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Abstract: Photocatalyst is the core of photocatalysis and directly determines photocatalytic perfor-
mance. However, low quantum efficiency and low utilization of solar energy are important technical
problems in the application of photocatalysis. In this work, a series of polyoxometalates (POMs)
[H3PW12O40] (PW12)-doped titanium dioxide (TiO2) nanofibers modified with various amount of
silver (Ag) nanoparticles (NPs) were prepared by utilizing electrospinning/photoreduction strat-
egy, and were labelled as x wt% Ag/PW12/TiO2 (abbr. x% Ag/PT, x = 5, 10, and 15, respectively).
The as-prepared materials were characterized with a series of techniques and exhibited remarkable
catalytic activities for visible-light degradation tetracycline (TC), enrofloxacin (ENR), and methyl
orange (MO). Particularly, the 10% Ag/PT catalyst with a specific surface area of 155.09 m2/g and an
average aperture of 4.61 nm possessed the optimal photodegradation performance, with efficiencies
reaching 78.19% for TC, 93.65% for ENR, and 99.29% for MO, which were significantly higher than
those of PW12-free Ag/TiO2 and PT nanofibers. Additionally, various parameters (the pH of the
solution, catalyst usage, and TC concentration) influencing the degradation process were investigated
in detail. The optimal conditions are as follows: catalyst usage: 20 mg; TC: 20 mL of 20 ppm; pH = 7.
Furthermore, the photodegradation intermediates and pathways were demonstrated by HPLC-MS
measurement. We also investigated the toxicity of products generated during TC removal by em-
ploying quantitative structure-activity relationship (QSAR) prediction through a toxicity estimation
software tool (T.E.S.T. Version 5.1.2.). The mechanism study showed that the doping of PW12 and
the modification of Ag NPs on TiO2 broadened the visible-light absorption, accelerating the effective
separation of photogenerated carriers, therefore resulting in an enhanced photocatalytic performance.
The research provided some new thoughts for exploiting efficient and durable photocatalysts for
environmental remediation.

Keywords: Ag nanoparticles; PW12/TiO2 nanofibers; degradation of antibiotics; degradation pathways;
toxicity assessment

1. Introduction

In recent years, photocatalysis technology, which can use solar energy for environ-
mental purification and energy conversion, has received worldwide attention [1,2]. Pho-
tocatalytic technology has a wide range of applications in pollutants degradation, CO2
reduction, water splitting to produce hydrogen and nitrogen fixation, etc. [3]. The core of
photocatalysis is designing and developing the photocatalysts with visible-light response,
prominent catalytic activity, and recyclability. Among the various photocatalysts, TiO2 has
received a lot of attention due to its low synthesis cost, lack of toxicity, and high catalytic

Molecules 2023, 28, 6831. https://doi.org/10.3390/molecules28196831 https://www.mdpi.com/journal/molecules

https://doi.org/10.3390/molecules28196831
https://doi.org/10.3390/molecules28196831
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/molecules
https://www.mdpi.com
https://orcid.org/0000-0001-5236-7566
https://orcid.org/0000-0001-7845-7578
https://doi.org/10.3390/molecules28196831
https://www.mdpi.com/journal/molecules
https://www.mdpi.com/article/10.3390/molecules28196831?type=check_update&version=1


Molecules 2023, 28, 6831 2 of 21

activity [4]. However, the wide band gap and low utilization efficiency of carriers limit its
practical applications [5]. Therefore, it is urgent to enhance the visible-light absorption and
the driving force for the separation of photoinduced carriers. Many strategies have been
made to improve its catalytic activity, including dye sensitization [6], construction of het-
erojunction [7], morphology engineering [8], and metal/non-metal element doping, etc. [9].

POMs are identified as a promising candidate to embellish TiO2 for addressing this
challenge. POMs demonstrate semiconductor-like characteristics with their tunable elec-
tronic structures and energy levels. They also possess high negative charge and excellent
solubility and are endowed with favorable processing properties [10,11]. Therefore, POMs
are easily encapsulated or dispersed within various semiconductors, which can constantly
enhance the redox property, modulate the band gap structure, and facilitate the separation
efficiency of photoproduced carriers [12–14]. Among various POMs, H3PW12O40 (abbr.
PW12), as a Keggin-type POM, has demonstrated important applications in photocatalysis
fields such as water splitting and contaminants removal [15,16].

Besides, the strategy of noble metals (such as Ag, Pd, Pt, and Au) modifying semicon-
ductors has been extensively investigated to expand spectral absorption and accelerate the
separation of photon-generated carriers [17–19]. Typically, a Schottky junction is formed
at the interface between a metal and a semiconductor to create a built-in electric region
that enhances the surface plasmon resonance (SPR) effect. Among these noble metals,
Ag has been extensively applied in SPR photocatalysis due to the excellent electrical con-
ductivity, relatively cheap price, wide SPR absorption, and intense local electromagnetic
fields caused by SPR [20,21]. For instance, Ag@TiO2 composites with core-shell nanostruc-
tures were prepared, applying the one-step solvothermal method by Zeng et al., which
displayed enhanced light absorption range and enabled the effective separation of e−-h+

pairs, resulting in an improved photocatalytic performance [22]. Moreover, the electrostatic
spinning technology has been considered as a versatile technology capable of adjusting
the composition, diameter, and orientation of materials according to the intended function
and application [23], which is employed extensively in the fabrication of metal oxides
(TiO2, ZnO, Fe2O3, WO3, etc.) nanofibers for photocatalytic degradation of pollutants [24],
hydrogen production [25], and CO2 reduction [26], etc.

Based on the above considerations, we prepared a novel Ag/PW12/TiO2 (abbr. Ag/PT)
composite by electrospinning/photoreduction methods, according to the literature [11,19].
Firstly, the electrospinning/calcination method was used to obtain PW12/TiO2 material;
then, the Ag NPs were loaded on PW12/TiO2 using the photoreduction method, obtaining
the Ag/PT composite. Moreover, these as-prepared Ag/PT nanofibers exhibited remarkable
photocatalytic activities for the degradation of multiple pollutants. The 10% Ag/PT catalyst
possessed the optimal photodegradation performance, whose efficiency reached 78.19%
for TC, 93.65% for ENR, and 99.29% for MO, which was significantly higher than those
of PW12-free Ag/TiO2 and PT. Furthermore, the influence parameters, including the pH
of the solution, catalyst usage, and the concentration of TC, were studied in detail. The
degradation intermediates and pathways were revealed by LC-MS data. QSAR prediction
was employed to investigate the toxicity of products in TC photodegradation. Ultimately,
the photocatalytic mechanism was investigated with radical capture analysis and band
gap structures.

2. Results and Discussion
2.1. Characterization of Ag/PT Composites

The microstructure and morphology of PT nanofibers are presented in Figure 1a. The
surface of the nanofibers after calcination at 550 ◦C is relatively rough and porous, and
the fiber diameter is about 80 ± 20 nm. Figure 1b,c show the SEM and TEM images for
10% Ag/PT, respectively. Distinctly, these Ag NPs are equally deposited on the surface
of PT with an average diameter of 10 ± 5 nm. The HRTEM images of 10% Ag/PT verify
the latticed coexistence of TiO2 and Ag in these samples (Figure 1d). The observed lattice
spacing of 0.233 nm corresponds to the (112) crystal plane of the anatase phase TiO2 (JCPDS
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no. 21-1272), and the lattice spacing of 0.145 nm corresponds to the Ag (220) plane (JCPDS
no. 04-0783). As shown in Figure 1e–j, the elemental mapping images of 10% Ag/PT and
the EDS data (Figure S1) further indicated the uniform distribution of Ag, P, W, Ti, and O
elements in the sample.
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The phase composition and purity of the prepared catalysts were investigated with
XRD (Figure 2a). For TiO2, these characteristic diffraction peaks at 25.3◦, 36.9◦, 37.8◦, 38.5◦,
48.0◦, 53.9◦, 55.0◦, and 62.7◦ are attributed to the (101), (103), (004), (112), (200), (105), (211),
and (204) crystal plane of anatase phase TiO2 (JCPDS no. 21-1272), respectively [27,28]. With
the introduction of PW12 into TiO2, no peaks of PW12 are found in the diffraction peaks of
PT, demonstrating the doping of PW12 in TiO2. When Ag NPs are deposited on PT, the main
diffraction peaks of Ag/PT composite are similar to those of PT. Additionally, the main
diffraction peak at 38.1◦, belonging to Ag (111) phase (JCPDS no. 04-0783), is not obviously
found, which might be attributed to the cover effect with diffraction peak of PT [29]. The
obtained results certify the presence of PT and Ag NPs in these Ag/PT composites.

Figure 2b displays the FT-IR spectra of various samples. TiO2 has no obvious char-
acteristic vibration peak, and the PW12 exhibits four characteristic infrared absorption
peaks in 700~1100 cm−1, including the peaks at 1075, 975, 882, and 830 cm−1, respec-
tively. Concretely, the peak at 1075 cm−1 is caused by the vibration of the P-O bond, the
peak at 975 cm−1 is assigned to the vibration of the W=O bond, and the two peaks at
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882 and 830 cm−1 are attributable to the vibration of the two kinds of W-Oc/e-W bridge
bonds [30,31]. Besides, the peak of PW12 near 1600 cm−1 may belong to the adsorbed
H2O molecules [32]. These peaks can be also observed in the PT and Ag/PT materials,
indicating the integrity of the PW12 Keggin unit in these composites. However, a shift in the
vibrational frequencies (1060, 961, 868, and 815 cm−1) is detected for Ag/PT, manifesting
the presence of interaction between PT and Ag [19]. The aforementioned results certify that
the Ag/PT materials have been fabricated successfully.
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Figure 2. (a) XRD and (b) FT-IR of the constructed specimens.

A UV-Vis diffuse reflectance spectra (DRS) measurement was performed to evaluate
the light absorption properties of the obtained specimens. According to Figure 3a, the
light absorption edge of TiO2, PW12 catalysts appeared around 400 and 380 nm. For PT
photocatalysts, the light absorption intensity was increased due to the adulteration of
PW12. In particular, the strongest optical absorption ability in the Ag/PT composites can be
attributed to the introduction of Ag NPs [33], which would be beneficial to produce more
photogenerated charge carriers to participate in the reaction [34]. We found that the SPR
absorption band of Ag NPs ranges from 480 nm to 550 nm (Figure S2) [35]. Furthermore, as
shown in Figure 3b, the band gaps of various catalysts were calculated by the following
equation: αhν = A(hν−Eg)1/2, in which A, hν, and α represent the constant, photon energy,
and absorption coefficient, respectively [36].
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The band gap values were 3.17, 3.29, 2.83, 2.80, 2.72, and 2.61 eV for TiO2, PW12, PT,
and x% Ag/PT (x = 5, 10 and 15), respectively. The doping of H3PW12O40 introduces
additional electronic states and energy levels into the band structure of TiO2. These
additional electronic states can interact with the electron energy levels of TiO2, leading to
adjustments in the band structure, thereby reducing the band gap [11,27]. Obviously, in
comparison with PT, the band gap of Ag/PT was reduced, which suggests that Ag might
introduce a local energy level to the band gap of PT, resulting in a reduced energy gap [37].

The composition and chemical state information of as-prepared specimens were
probed with X-ray photoelectron spectroscopy (XPS). The elemental composition of
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10% Ag/PT was demonstrated by the signal detection of P, W, O, Ti, and Ag elements in
the full XPS spectra (Figure 4a). Figure 4b–f shows the high resolution XPS profiles for Ag
3d, P 2p, W 4f, Ti 2p, and O 1s of PT and 10% Ag/PT, confirming the successful preparation
of the composites. As presented in Figure 4b, the 10% Ag/PT composite showed two peaks
at Ag 3d, located at 367.61 eV and 373.59 eV, belonging to Ag0 3d5/2 and Ag0 3d3/2 metallic
silver monomers, respectively [38,39]. The P 2p XPS profile for PT (Figure 4c) has a peak at
133.70 eV, and this binding energy was considered to be the presence of P5+ [40]. The P 2p
peak of 10% Ag/PT was shifted towards the lower binding energy region in comparison
with PT. In the PT material, the high-resolution XPS spectrum of the W 4f region (Figure 4d)
showed two peaks at 35.58 eV and 37.63 eV for the W 4f7/2 and W 4f5/2 binding energies,
respectively, and, in 10% Ag/PT, W 4f was shifted toward the lower binding energy with
binding energies of 35.28 eV and 37.32 eV [41,42]. Figure 4e shows the presence of Ti 2p3/2
and Ti 2p1/2 characteristic peaks observed at 458.49 eV and 464.16 eV in PT, which are
features of Ti4+ in TiO2 [43]. Notably, the binding energies of Ti 2p XPS for 10% Ag/PT were
shifted to 458.45 eV and 464.13 eV, providing evidence of the interaction between PT and
Ag [44]. Figure 4f shows the XPS spectra of O 1s. Two peaks, at 529.57 eV (PT) and 529.48 eV
(10% Ag/PT), were found, which were considered as Ti-O [45]; meanwhile, two peaks
are found at 531.21 eV and 532.12 eV (PT) and 531.11 eV and 532.01 eV (10% Ag/PT),
corresponding to W-O and P-O, respectively [46]. Notably, these peaks in 10% Ag/PT
composites shifted to lower binding energies compared to PT, which indicated the presence
of interfacial interaction between Ag and PT [47].
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Figure 5a demonstrates that the N2 adsorption and desorption isotherms of different
specimens conform to type IV, while the hysteresis line follows type H1, indicating the
presence of a mesoporous structure [48,49]. The specific surface areas (SSA) were 30.39,
146.85, 156.42, 155.09, and 166.91 m2/g for TiO2, PT and x% Ag/PT (x = 5, 10 and 15),
respectively. The result suggested that the introduce of PW12 is beneficial to enhance the
SSA of TiO2, which would demonstrate an improved catalytic performance. Figure 5b
presents the pore size distributions of as-obtained samples. The average pore volumes
were 11.57, 5.32, 4.25, 4.61, and 4.40 nm for TiO2, PT, and x% Ag/PT (x = 5, 10 and 15),
respectively. It is clear that the average pore volume of Ag/PT composites decreased, which
might be due to the accumulation of Ag NPs on the PT surface.
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2.2. Catalytic Activity Assessment of Ag/PT Composites
2.2.1. Photocatalytic Removal of TC

TC was chosen as an organic pollutant to explore the photocatalytic capacity of
obtained samples [50,51]. As presented in Figure 6a, the adsorption-desorption equilibrium
was reached between the catalyst and TC under dark conditions within 20 min. The control
experiment was designed and demonstrated that the self-photolysis process of TC can
be excluded. TiO2 exhibits a negative effect on the TC degradation. The degradation
efficiencies of TC on PT and 10% Ag/TiO2 were significantly higher compared to pure
TiO2, which reached 26.53% and 43.52% within 60 min, respectively. This indicates that the
photocatalytic activity of TiO2 can be improved with the proper introduction of H3PW12O40
or Ag NPs. Moreover, the photocatalytic property of Ag/PT was further boosted, benefiting
from the remarkable contribution of the SPR effect originating from the Ag NPs. The
10% Ag/PT composite shows the optimal degradation efficiency of 78.19% (Figure S3a),
which exhibits better performance compared to numerous other catalysts, in terms of TC
removal (Table S1). Besides, the removal of total organic carbon (TOC) for TC degradation
reached 60.08% within 1 h using 10% Ag/PT material (Figure S4), which implies that
the TC degradation was incomplete. Nevertheless, when more Ag was deposited on the
PT, the TC removal rate of the synthesized 15% Ag/PT composite reduced to 71.12%.
Because excessive Ag occupies a part of the active sites of PT, the adsorption capacity and
degradation rate of Ag/PT composite towards TC molecules is reduced.

As presented in Figure 6b, the fitting results of the TC degradation rate indicate that it
was in accordance with the first-order kinetic model. Distinguishingly, the reaction rate
constant k for TC degradation with 10% Ag/PT was 0.0227 min−1, which was about 29- and
8-times higher than those of TiO2 and PT, respectively. Therefore, the doping of PW12 and
the modification of Ag NPs are effective methods to boost the photocatalytic performance
of TiO2.



Molecules 2023, 28, 6831 7 of 21

Molecules 2023, 28, x FOR PEER REVIEW 7 of 22 
 

 

be excluded. TiO2 exhibits a negative effect on the TC degradation. The degradation effi-
ciencies of TC on PT and 10% Ag/TiO2 were significantly higher compared to pure TiO2, 
which reached 26.53% and 43.52% within 60 min, respectively. This indicates that the pho-
tocatalytic activity of TiO2 can be improved with the proper introduction of H3PW12O40 or 
Ag NPs. Moreover, the photocatalytic property of Ag/PT was further boosted, benefiting 
from the remarkable contribution of the SPR effect originating from the Ag NPs. The 10% 
Ag/PT composite shows the optimal degradation efficiency of 78.19% (Figure S3a), which 
exhibits better performance compared to numerous other catalysts, in terms of TC re-
moval (Table S1). Besides, the removal of total organic carbon (TOC) for TC degradation 
reached 60.08% within 1 h using 10% Ag/PT material (Figure S4), which implies that the 
TC degradation was incomplete. Nevertheless, when more Ag was deposited on the PT, 
the TC removal rate of the synthesized 15% Ag/PT composite reduced to 71.12%. Because 
excessive Ag occupies a part of the active sites of PT, the adsorption capacity and degra-
dation rate of Ag/PT composite towards TC molecules is reduced. 

As presented in Figure 6b, the fitting results of the TC degradation rate indicate that 
it was in accordance with the first-order kinetic model. Distinguishingly, the reaction rate 
constant k for TC degradation with 10% Ag/PT was 0.0227 min−1, which was about 29- and 
8-times higher than those of TiO2 and PT, respectively. Therefore, the doping of PW12 and 
the modification of Ag NPs are effective methods to boost the photocatalytic performance 
of TiO2. 

 
Figure 6. (a) The visible-light (λ > 420 nm) degradation of TC utilizing various specimens (catalyst
usage: 20 mg; TC: 20 mL of 20 ppm; pH = 7); (b) The pseudo-first-order kinetic study for TC
degradation; Degradation of TC with 10% Ag/PT with various conditions: (c) Different pH values
(TC: 20 mL of 20 ppm; catalyst usage: 20 mg); (d) Zeta potential of 10% Ag/PT at different pH values;
(e) Diverse catalyst amount (TC: 20 mL of 20 ppm; pH = 7); (f) Different concentration of TC (TC:
20 mL; pH = 7; catalyst amount: 20 mg). Light source: 300 W Xe light (CEL-HXF300, AULIGHT).

Effect of different pH values: The degradation of TC in aqueous solution undergoes
protonation and deprotonation reactions, and the pH of the solution will lead to different
charge states, which affects the decomposition of TC. As shown in Figure 6c, the TC
degradation efficiency gradually increased with the increase of pH, which achieved the
optimal value of 87.42% at pH 11. The alkaline environment favors the generation of •O2

−,
which is one kind of active species during the pollutant degradation process [52]. Besides,
TC molecules exhibit a high susceptibility to photolysis in alkaline conditions, benefiting
from the transition from the π to π* states of the (HOMO-1 to LUMO) chromophore [53].
At neutral pH, the TC removal rate was 78.19% after 60 min of light exposure. However,
under acidic conditions, the degradation efficiency of TC further decreased. In Figure 6c,
the adsorption removal efficiency of TC by 10% Ag/PT at different pH conditions were
10.04% (pH 1.0), 15.41% (pH 3.0), 16.28% (pH 5.0), 16.78% (pH 7.0), 14.61% (pH 9.0), and
8.67% (pH 11.0). This may be related to the zeta potential of the catalyst, which was
examined for 10% Ag/PT at different pH conditions (Figure 6d). Obviously, the zeta
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potential of 10% Ag/PT was positive at pH < 2.4 and negative at pH > 2.4. Moreover,
when pH < 3.3, TC appeared as a cation (TCH3

+); when pH = 3.3~7.7, TC existed as an
ampholyte (TCH2

0); when pH was greater than 7.7, TC appeared as an anion (TCH3
−) [54].

Therefore, when pH = 1.0, the surface of 10% Ag/PT was positively charged and the TC
molecules were present in the protonated (TCH3

+, pH < 3.3), which generated an intense
electrostatic repulsion and weak adsorption ability. With the increase of pH from 3 to 7,
the positive surface charge of 10% Ag/PT decreased from −4.64 mV to −21.07 mV, and
the TC molecules were in neutral (TCH2

0, pH 3.3–7.7), indicating that the electrostatic
repulsion was suppressed, thus promoting the adsorption capacity. When the pH was 9.0
and 11.0, the electrostatic repulsion existed between the catalyst with a negative charge and
TC (TCH3

−, pH > 7.7). Furthermore, the excess OH− could occupy the adsorption sites of
the catalyst, generating a slight reduction of adsorption ability [55].

Influence of catalyst dosage: As shown in Figure 6e, the degradation efficiency was
significantly enhanced from 60.35% to 78.19%, with the catalyst quantity from 10 to 20 mg,
which could be assigned to the increase of active sites [56]. However, the TC degradation
rate increased indistinctively (78.19% to 82.64%) upon further increasing the catalyst usage
from 20 to 30 mg, which may be due to the poor light transmission of the solution applying
too much catalyst [57].

Effects of initial TC concentration: Figure 6f provides the effect of TC concentration
on the photodegradation performance. The TC degradation rate decreased continuously,
with the TC concentration ranging from 10 to 80 ppm. The explanation may be that the
limited number of photogenerated carriers lead to restrict TC degradation when the initial
TC concentration was too high. In addition, the higher TC concentration affected the
penetration ability of photons and, thus, negatively affects the photocatalytic activity [58].

2.2.2. Photocatalytic Degradation of ENR and MO

The catalytic performance for Ag/PT composites were further evaluated by degrading
ENR and MO in visible-light. During the dark reaction, the pollutants molecules were
adsorbed on the photocatalyst surface for 20 min to obtain the adsorption-desorption
equilibrium. As presented in Figure 7a, the photocatalytic degradation efficiencies of ENR
with control, TiO2, 10% Ag/TiO2, PT, 5% Ag/PT, 10% Ag/PT, and 15% Ag/PT were 1.99%,
20.17%, 58.84%, 63.09%, 87.93%, 93.65%, and 89.98%. Specially, 10% Ag/PT had the best
photocatalytic activity of 93.65% (k = 0.0194) (Figures 7b and S3b), which was 4.64-, 1.48-,
and 1.59-times higher than that of TiO2, 10% Ag/TiO2, and PT, respectively. Similarly, the
degradation profiles in Figure 7c manifesting 10% Ag/PT also displayed an excellent MO
degradation rate of 99.29% (k = 0.1549) (Figures 7d and S3c). The influencing parameters
of catalyst dosage and MO concentration were also studied in Figure S6. Moreover, the
degradation efficiencies of Ag/PT composites are superior to other catalysts for ENR and
MO removal (Tables S2 and S3). These data verify that as-prepared Ag/PT is one kind of
multi-functional material in the field of environmental remediation.
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2.3. Stability Test of Photocatalyst

Figure 8a shows the cycling experiments of 10% Ag/PT as a visible-light catalyst
for the degradation of various contaminants. After 20 cycles of reuse, the degradation
efficiency of MO, ENR, and TC exhibited a slight decrease, and by using ICP-6000 test,
the leaching amount of Ag after degradation was 2.1 ppm, indicating that the as-obtained
Ag/PT composites had good reuse performance. Moreover, the photocatalytic stability
of Ag/PT materials was confirmed with XRD and FT-IR. As shown in Figure 8b,c, the
XRD diffraction peaks and FT-IR spectra of the used 10% Ag/PT remained unchanged in
comparison with the fresh sample, verifying the good structural stability of these materials.
Furthermore, the TEM image after TC removal (Figure 8d) also demonstrated the good
cycling stability of the catalyst.
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2.4. Photocatalytic Mechanism Investigation
2.4.1. Photogenerated Carriers Behavior Analysis

The photoluminescence (PL) spectra were measured to reflect the separation effi-
ciency of photoinduced carriers from the synthesized catalysts. As demonstrated in
Figure 9a, these materials exhibited similar peaks at 425 nm. The fluorescence intensity for
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Ag/PT composite exhibited a significant decrease compared to TiO2, PT, and 10% Ag/TiO2,
implying that the recombination of photogenerated charge carriers was effectively sup-
pressed [59,60]. In addition, the 10% Ag/PT catalyst had the lowest peak intensity, implying
a higher separation rate of electron-hole pairs and better catalytic capacity compared to the
remaining specimens. The fluorescence lifetimes of PT and 10% Ag/PT were determined
by time-resolved fluorescence attenuation spectrometry (TRPL). As revealed in Figure 9b,
the fluorescence intensity of PT and 10% Ag/PT both decreased exponentially. The average
fluorescence lifetime τave of PT and 10% Ag/PT were calculated to be 0.18 ns and 0.06 ns,
respectively (Table S4). The result shows that 10% Ag/PT has a shorter average decay time
than PT, which indicates that the deposition of Ag nanoparticles is beneficial to delay the
recombination of photoinduced carriers [61]. The corresponding quenching and lifetime
reduction of TRPL implies a high non-radiative decay rate at 10% Ag/PT, and the estab-
lishment of a fast electron transfer pathway for accumulated photoproduced electrons is
conducive to the enhancement of catalytic capacity [62].
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and photocurrent (d) of various samples.

The electrochemical impedance spectroscopy (EIS) and instantaneous photocurrent
have been employed for examining the separation and migration ability of photogenerated
electron-hole pairs. Figure 9c illustrates the EIS Nyquist plots form distinct electrodes,
and the equivalent circuit are provided as an insert. Generally, the small EIS radian of the
electrochemical impedance corresponds to the low charge transfer resist [63]. It is clear that
the radius of these Ag/PT materials were much smaller than those of TiO2, PT, and 10%
Ag/TiO2. Specially, 10% Ag/PT has the smallest radius, which strongly manifested that
the composite possessed fastest transfer and migration ability of carriers [64]. Additionally,
Figure S7 presents the Bode plots of PT and 10% Ag/PT, which confirmed a prolonged
lifetime of photoinduced electrons for 10% Ag/PT in comparison to PT. The photocurrents
of obtained specimens were measured in Figure 9d. The photocurrent was found to be
stable and reproducible in three cycles. The photocurrent density obeyed the following
order: 10% Ag/PT > 15% Ag/PT > 5% Ag/PT > 10% Ag/TiO2 > PT > TiO2. Specifically,
the photocurrent density of 10% Ag/PT (0.23 µA/cm2) was much larger than that of
PT (0.09 µA/cm2) and 10% Ag/TiO2 (0.05 µA/cm2), which would lead to a remarkable
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enhancement in photocatalytic capability [65]. The results of various measurements collec-
tively demonstrated that the Ag/PT composites have low charge transfer resistance and
high separation efficiency of photogenerated carriers, which would reveal an outstanding
catalytic performance.

2.4.2. Active Species in Photocatalytic Reactions

To elucidate the degradation mechanism of TC, the radical capture experiments were
performed, and the results were presented in Figure 10a. Herein, 4-hydroxymethylpropane
(TEMPO, ·O2

− quencher), triethanolamine (TEOA, h+ quencher), and isopropyl alcohol
(IPA, ·OH quencher) were employed as free radical trapping agents [66,67]. Distinctly, the
addition of TEOA to the reaction system significantly inhibited the degradation efficiency,
and the addition of TEMPO also reduced the degradation activity to some extent, verifying
the important function of h+ and ·O2

− in TC degradation. Meanwhile, the degradation rate
was almost unchanged with the addition of IPA, implying that ·OH was not the dominating
active substance.
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−.

To directly verify the reactive species involved in the reaction process, electron spin
resonance (ESR) measurement was conducted, applying 5,5-dimethyl-1-pyrroline N-oxide
(DMPO) and 2,2,6,6-Tetramethyl-1-piperidinyloxy (TEMPO) as spin-trapping agents [68].
TEMPO can trap the photogenerated holes and form+ TEMPO-h+ spin-products, which
exhibit silent ESR signals. As displayed in Figure 10b, under dark conditions, three distinc-
tive peaks corresponding to the TEMPO were identified, which were obviously declined
under visible-light, demonstrating the production of TEMPO-h+ spin-products [69]. Mean-
while, ·OH and ·O2

− can be captured with DMPO, generating evident ESR signals. In
Figure 10c, no characteristic peaks were found under both dark and light conditions in the
·OH test, indicating that ·OH did not play a role in the catalytic reaction. In Figure 10d,
in the ·O2

− test, no characteristic peaks were detected under dark conditions; neverthe-
less, the characteristic peaks corresponding to DMPO-·O2

− were clearly observed upon
visible-light irradiation, authenticating successful generation of ·O2

− radicals. These results
indicated that the photodegradation of TC was primarily driven with the involvement of
·O2
− radicals and h+.



Molecules 2023, 28, 6831 12 of 21

2.4.3. Degradation Pathways of TC and Toxicity Assessment

As revealed in Figures 11 and S5, the pathways of TC photodegradation were ex-
plored by HPLC-MS. The molecular weight of TC is expressed as the product m/z = 444.
Figure 11 summarizes and illustrates two possible degradation pathways. In pathway 1,
the intermediate of T1 (m/z = 463) may be derived from the dehydroxylation of TC, after
which T1 forms T2 (m/z = 403) through the deamidation process. Intermediate with T3
(m/z = 357) is resulted from loss of one N-2 methyl group. The product T4 (m/z = 259)
is obtained by the ring-opening reaction of T3. Pathway 2 is the transition from TC to
T5 (m/z = 427) after deamination. Then, T5 is dehydroxylated and dedimethylated to
T6 (m/z = 398), which is deaminated and demethylated to T7 (m/z = 318). After T4, T8
is formed by the break of double-bond oxygen, and T7 is formed by ring-opening and
dehydroxylation. After continuous ring-opening reactions, T8 forms T9 (m/z = 228), T10
(m/z = 182), T11 (m/z = 100), and T12 (m/z = 74). Further degradation of intermediates
can produce small molecules such as CO2, H2O, and inorganic ions. According to the
above analysis, it can be inferred that photocatalytic degradation of tetracycline involves
deamidation, dehydroxylation, and ring-opening reactions [3,70].
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Furthermore, we investigated the toxicity of TC and its 12 intermediates using QSAR
prediction with a toxicity estimation software tool (T.E.S.T. Version 5.1.2) [71]. Figure 12a,b
show that TC was “developmentally toxic” and “mutagenic positive” [72]. One develop-
mentally non-toxic TC intermediate (T10) and four mutagenic-negative TC intermediates
(T7, T10, T11, T12) were produced after light treatment. Furthermore, most intermedi-
ates were less toxic than TC. As illustrated in Figure 12c, the bioaccumulation factors of
intermediates T9 and T6 were lower than those of TC, and the photodegradation process
could reduce the bioaccumulation factor for TC, which was primarily attributed to the
hydroxylation reaction [73].

In Figure 12d–f, three evaluation indicators were used to evaluate the acute toxicity
of TC and its intermediates: (i) Fathead minnow LC50 (96 h) represents the concentration
at which 50% of fathead minnows are killed after 96 h; (ii) Daphnia magna LC50 (48 h)
represents the concentration at which 50% of Daphnia magna are killed after 48 h; and
(iii) Oral rats LD50 represents the concentration at which 50% of rats are killed after 48 h
of oral ingestion. The LC50 values of 0.90 mg/L for blackhead minnow, 12.70 mg/L
for Daphnia magna, and 1105.75 mg/kg for TC in rats were defined as “highly toxic”,
“harmful”, and “toxic” compounds, respectively [74]. Obviously, T1, T6, T7, and T8
intermediates all showed low LD50 values (Figure 12d). Daphnia magna showed lower
LC50 values than TC intermediates, except for T6, T7, T1, T2, T3, and T8 (Figure 12e). With
the exception of intermediates T5 and T11, rats exhibited lower toxicity to TC intermediates
(Figure 12f). According to the aforementioned toxicity prediction results, the toxicity of
several intermediates still exists, which could be reduced by extending the reaction time.
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2.4.4. Possible Photocatalytic Mechanism

In Figure S9, the tangent slope of the Mott-Schottky profile reflects that PT belongs
to n-type semiconductor. The Efb of PT relative to Hg/Hg2Cl2 was found to be −0.17 eV.
Given that the conduction band energy (ECB) of n-type semiconductor is approximately
0.2 eV higher than the flat band potential (Efb) [75], the ECB for PT could be determined as
−0.13 eV (vs. NHE), according to ENHE = EHg/Hg2Cl2 + 0.242 eV. From the (αhv)2 vs. hv
plot (Figure 3b), the band gap energy (Eg) of PT is calculated to be 2.83 eV. Therefore, the VB
(valence band) edge position of PT (EVB = ECB + Eg) is determined to be 2.70 eV [76]. Based
on the aforementioned results, the catalytic mechanism for TC degradation by Ag/PT
system with visible-light was proposed (Figure 13). The PT was photoexcited to generate
electrons and holes under visible-light irradiation (Equation (1)). Meanwhile, a large num-
ber of hot electrons are produced, due to the surface plasmon resonance (SPR) effect of Ag
NPs [77,78]. The Ag NPs serving as electron traps could effectively capture photoinduced
electrons on the CB of PT, while the Schottky barrier established by Ag0 could promote the
transfer of SPR-excited electrons, further accelerating the charge separation (Equation (2)).
These electrons on Ag NPs react with O2 to form ·O2

− participating in oxidation reaction
(Equations (3) and (4)). Moreover, the photoinduced holes in PT directly oxidize TC accord-
ing to the result of ESR measurements and capturing tests (Equation (5)). Ultimately, TC
was efficiently removed with the help of h+ and ·O2

− active species (Equation (6)).

Ag/PT + hν→Ag/PT (h+ + e−) (1)

Ag/PT (h+ + e−)→PT (h+) + Ag (e−) (2)
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O2 + Ag (e−)→•O2
− + Ag (3)

•O2
− + TC→CO2 + H2O (4)

PT (h+) + TC→PT + H2O + CO2 (5)

h+/•O2
− + TC→intermediate products→CO2 + H2O (6)
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3. Experiments and Characterizations
Construction of Ag/PT Photocatalysts

As shown in Scheme 1, Ag/PT composite nanofibers were prepared employing elec-
trospinning/photoreduction methods. First of all, PT nanofibers were synthesized by the
electrospinning/calcination method. Briefly, PVP was dissolved in a mixture of anhydrous
ethanol, acetic acid, and tetrabutyl titanate, and stirred for 1 h. PW12 was then added and
stirred until complete dissolution. The homogeneous precursor solution was subjected to
electrostatic spinning operation, followed by calcination, to prepare PT nanofibers. Sec-
ondly, Ag NPs were modified on the PT nanofibers by photoreduction. PT nanofibers
powder was added to the solution of Vwater:Visoprobanol = 1:1, which was then sonicated
for 30 min. Then, the solution was evacuated, and the suspension was illuminated for 1 h
using a 300 W xenon lamp with full spectrum light. Then, AgNO3 solution was added and
stirred for 60 min. The Ag/PT composite was prepared.
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The fabrication and characterization methods of Ag/PT composites are displayed in
the Supplementary Material.

4. Conclusions

Herein, a novel Ag/PT composite material has been constructed utilizing electrospin-
ning/photoreduction methods, which exhibited remarkable photocatalytic activities for
degradation TC, ENR, and MO. The results of mechanism investigation showed that the
excellent catalytic property could be due to the following two reasons: (1) the doping of
PW12 to TiO2 can enhance the utilization of visible spectrum and redox reaction activity of
titanium dioxide; (2) the precious metal Ag possesses the LSPR effect, which can improve
the utilization of sunlight and generate more charge carriers. Besides, the LSPR effect will
have a high-intensity small range electromagnetic field, which will greatly improve the
separation rate of photogenerated electron-hole pairs. Moreover, the degradation interme-
diates and pathways were revealed through HPLC-MS. The toxicity of TC degradation
products was also investigated using QSAR prediction. This current work offers novel
thoughts for developing efficient and stable catalysts for environmental remediation.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/molecules28196831/s1, Figure S1: EDX data of 10% Ag/PT sample;
Figure S2: UV-Vis absorption spectra of 5%, 10% and 15% Ag/PT sample; Figure S3: The profiles
of photocatalytic degradation of TC (a), ENR (b) and MO (c) by 10% Ag/PT under visible-light
irradiation (λ > 420 nm); Figure S4: The TOC removal (%) for TC degradation by 10% Ag/PT sample;
Figure S5: Photodegradation of TC with 10% Ag/PT under Diverse water quality (catalyst amount:
20 mg; TC: 20 mL of 20 ppm; pH = 7). Figure S6: Degradation of MO with 10% Ag/PT with various
conditions: (a) Diverse catalyst amount (MO: 20 mL of 20 ppm; pH = 1) and (b) Different concentration
of MO (MO: 20 mL; pH = 1; catalyst amount: 20 mg). Figure S7: The Bode plots of PT and 10%
Ag/PT composite; Figure S8: The main intermediate products generated during the photocatalytic
TC degradation process: (a) 0 min; (b) 30 min; (c) 60 min with 10% Ag/PT as catalyst; Figure S9: The
Efb of PT (V vs. Hg/Hg2Cl2). Table S1: The comparison of TC degradation activity of 10% Ag/PT
with previous literatures; Table S2: The comparison of ENR degradation activity of 10% Ag/PT
with previous literatures; Table S3: The comparison of MO degradation activity of 10% Ag/PT with
previous literatures; Table S4: Fitted parameters of the TRPL decay profiles. References [79–122] are
cited in the Supplementary Materials.
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