyst and template) [214]. Other inter-
esting Sr-free and Sr-doped MBG of 85SiO2-15CaO and 85SiO2-10CaO-5SrO (wt%) have
been successfully processed using a phosphate-buffered saline (powder to liquid ratio;
P/L = 0.5 g mL−1) to form a soft cement paste that hardens within 5–10 min in the ambient
environment [215].
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The ternary composition 60%SiO2-36%CaO-4%P2O5 (M%), a glass foam with a con-
trolled macroporous structure, was successfully produced using sodium lauryl ether sul-
phate as a foaming agent [216]. Binary 30CaO-70SiO2 system discs, containing both a
nanoporosity averaging at 9 nm and a macroporosity ranging 10–300 µm with a spe-
cific surface area of 130 m2 g−1, have been fabricated for pulp capping regenerative
endodontics, which cast into molds the sol of tetramethylorthosilicate (TMOS), CaN,
polyethylene oxide (PEO), acetic acid and hydrofluoric acid to catalyze gelation [217].
Li-MBG (Li/Ca/P/Si = 5/10/5/80, molar ratio) scaffolds with hierarchically large pores
(300–500 µm) and well-ordered mesopores (5 nm), by incorporating Li ions into the scaf-
folds, were successfully prepared using a replica of polyurethane sponges and showed
that this approach yielded scaffolds with a favorable composition, microstructure and
mesopores properties for cell attachment, proliferation and cementogenic differentiation of
human periodontal ligament-derived cells (hPDLCs) [218]. Also, by using a polyurethane
foam as the sacrificial template for the replication method, reticulated ceramic scaffolds
were performed using an 80Si15Ca5P molar ratio MBG sol and increasing amounts of
SBA-15 type silica particles (SP) as a ceramic precursor [32]. Furthermore, related hybrid
scaffolds incorporating a fibrillar collagen coating of less than 1 wt% collagen per scaffold,
have allowed a significant increase in the compressive strength, while preserving a high
surface area and nanopore accessibility, as well as promoting hydroxyapatite mineraliza-
tion [219]. These latter structures were generated in our laboratory at the ICMS and are
shown in Figure 3.
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hosting microparticles of MBG. These bioceramics have been prepared in our laboratory at the ICMS.
Further information on the preparation and characterization of such materials can be found in works
32, 34 and 235 in the reference list.



Molecules 2023, 28, 6967 11 of 27

Hybrid chitosan-based guided tissue regeneration (GTR) membranes, incorporating a
two component BG, CaO-SiO2 produced by the Stöber process, were prepared by solving
casting using chitosan as the polymer matrix [220]. Also, a 3D printed tyramine-modified
gelatin/silk fibroin/copper-doped 58S bioactive glass hybrid scaffold for rat bone defects
was constructed. The molar composition of Cu was varied by up to 10% by substituting
Ca, and the mechanism of the profound angiogenesis effect regulated by copper was
explored in vivo [221]. A hybrid device consisting of MBG microparticles embodied in
a nanofibrillar biodegradable matrix has been reported by our laboratory at the ICMS,
using appropriate thermally induced phase separation (TIPS) processing variables of
5.4% (wt/v) gelatin with a 50/50 water/ethanol (v/v) ratio (see Figure 3). The device
comprises high surface area MBG microparticles within a fibrous matrix of 170 nm average
diameter nanofibers gelatin, forming a meshwork of 0.2–1.6 µm range voids. Relevant
for its possible application in regenerative dentistry, gentamicin sulphate (GS) antibiotic
high loading capacity and sustained release ability, as well as its in vitro bioactivity and
osteoprogenitor cells biocompatibility, supports long-term antibacterial and bone growth
stimulation properties [34].

3.2.3. Therapeutic and Clinical Uses

Sol–gel bioactive glasses could be used in the treatment of two of the most preva-
lent oral diseases, caries and periodontitis, promoting the remineralization of teeth and
killing the main pathogens. Moreover, 45S5 sol–gel BG doped with 5 wt% of Li (BGLi)
presented a greater antibacterial behavior than BG against the A. actinomycetemcomitans
strain associated with periodontitis, due to the presence of Li ions. Enamel lesion was
partially remineralized in vitro, when both sol–gel bioactive glasses (BG and BGLi) were
applied on its surface, with micro-hardness recoveries around 45% [186]. Bioactive glass
foams, using the 60%SiO2-36%CaO-4%P2O5 (M%) composition, have been shown to be
effective in vivo in maintaining the thickness of the alveolar ridge, and the addition of
platelet-rich plasma (PRP) in association with the foams improve bone formation [216].
The enamel anti-demineralization effects of orthodontic resins containing 70 (M%) SiO2
mesoporous bioactive glass nanoparticles (MBN) doped with gallium have been investi-
gated [222]. Anti-demineralization testing in vitro has demonstrated that the degree of
enamel demineralization decreased as the GaMBN concentration increased, which indicates
that resins containing 5% GaMBN may be viable orthodontic adhesives for preventing
white spot lesions (WSLs). Sr-doped nano bioactive glass cements can be considered as
multifunctional biomaterials with high bioactivity, excellent biodegradability, fast thera-
peutic ion release and high drug loading capability, which potentiates its application in
dentin–pulp complex regeneration therapy [215]. The co-delivered Sr and phenamil using
sol–gel processed Sr-doped MBG (85Si:10Ca:5Sr) nanoparticles, demonstrated significant
stimulation of adult stem cell differentiation in vitro and osseous/dentinal regeneration
in vivo, through bone morphogenetic protein signaling pathways [209]. The incorporation
of Sr (2.5, 5 and 10 mol.%) into MBG scaffolds has significantly stimulated alkaline phos-
phatase (ALP) activity and osteogenesis/cementogenesis-related gene expression of PDLCs
being a promising bioactive material for periodontal tissue-engineering applications [223].

Fluoride-containing sol–gel BG containing adhesives have the potential to release F,
Ca and PO4 ions for a prolonged period even in a low pH environment, thus promoting
remineralization to prevent the formation of “white spot lesions” (WSLs) in orthodontic
treatments [193]. F-BG (5% mol.%) has the potential to be used in dentifrices, restorative
materials and for other dental applications [194]. Silver-containing mesoporous bioactive
glass MBG-Ag sealing combined with Er:yttrium–aluminum–garnet (YAG) laser irradiation
on human demineralized dentin specimens has been proven in vitro as a durable treatment
option for dentin hypersensitivity [210].
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3.3. Progress in Calcium Phosphate Bioceramics Research
3.3.1. Compositions and Chemical Routes

The inorganic constituent of teeth is a poorly crystalline and highly substituted apatite
(hydroxyapatite; HA), consisting of very small crystallites in the nanometric range [90], and
the sol–gel method is an excellent route to design advanced biomimetic calcium phosphate
biomaterials. As described above, the sol–gel method is a wet synthesis and, in the first
stage, calcium and phosphorous from various sources are dissolved in water and ethanol or
other suitable solvents, such as 2-butanol or acetic acid. In many published works, calcium
diethoxide (Ca(OEt)2) or calcium nitrate (Ca(NO3)24H2O; CaN) is reacted with triethylphos-
phite (P(OC2H5)3) or triethylphosphate (PO(OC2H5)3; TEP), either in an aqueous or organic
solution [224]. TEP remains relatively stable despite triethyl phosphite and, is often cho-
sen, although it is reported that TEP has a relatively low reactivity for hydrolysis [225].
Alternatively, non-alkoxide processing is possible using other precursors, such as calcium
nitrate, calcium acetate monohydrate (Ca(CH3COO)2H2O) or calcium chloride (CaCl2) as
a source of calcium, and phosphoric pentoxide (P2O5), ammonium hydrogen phosphate
((NH4)2HPO4), phosphoric acid (H3PO4) or sodium phosphate (Na3PO4) as a source of
phosphorous [224,225]. Generally, the time of ageing at an ambient temperature of the
prepared solutions varied from 2 to 72 h, drying (~100–150 ◦C) and, finally, heat treatment
at elevated temperatures (~300–900 ◦C) [224]. Besides, iron and strontium [226] nitrate
precursor salts have been added to the synthesis solutions to incorporate Fe or Sr divalent
ions, which successfully replace the Ca ions in the HA crystal lattice without distorting its
native structure. Mesoporous hydroxyapatite nanoparticles, with mesopores of 6 nm in size
and a specific surface area of 66 m2g−1, were achieved using CaN, diammonium hydrogen
phosphate, ammonium hydroxide (NH3H2O) and stearic acid (CH3(CH2)16COOH; SA), a
biocompatible medium chain fatty acid that would function as an organic modifier [227].

Also very interesting is the use of structure-directing molecules, such as block copoly-
mers, using strategies that combine the preparation of HA in the form of nanometric
particles by nucleation and growth on a mesoporous silica matrix [27]. The synthesis
procedure consists of a first step in an acid solution for the preparation of the Ca-doped
silica matrix, using TEOS, CaCl2 2H2O and the block copolymer Pluronic® 123, followed
by a second step where the mesoporous material is dispersed in a (NH4)2HPO4 solution at
pH = 9, which facilitates the nucleation and growth of HA nanoparticles decorating the
nanoporous silica matrix [228]. Moreover, calcium phosphate glass systems with a molar
ratio of 48CaO-45P2O5-5Na2O-2ZnO have been achieved starting from the preparation of
alkyl phosphate (by dissolving P2O5 in anhydrous ethanol), followed by its mixture with
sodium methoxide (CH3ONa), CaN, and zinc nitrate Zn(NO3)2 dissolved in a solution of
ethanol and glycol. Ammonia was used to adjust the pH to 6, and this solution was aged,
dried and calcinated at 300 ◦C to get a glass powder [229].

3.3.2. Processing and Final Formatting of Materials

HA nano powders with a controlled size have been achieved using CaN and P2O5
ethanol solutions, with a molar ratio of 10:3, and adjusting the parameters, such as the aging
time and calcination temperature. A nano powder exhibiting low crystallinity, a carbonated
apatitic structure, resembling that of human bone apatite with crystallites of 20–30 nm in
size, was prepared through appropriate sintering at a temperature of 600 ◦C [230]. Likewise,
HA nano powders with different sizes of 10–15, 15–25 or 50–80 nm have been monitored
using, respectively, 4, 48 or 72 h of ageing [231].

Sol–gel deposition provides a convenient method for applying thin calcium phos-
phate (CaP) films over convoluted surfaces, such as those associated with sintered porous-
surfaced dental implants. Nanocrystalline carbonated hydroxyapatite films have been
prepared by dip coating using a withdrawal speed of 20 cm min−1 onto a porous-surfaced
dental implant (Endopore® implants). A precursor solution of CaN in ethanol and triethyl
phosphite (firstly hydrolyzed), was aged for 2 days at room temperature. The films were
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further annealed at 500 ◦C for 20 min in air and, then, furnace cooled to room tempera-
ture [232].

Nanofibers of HA and its fluoridated form, FHA, were synthesized based on their
sol–gel precursors using an electrospinning process. The fluoridation level was fixed at
25% with respect to the hydroxyl ions, by the addition of NH4F to the TEP solution. The
fiber diameter was obtained in the range of a few micrometers to hundreds of nanometers
(1.55 µm–240 nm), by means of adjusting the concentration of the sols. The FHA nanofiber
produced in this study had higher chemical stability than the HA equivalent, and released
fluorine efficiently following the dissolution profile [233]. A nonwoven nanofiber film
made of strontium-substituted HA-CaO-CaCO3 nanofibers with a mesoporous structure
was fabricated using the sol–gel method followed by electrospinning. CTAB was used as a
porogen and poly(vinyl pyrrolidone) (PVP) and Pluronic® 123 were dissolved in absolute
ethanol and incorporated into the precursor solution after placing in the precursor solution
and aged at 60 ◦C for 12 h [234].

An all-ceramic (SP1_h_HA) scaffold combining dual porosity of well-interconnected
macroporous cavities and organized nanopores, as well as a HA nano-biomimetic coating,
was processed by infiltration of an MBG sol and SBA-15 silica microparticles mixture slurry,
which was subjected to a further 800 ◦C heating treatment and a final HA biomimetic coat-
ing using simulated body fluid [235]. Scanning electron microscopy (SEM) observations
showed very high similarities in both the overall macrostructure and the surface microstruc-
ture between the SP1_h_HA scaffold and the commercial bone-void filler ProOsteon®.

3.3.3. Therapeutic and Clinical Uses

Collagen infiltrated with sol–gel synthesized HA and silica nanoparticles have been
proposed as suitable scaffolds for the remineralization of the dentin resulting from dental
caries or acid erosion [236]. Likewise, silicon-substituted hydroxyapatite (Si-HA) materials
demonstrate good potential for maxillofacial applications compared with the response to
stoichiometric hydroxyapatite. A high Si content appears to promote rapid bone mineral-
ization through in vitro osteoblasts response, since large amounts of calcium phosphate
mineral started to develop across the extracellular matrix in a sample containing 5 mol%
Si [237]. Sol–gel synthesized mesoporous hydroxyapatite nanoparticles exhibit excellent
Vero cells cytocompatibility and viability, when loaded with methionine (MT), an essential
amino acid drug, demonstrating an initial burst release followed by the slow release of the
drug, which is beneficial for the speedy recovery of tissues and could be a useful material
for bone tissue engineering [227].

Electrochemical impedance measurements in Ringer’s physiological solution has
indicated that the development of nano HA coatings using the sol–gel method improves
the corrosion resistance of implants [238]. The antibacterial properties of films made
of strontium-substituted hydroxyapatite nanofibers have proven excellent drug-loading
efficiency and could retard the burst release of tetracycline to maintain antibacterial activity
for over 3 weeks [234]. From the perspective of dental restorative applications, (Sr/Fe)
co-doped biphasic calcium phosphate dental implant coatings prepared using the sol–gel
synthesis technique would be favorable for faster epithelial sealing and would also reduce
the chances of infection [226].

The use of an all-ceramic scaffold, consisting of a biomimetic nano-hydroxyapatite
surface coating growth onto an open and interconnected macropore structure, which also
has a nano-organized porous texture, has been proposed to restore bony defects in alveolar
bone. This material has been compared in vitro with a commercial control ProOsteon®

500R, showing a two stage sustained release of gentamicin sulfate (GS) instead of the quick
release shown by ProOsteon® 500R [235].
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3.4. Progress in Calcium Silicate Cements Research
3.4.1. Compositions and Synthesis Routes

Calcium silicates, particularly tri-calcium silicate, Ca3SiO5 (C3S), and di-calcium sili-
cate, Ca2SiO4 (C2S), compounds are very relevant in dentistry as they are the fundamental
components of hydraulic cements used in endodontic procedures [239]. Both C3S and C2S
react with water to form calcium silicate hydrate (CSH), which through the polymerization
network contributes to the self-setting properties and increased mechanical strength after
aging [240]. However, it is well reported that C2S reacts with water at a slower rate than
C3S [241] and also that C2S polymorphism in their beta (β) and gamma (γ) forms have
important differences, with the beta form being the most reactive [242,243].

Zhao et al. [244] reported the sol–gel synthesis of pure C3S powders after a heat
treatment at 1400 ◦C and above, using an initial Ca/Si molar ratio of 3, from Ca(NO3)24H2O
(CaN) and TEOS as the precursor materials and HNO3 as a catalyst. The obtained C3S
powder showed particles with some pores of about 1–5 µm and performed well as a self-
setting workable paste, with good biocompatibility and surface bioactivity in vitro [245].
The synthesis and in vitro bioactivity of C2S compositions in their β and γ forms has also
been studied using the same precursors, but modifying the Si/Ca molar ratio and the
heat treatment temperatures [246,247]. More recently, the sol–gel synthesis parameters,
such as the different mixing orders of reactants or the amount of nitric acid added, or the
calcium silicates using a Ca/Si molar ratio of 3, has been evaluated and optimized [248].
The results from this study demonstrated that sol–gel-derived powders can be achieved
showing porous microstructures and with a setting time of ~30 min, a value well below
that specified for commercial silicate cements as detailed in Section 2.3.

The synthesis of endodontic cements, including Al, Zn and F, has been investigated
by Voicu et al., showing an increase in the C3S crystallite size and a shifting of its XRD
peaks, which suggests the presence of Zn or/and F in the C3S lattice with a positive in-
fluence on the material’s grindability [249]. An interesting material with a 15 min setting
time was obtained by these authors using TEOS, aluminum butoxide (C12H27O3Al), zinc
acetate (Zn(CH3COO)22H2O) and CaN as reactive precursors and adequate thermal treat-
ment of 1450 ◦C [250]. Successfully synthesized strontium-doped C3S up to Sr = 2 mol%
with applicable setting times in clinical practice has been reported using TEOS, CaN and
Sr(NO3)2 [251]. The synthesis of a magnesium–calcium silicate cement (Mg–CS) with Mg
content of up to 10 mol% has been achieved using TEOS, CaN and Mg(NO3)26H2O as
precursors, nitric acid as a catalyst and absolute ethanol as the solvent, followed by heat
treatment at 800 ◦C for 2 h and ball milling for 6 h in ethyl alcohol using a centrifugal
ball mill [252]. Using similar reactive compounds, different formulations including 1, 3 or
5 mol% of Mg to satisfy the (Mg + Ca)/Si molar ratio of 3, were also investigated after heat
treatment at 1400 ◦C. It could be seen that the Mg ion incorporated into the C3S phase and
residual Mg ion remained in the Mg(OH)2 phase, which plays the role of hydration acceler-
ator, and the setting time was shortened [253]. C2S, C2S–xZn and C2S–xCu powders with
different percentages (x = 5% or 10%) of Zn- or Cu-substituted Ca were also synthesized
by a modified sol–gel method using a silica sol (SiO2, containing 25.5% SiO2), CaN and
Zn(NO3)26H2O or Cu(NO3)23H2O with a nominal (CaO + ZnO + CuO)/SiO2 molar ratio
of 1.8:1, an ethanol–water mixture and heat treatment at 800 ◦C for 3 h [254].

3.4.2. Final Processing of Materials

Workable pastes of C3S prepared by sol–gel using a liquid to powder ratio (L/P) of
0.8–1.2 mL g−1 were self-setting and could be injected within 15–60 min [245]. Calcium
silicate cements consisting of sol–gel-derived calcium silicate powder of SiO2–CaO ranged
from 7:3 to 3:7 were processed using a 3.7 M ammonium phosphate solution (NH4)2HPO4–
NH4H2PO4 with an L/P over the range 0.5–0.7 mL g−1, resulting in self-hardening to
form apatite and a CSH gel within 9 min [255]. Sol–gel C3S based cements were processed
using ball milling mixing in combination with a 20% radiopacifier phase, such as BaZrO3,
CaZrO3 and SrZrO3, producing radiopaque materials, which were either comparable or else
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improved over the control MTA Angelus [256]. Nano powders of barium titanate (BT) and
biocellulose (BC) were added (10 wt%) to calcium silicophosphate cements based on sol–gel
synthesized calcium silicates, with a CaO/SiO2 molar ratio of 1 and an orthophosphoric
acid solution partially neutralized with Al2O3 and ZnO. The addition of BT and BC nano
powders determined the decrease in the setting time, whilst it did not significantly influence
the mechanical properties of the resulting composites [257]. A recent paper published by
our laboratory details how the use of the sol–gel route can be effective for obtaining
endodontic cements with a majority of C3S content and C2S in its hydraulic beta form.
Besides, the implementation of a novel post-synthesis treatment at room temperature using
ethanol allows for a final product with a finer particle size and increased CaCO3 content,
resulting in an improved material in terms of the setting time and bioactive response [258].

3.4.3. Therapeutic and Clinical Uses

Bioactivity, which implies the release of calcium ions, electroconductivity and the for-
mation of an interfacial layer between the material and dentinal wall, is a common property
of calcium silicates [114]. The hydration of sol–gel synthesized C3S yields a dissolvable
CSH, whose ionic products have a stimulatory effect on relevant cell growth [245]. Fast
setting and controllable degrading properties, as well as the stimulation of odontogene-
sis/angiogenesis, has been reported for a magnesium–calcium silicate (Mg–CS) cement
with a Mg content of up to 10 mol%. The Mg–CS cement has been shown to stimulate the
proliferation of human periodontal ligament cells (hPDLCs) in vitro and actively promote
the secretion of odontogenic (DSPP and DMP-1) and angiogenic (vWF and ang-1) pro-
teins [252]. Also consistent with this, another study using Mg–CS with different amounts 1,
3, 5 mol% of Mg ion has been shown to promote osteogenic differentiation of human dental
pulp stem cells (hDPSCs) [253].

Sol–gel synthesized C2S powders partially substituted with Zn or Cu were investi-
gated systematically to examine their antibacterial activity in vitro and osteogenic activity
in mandibular bone defects in vivo. The pure C2S cement showed a significant antibacterial
response in comparison with the Zn-/Cu-substituted C2S cements in the initial several
hours, but the latter could prolong the antibacterial efficacy. Also, maximum bone regenera-
tion was consistently observed in defects filled with Zn-/Cu-substituted C2S cements [254].

Sol–gel synthesis of C3S including F and Zn ions in the crystal lattice has been cor-
related with the materials reactivity vs. water, as well as its mechanical and aesthetical
properties [249]. Besides, the mixing of Sr2SiO4 particles synthesized by sol–gel to a ce-
menting composite with C3S and C2S at a weight ratio of 30% by weight has been shown to
give sufficient radio-opacity to an endodontic cement, as well as to enhance its bioactivity
and tubule occlusion [259].

4. Conclusions

The combination of sol–gel chemistry and advances in materials processing techniques
make a very promising tandem for innovation in the field of bioceramics for dentistry. The
sol–gel chemical synthesis process is very versatile, allowing it: to extend the chemical
composition of the materials to ranges that cannot be achieved with other more conventional
processes, such as the melting of precursor compounds; to improve the textural properties
of the resulting solids due to the intrinsic mesoporosity generated in the condensation
process of the inorganic polymers forming the material. This mesoporosity leads to high
specific surface area values and, therefore, the high surface reactivity of the resulting
products; the adaptation of synthesis routes that incorporate structure-directing molecules
in order to control the organization in the condensation of the inorganic material. This
makes it possible to design the size of the final particles of the material in the micro
and/or nanometric ranges, but also to generate ordered nanoporous structures that can
significantly increase the specific surface area and adsorption of the bioceramics; the
possibility of adapting the chemical synthesis process with different physical technologies
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in the processing of the biomaterials for their shaping into the formats that are best suited
to optimize their functionality.

In relation to the toxicological and biocompatibility characteristics of sol–gel-produced
bioceramics, it is important to note that they can vary depending on the specific formu-
lations, processing conditions and intended applications. The surface properties, such as
the specific surface area, nanopore size, roughness and chemistry, play a crucial role in
determining the interaction between bioceramics and living tissues. Moreover, the tissue
response to sol–gel products depends on various factors, including the type of tissue,
implantation site and duration of exposure. As detailed in previous sections, well-designed
sol–gel bioceramics have been found to promote favorable dental tissue responses, such
as cell adhesion, proliferation and differentiation, as well as good biological parameters
measuring dental tissue integration, inflammation, immune system response and long-term
stability (see Table A1).

In terms of environmental sustainability, the sol–gel method allows for better control
over the chemical composition of bioceramics minimizing material waste, as it enables
precise synthesis and reduces the need for excess raw materials. It uses low reaction
temperatures in comparison to other burning and high temperature thermal methods,
contributing to cost savings and environmental sustainability. Furthermore, it offers ease of
processing to create complex shapes and structures using simpler equipment than other
high temperature or high vacuum technologies.
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Abbreviations

ICMS Materials Science Institute of Seville
NCDs Noncommunicable diseases
sol Solution
BG Bioactive glass
CaP Calcium phosphate
CaSi Calcium silicate
ERMI Endosseous ridge maintenance implant
GICs Glass-ionomer cements
MCP Monocalcium phosphate
DCPA Dicalcium phosphate
TCP Tricalcium phosphate
HA Hydroxyapatite
BECs Bioactive endodontic cement
MTA Mineral trioxide aggregate
GMTA Gray ProRoot MTA
WMTA White ProRoot MTA
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TEOS Tetraethyl orthosilicate
TEP Triethyl phosphate
CaN Calcium nitrate tetrahydrate
SBF Simulated body fluid
HCA Hydroxy carbonate apatite
MBG Mesoporous bioactive glass
DDA Dodecylamine
CTAB Hexadecyltrimethyl ammonium bromide
PEG Poly(ethylene glycol)
PEO Poly(ethylene oxide)
PPO Poly(propylene oxide)
P/L Powder to liquid ratio
TMOS Tetramethylorthosilicate
hPDLCs Human periodontal ligament-derived cells
SP Silica particles
SBA-15 Santa Barbara Amorphous-15
GTR Guided tissue regeneration
TIPS Thermally induced phase separation
GS Gentamicin sulphate
Nf Nanofibres
PRP Platelet-rich plasma
MBN Mesoporous bioactive glass nanoparticles
WSLs White spot lesions
ALP Alkaline phosphatase
YAG Yttrium aluminum garnet
SA Stearic acid
PVP Poly(vinyl pyrrolidone)
SEM Scanning electron microscopy
Si-HA Silicon-substituted hydroxyapatite
MT Methionine
C3S Tri-calcium silicate
C2S Di-calcium silicate
CSH Calcium silicate hydrate
BT Barium titanate
BC Biocellulose
hDPSCs Human dental pulp stem cells

Appendix A

Table A1. Comparison of relevant properties for the three types of sol–gel bioceramics studied.

Bioceramic Properties References

BG 1

Highly versatile for formulating variations in
chemical composition; Bioactive; Biocompatible;
Osteointegrative; Osteogenic and osteoinductive;

Biodegradable; Bactericide

[28,35,189,192]

CaP 2
Biomimetic to natural human hard tissues

composition; Biocompatible; Osteoconductive;
Bioresorbable

[88,89,227,232]

CaSi 3 Hydraulic; Biocompatible; Bioactive;
Osteoconductive; Osteoinductive [66,115,156,258]

1 Bioactive glass; 2 calcium phosphate; 3 calcium silicate.
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