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Abstract: Aromatic azo compounds have -N=N- double bonds as well as a larger π electron conjuga-
tion system, which endows aromatic azo compounds with wide applications in the fields of functional
materials. The properties of aromatic azo compounds are closely related to the substituents on their
aromatic rings. However, traditional synthesis methods, such as the coupling of diazo salts, have a
significant limitation with respect to the structural design of aromatic azo compounds. Therefore,
many scientists have devoted their efforts to developing new synthetic methods. Moreover, recent
advances in the synthesis of aromatic azo compounds have led to improvements in the design and
preparation of light-response materials at the molecular level. This review summarizes the important
synthetic progress of aromatic azo compounds in recent years, with an emphasis on the pioneering
contribution of functional nanomaterials to the field.
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1. Introduction

Azo compounds usually refer to compounds containing -N=N- double bond, which
can be divided into aryl azo compounds and alkyl azo compounds depending on the
substituents on the -N=N- double bonds, as well as symmetrical and asymmetrical azo
compounds from the point of view of structure. Azo compounds date back to 1859, and
the high reactivity of -N=N- double bonds endow azo compounds with wide applications
in many fields such as organic dyes, radical reaction initiators, and so on [1–32]. On
the other hand, azo compounds have cis and trans isomers, which can convert to each
other under light irradiation or heating, as was discovered as early as 1937. The special
property further promotes the pioneering role of azo compounds in the field of optical
functional materials. Among azo compounds, aromatic azo compounds have a higher
π electron conjugation system along with higher chemical stability and thermal stability.
Moreover, the substituents on the aromatic ring have a direct impact on their properties,
which promoted the design of functional photoresponsive materials at the molecular
level [33–74]. As a result, the research and application of aromatic azo compounds have
received great attention and undergone significant development in the past ten years, as
shown in Figure 1.

Generally, there are two traditional methods for synthesizing aromatic azo compounds,
as shown in Scheme 1: one is the coupling reaction of diazo compounds with electron-rich
aromatics, which has a fast reaction rate and high yield—however, the substrate scope
of the method is narrow, with a low safety factor; another method is the Mills reaction,
which produces aromatic azo compounds from nitroso aromatic compounds and primary
aromatic amines catalyzed by acetic acid. Therefore, the development of green and efficient
methods for the synthesis of aromatic azo compounds is a significant concern in the
chemical community. In this paper, we summarized the important synthetic progress of
aromatic azo compounds in recent years, with an emphasis on the pioneering contribution
of functional nanomaterials to the field.
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Figure 1. Trend of the number of articles on aromatic azo compounds in the last ten years (these 

data were obtained from Web of Science). 

 

Scheme 1. Traditional synthetic method of aromatic azo compounds. 

2. Advances in the Synthesis of Aromatic Azo Compounds 

2.1. Direct Oxidation of Aromatic Amines and Their Derivatives 

The direct oxidation of aromatic amines to form aromatic azo compounds has been 

shown to be a green and promising method due to the wide availability of raw materials 

with rich and diverse structures, overcoming many shortcomings of traditional synthesis 

methods. For the oxidant in this strategy, oxygen is the most ideal choice for the green 

and atomic economy. However, oxygen molecules usually require activation via certain 

catalyst to participate in this reaction, which limits the direct utilization of oxygen in this 

process. In the past decade, transition metal compounds have entered people’s awareness 

due to their variable valence states and redox potentials. Furthermore, catalyst circulation 

can be achieved by the oxygen in the air. For example, Dutta et al. developed a facile, cost-

effective method by which to synthesize diverse symmetrical and unsymmetrical aromatic 

azo compounds with inexpensive mesoporous manganese oxide materials as the catalyst 

and air as the terminal oxidant. Under the atmospheric condition, a variety of aniline de-

rivatives underwent oxidative homo-coupling or cross-coupling to form corresponding 

azo compounds with moderate-to-excellent yields. Mild reaction conditions with good 

reusability endow the catalytic protocol with strong application prospects. Mechanism 

research indicated that air played a key role in the process, as shown in Figure 2 [75].  

Figure 1. Trend of the number of articles on aromatic azo compounds in the last ten years (these data
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Scheme 1. Traditional synthetic method of aromatic azo compounds.

2. Advances in the Synthesis of Aromatic Azo Compounds
2.1. Direct Oxidation of Aromatic Amines and Their Derivatives

The direct oxidation of aromatic amines to form aromatic azo compounds has been
shown to be a green and promising method due to the wide availability of raw materials
with rich and diverse structures, overcoming many shortcomings of traditional synthesis
methods. For the oxidant in this strategy, oxygen is the most ideal choice for the green and
atomic economy. However, oxygen molecules usually require activation via certain catalyst
to participate in this reaction, which limits the direct utilization of oxygen in this process.
In the past decade, transition metal compounds have entered people’s awareness due to
their variable valence states and redox potentials. Furthermore, catalyst circulation can
be achieved by the oxygen in the air. For example, Dutta et al. developed a facile, cost-
effective method by which to synthesize diverse symmetrical and unsymmetrical aromatic
azo compounds with inexpensive mesoporous manganese oxide materials as the catalyst
and air as the terminal oxidant. Under the atmospheric condition, a variety of aniline
derivatives underwent oxidative homo-coupling or cross-coupling to form corresponding
azo compounds with moderate-to-excellent yields. Mild reaction conditions with good
reusability endow the catalytic protocol with strong application prospects. Mechanism
research indicated that air played a key role in the process, as shown in Figure 2 [75].
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novel cyclic azo benzenes using diarylamine as the raw material, as shown in Figure 4. m-

CPBA (Dichloromethane) was used as the oxidant and HOAc (Acetic acid)/DCM (Di-

chloromethane) as the mixed solvent [77]. The discovery of cyclic azobenzenes provides a 

novel photomolecular switch. Diarylamines with strong electron-withdrawing groups 

and electron-donating groups as feedstock reduce yields. Amino-substituted diaryla-

mines require later derivatization in order to react. In addition, the electronic properties 

of substituent groups only had a weak effect on the yields of the product. The main 

Figure 2. Synthetic mechanism of aromatic azo compounds from aniline catalyzed by mesoporous
manganese oxide materials [75]. (The optimal reaction conditions: aniline (1 mmol); meso-Mn2O3

(0.32 mmol); toluene as the solvent; 110 ◦C; air balloon).

The extensive use of solvents in traditional organic chemicals is an important cause
of environmental problems; therefore, developing solvent-free reactions has long been
an attractive research direction. In our previous work, we report a new one-step direct
synthesis of aromatic azo compounds from anilines under mild conditions. With the
catalysis of copper acetate assisted by a small amount of palladium salt, rapid conversion
of anilines to aromatic azo compounds can be observed under base-free and solvent-free
conditions. In addition, the cross-coupling reaction based on this strategy also realized
satisfactory yields. In this strategy, copper ions play a key role in the catalytic cycle via
the auxiliary effect of palladium salt and oxygen, as shown in Figure 3 [76]. This method
provides not only a new green route for the synthesis of symmetric and asymmetric
aromatic azo compounds but also a strategy for exploring the catalytic applications of
transition metal compounds.
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Figure 3. Our previous work on oxidation coupling of aniline to form azo compounds [76]. (The
optimal reaction conditions: aniline (1 mmol); Cu (OAc)2 (10 mol %); PdCl2 (1 mol %); 100 ◦C; 8 h; air).

Intramolecular diazotization reactions are often a challenge due to the issues of steric
hindrance and angular tension. Maier et al. reported a new method for the synthesis
of novel cyclic azo benzenes using diarylamine as the raw material, as shown in Fig-
ure 4. m-CPBA (Dichloromethane) was used as the oxidant and HOAc (Acetic acid)/DCM
(Dichloromethane) as the mixed solvent [77]. The discovery of cyclic azobenzenes provides
a novel photomolecular switch. Diarylamines with strong electron-withdrawing groups
and electron-donating groups as feedstock reduce yields. Amino-substituted diarylamines
require later derivatization in order to react. In addition, the electronic properties of sub-
stituent groups only had a weak effect on the yields of the product. The main disadvantages
of this method are limited substrate selectivity and the possibility of generating multiple
by-products during the reaction.
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Figure 4. Schematic diagram of the synthesis of cyclic aromatic azo compounds [77]. (The optimal
reaction conditions: 2,2′-ethylenedianiline (1.178 mmol); m-CPBA (2 mmol); AcOH/DCM (1:1);
room temperature).

As mentioned above, for the strategy of the direct oxidation of aromatic amines to
form aromatic azo compounds, the control of the oxidation degree is an important issue;
that is, the catalytic oxidation of aniline usually produces by-products such as nitrobenzene,
azobenzene, and azobenzene oxide, which are closely related to the performance of the
catalyst. Shukla et al. developed a kind of Cu-CeO2 nanoparticle via a one-pot method;
then, using H2O2 as the oxidant and acetonitrile as the solvent, direct oxidation of aniline
to form aromatic azo compounds with high yields and selectivity was realized, as shown
in Figure 5 [78]. Under the optimized conditions and with 3.8% Cu-CeO2 catalyst, 95%
conversion of aniline with 92% selectivity of azo benzene was obtained. In particular, the
amount of Cu and Ce present in the spent catalyst was found to be almost the same as that
of the pristine catalyst, which confirmed the stability and heterogeneity of the catalyst.
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Figure 5. Highly selective synthesis of azoxybenzene via oxidation of aniline catalyzed by 3.8%
Cu-CeO2 [78]. (The optimal reaction conditions: aniline (1 g); acetonitrile (15 mL); aniline/H2O2 (1:3);
3.8% Cu-CeO2 (0.1g); 50 ◦C; 6 h).

Alkyl 2-phenylazocarboxylates are a kind of asymmetric azo compound which can
play a key role in various organic reactions such as the catalytic Mitsunobu reaction.
However, the conditions for the synthesis of alkyl 2-phenylazocarboxylates are always very
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harsh. Kim et al. reported a route for the preparation of alkyl ethyl 2-phenylazocarboxylate
from the oxidation of ethyl 2-Phenylhydrazinecarboxylate catalyzed by CuCl and DMAP (4-
dimethylaminopyridine) in the presence of air [79], and yields of up to 95% were obtained
within three hours (Figure 6). Furthermore, one advantage of this method is its strong
tolerance to solvents and chlorinated solvents such as chloroform, dichloroethane, and
dichloromethane, showing overall excellent reactivity.
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Figure 6. Cu-Catalyzed aerobic oxidation of ethyl 2-Phenylhydrazinecarboxylate [79]. (The opti-
mal reaction conditions: ethyl 2-phenylhydrazinecarboxylate (0.5 mmol); CuCl (5 mol %); DMAP
(10 mmol %); CH2Cl2 (2 mL); air; room temperature; 3 h).

Trichloroisocyanic acid (TCCA) is an excellent oxidizing agent due to its stability,
harmlessness, and ease of handling. Su et al. used trichloroisocyanuric acid as an oxidizing
agent to oxidize phenylhydrazine compounds for the preparation of azo compounds [80].
Under the optimized conditions, the highest yield of 97% was obtained. The mechanistic
diagram of this reaction is shown in Figure 7. In addition, the method easily realizes
gram-scale synthesis with a less restrictive substrate range, except for that with large
steric hindrance.
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Figure 7. Oxidation of aromatic hydrazine by TCCA to form azo compounds [80]. (The optimal
reaction conditions: diphenylhydrazine (0.3 mmol); TCCA (0.6 mmol); THF (1.5 mL); air; room
temperature; 15 min).

Although there has been significant progress in the synthesis of aromatic azo com-
pounds, there are relatively few reports on the construction of heteroaromatic azo deriva-
tives. Jiang et al. reported a new method for the synthesis of azo compounds via pyrazol-
5-amine iodination using t-butyl hydroperoxide (TBHP) as the oxidizer and copper salt
as the catalyst [81]. The single-electron transfer (SET) mechanism (through oxidation of
the reaction) is shown in Figure 8. Intermolecular iodination and oxidation simultaneously
form C-I and N-N bonds, followed by oxidative dehydrogenation to synthesize azopyrroles
and iodo-substituted azopyrroles with a wide diversity in substituents. The radical initiator
of TBHP was essential for this transformation. Furthermore, the selective formation of
highly functionalized heteroaromatic azo compounds can be controlled by the catalytic
system. The mild reaction conditions, selective modification of pyrrole skeleton, and high
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bond-forming efficiency (BFE) endow this strategy with high value. The drawback of low
yield in the derivatization reaction needs to be optimized for practical applications.
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Figure 8. Oxidative dehydrogenative coupling strategy of pyrazol-5-amines for the selective for-
mation of functionalized heteroaromatic azo compounds [81]. (The optimal reaction conditions of
azopyrrole derivatives: pyrazol-5-amines (1 mmol); TBHP (4 mmol); I2 (1.1 mmol); EtOH, K2CO3

(1.5 mmol); air, 50 ◦C. The optimal reaction conditions of azopyrroles: pyrazol-5-amines (1 mmol);
TBHP (3 mmol); 1,10-phenanthroline (30 mol%); CH2Cl2, CuI (10 mol %); air; room temperature).

Overall, the direct oxidation of aromatic amines to synthesize azo compounds has
many advantages; however, sometimes, the presence of peroxidation leads to more by-
products. Additionally, some oxidants are not suitable for large-scale applications.

2.2. Reductive Coupling of Aromatic Nitro Compound

An important source of aromatic amine is the reduction of aromatic nitro compounds.
Therefore, starting from aromatic nitro compounds to synthesize aromatic azo compounds
in one step will greatly improve the economy and environmental friendliness of reactions.
In recent years, this synthesis strategy has attracted widespread attention from the scientific
research community. Mondal et al. prepared a kind of AuNPs using a discrete a nanoscale
organic cage (OC1R) as a template (Au@OC1R) [82]. The cage-immobilized AuNPs can act
as heterogeneous photocatalyst for the selective reduction of nitroaromatics by 2-propanol
to form the corresponding azo compounds with high yields at room temperature, as shown
in Figure 9. After optimizing the synthesis conditions, the corresponding azo compounds
could be selectively obtained, with 99% conversion under UV irradiation for 2 h in an inert
atmosphere. In addition, no azo compounds were produced in the absence of AuNPs or
only in the presence of OC1R, which indicated that the AuNPs is crucial for the reaction.
Furthermore, the OC1R endows the catalyst with the advantages of easy separation and
good compatibility of functional groups. The work lays an innovative foundation for the
development of a new strategy for the synthesis of azo compounds.

Due to quantum size effects, Pd nanoclusters (PdNCs) with diameters less than 2 nm
exhibit better catalytic properties than ordinary Pd nanoparticles. Generally, these ultra-
small PdNCs must be complexed with specific ligands to maintain stable morphology. Yan
et al. reported a tandem reduction strategy for the selective conversion of nitroaromatics
to five types of products—aniline, hydroxylamine, azoxybenzenes, azo compounds, and
hydrazine compounds—under mild conditions, as shown in Figure 10 [83]. First, Pd(OAc)2
was in situ reduced by NaBH4 to form ultra-fine PdNCs. These ultra-fine PdNCs were
stabilized via surface-ligating with nitroaromatics and uniformly dispersed in the solvent.
Then, the selective reduction of nitroarene was catalyzed by the ultra-fine PdNCs. Products
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with the electron-donating group and the electron-withdrawing group were also obtained
with high yields. In addition, nitro fused aromatic compounds such as nitronaphthalene
also adopt this protocol with strong results, i.e., a high yield of 80%, which was rarely
reported before. However, the hydroxylamine generated in the reaction is easily oxidized,
which may produce side reactions, and further optimization of the reaction conditions is
needed to improve the selectivity of the reaction.
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Figure 10. The tandem reduction strategy for the selective conversion of nitroaromatics [83]. (The
optimal reaction conditions: p-nitrotoluene (1 mmol); Pd(OAc)2 (0.1 mol %); NaBH4 (2 mmol);
H2O/EtOH (2:3); room temperature; O2).

At present, new functional materials such as boron nitride (BN) are flourishing in the
field of catalysis. Similar to graphene, hexagonal boron nitride (h-BN) is a two-dimensional
layered material with low toxicity and thermal stability. For catalytic application, h-BN
can provide a supported platform and more reactive sites for metal nanoparticles. Liu
et al. synthesized a kind of Au nanoparticle loaded on h-BN nanoplates (Au/BN). The
composite catalyst can selectively catalyze the conversion of nitrobenzene to azobenzene or
hydrogenated azobenzene in the presence of IPA (i-propyl alcohol)/KOH under N2 or air
atmosphere, as shown in Figure 11 [84]. In the process, h-BN inhibited the activation of
oxygen, allowing the catalytic hydrogenation of nitrobenzene in air. On the other hand,
KOH takes away the hydrogen atom from the isopropanol, subsequently producing acetone
and an activated H donor on the Au/BN surface. Au nanoparticles are then bound to the
H donor to form H-Au. The active species of H-Au played a key role in the subsequent
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reduction process. Meanwhile, the H atoms in H-Au can collide with each other to produce
H2 during the reaction for the next cycle.
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15 min).

Although the catalytic activity of noble metal nanoparticles is often excellent, the high
cost has hindered their large-scale use. Therefore, other relatively inexpensive transition
metals catalysts have attracted great attention. Pahalagedara et al. reported a sea urchin-
like Ni/graphene nanocomposite for the selective reduction by hydrazine of nitroaromatics
with different substituents to the corresponding azo compounds, and the magnetic catalyst
was easily recycled and reused. In addition to stabilizing and dispersing nanoparticles,
graphene can improve the contact between the reactants and the catalyst surface by inter-
acting with nitroaromatics through p-p stacking, thus increasing the reaction rate, as shown
in Figure 12 [85]. In the reduction process, hydrazine was first oxidized to produce the elec-
trons necessary for the reduction, along with nitrogen and water. Then, the nitrobenzene
was reduced to nitrosobenzene, which was further reduced to N-phenylhydroxylamine.
The nitrosobenzene and N-phenylhydroxylamine were finally condensed to form the main
product of azoxybenzene and azoxybenzene.
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Figure 12. Mechanism of Ni/graphene-catalyzed reduction of nitrobenzene [85]. (The optimal
reaction conditions: nitrobenzene (15 mmol); EtOH (5 mL); N2H4·H2O (22.5 mmol); Ni/G (10 mg);
room temperature; 2 h).

Wang et al. prepared a kind of Fe and N co-doped mesoporous carbon (NMC-Fe) as
an efficient heterogeneous catalyst for the reduction of nitroaromatics to azo compounds
via hydrazine hydrate, as shown in Figure 13 [86]. Doped N and Fe occupied vacant
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and defective sites in carbon nanosheets, which resulted in a smaller specific surface area
than undoped carbon catalysts. Though both Fe-doped (MC-Fe) and N-doped (NMC)
carbon materials can catalyze the reduction of 1,2-bis(4-chlorophenyl) diazene oxide to
form (E)-1,2-bis(4-chlorophenyl) diazene, the Fe and N co-doped strategy endowed the
reaction with higher selectivity. Typically, iron-based catalyst involve a hydrogen transfer
mechanism. Negatively charged hydride was adsorbed at the iron active center (the
electron-withdrawing group). The formed complexes act as hydrogen transfer centers for
the selective reduction of nitroaromatics to azo compounds. However, in the absence of Fe
or N, only azoxybenzene was obtained.
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Figure 13. Reduction of nitroaromatics catalyzed by Fe and N co-doped mesoporous carbon [86].
(The optimal reaction conditions: 1-chloro-4-nitrobenzene (1.0 mmol); N2H4·H2O (1.65 mmol); KOH
(1.5 mmol) and NMC-Fe (45 mg); toluene (1 mL); 100 ◦C; 1 h).

Compared to other transition metals, Cu is cheaper and more available and easier to
handle. Moran et al. reported efficient copper nanoparticles (Cu(0)NPs) for the catalysis
of nitroaromatics with the controlled and selective transfer of hydrogenation to prepare
azo compounds through different hydrogen sources, as shown in Figure 14 [87]. The
highlight of this work was that different hydrogen donors gave different products. For
example, using ethanolamine as the hydrogen source, azo benzene was obtained with 96%
selectivity after 25 h at 55 ◦C, and study of the substrate’s scope provided azo derivatives,
with an average yield of 85%. However, using glycerol as the source of hydrogen, the end
product was almost always aniline. Moreover, the nano-Cu material suppressed the rate
of auto-oxidation, and only a trace of Cu2O was detected after 6 months, as well as the
still-high catalytic activity.
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Figure 14. Controlled reduction of nitrobenzene catalyzed by CuNPs with different hydrogen
sources [87]. (The optimal reaction conditions: nitroarene (3 mmol); ethanolamine (20 mL); KOH
(6 mmol); CuNPs (5 mol %); 55 ◦C; 20–24 h).

As a hydrogen source for reduction reactions, hydrogen is undoubtedly a green
and low-cost choice for industrialization. Hu et al. reported the preparation of the azo
compounds from nitroaromatics under mild conditions catalyzed by a worm-like Pd nano-
material. The diameter of the Pd catalyst was about 3.5 nm with a narrow size distribution.
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The worm-like Pd nanomaterial can catalyze the reduction of nitrobenzene to form azo-
benzene via H2 in the presence of a base, whereas it forms aniline in the absence of a base.
It is worth mentioning that higher yields were obtained for the electron-rich nitroaromatic
compounds. In addition, asymmetric azo compounds were facilely synthesized by this
method, with good yields [88]. The plausible mechanism proposed by the authors is shown
in Figure 15. First, hydrogen was adsorbed on the surface of the palladium nanoparticles
and reduced nitrobenzene to form nitrosobenzene, which, in turn, rapidly converted to
N-phenylhydroxylamine. Under acidic or neutral conditions, N-phenylhydroxylamine was
further reduced to aniline. Under alkaline conditions, N-phenylhydroxylamine combined
with nitrosobenzene to form N, N′-dihydroxy-diphenylhydrazine, which was then further
reduced to azobenzene. Moreover, excessive reduction products of hydrazobenzene can be
spontaneously oxidized to azobenzene in air.
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Huang et al. prepared a kind of cobalt/nitrogen-doped carbon (IPAx) catalyst for the
selective reduction of nitroaromatics to aniline or aromatic azo compounds by H2, which
depends on the basicity of the reaction system [89]. Furthermore, recycling experiments
showed that the Co-Nx catalyst had excellent reusability. The mechanism of this reaction is
shown in Figure 16. Similar to the classical reduction of nitrobenzene, nitrobenzene was
first hydrogenated to form nitrosobenzene, followed by transfer to N-phenylhydroxylamine
and finally aniline. However, the hydrogenation pathway of nitrobenzene was changed
under basic conditions. The activating energy of the condensation reaction between
N-phenylhydroxylamine and nitrosobenzene was reduced, as was the pathway in which
N-phenylhydroxylamine transfer to aniline was inhibited. Therefore, azoxybenzene was
readily produced.
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Compared to the direct oxidative coupling of aromatic amines, the synthesis of aro-
matic azo compounds, through the reduction coupling of aromatic nitro compounds,
undoubtedly has higher efficiency. However, the catalysts involved often have high costs,
which limits their practical application prospects.

2.3. Electrochemical Method

Organic electrochemical synthesis has become a practical and environmentally friendly
synthesis method and is widely used in oxidation and reduction reactions. In electrochemi-
cal synthesis, electrodes act as acceptors or donors of electrons to avoid, to a certain extent,
the use of some harmful and dangerous chemical oxidation and reduction reagents, as well
as to reduce the generation of chemical waste and improve production safety. Therefore,
the electrochemical synthesis of some fine organic chemicals has attracted great attention
in recent years. Qiao et al. first prepared a Ni3Fe-MOF-OH material with surface hydroxy-
lation. Then, using the material as electrodes, azobenzene was synthesized via cathodic
reduction of nitrobenzene and anodic oxidation of aniline, as shown in Figure 17 [90].
Experimental results indicated that the bimetallic Ni3Fe-MOF-OH electrocatalyst showed
excellent performance in N-N coupling. In the process, the surface hydroxylation of the
electrodes promoted the adsorption of nitrobenzene and aniline and improved the reaction
rate. On the other hand, the competitive hydrogen and oxygen evolution reactions were
suppressed due to the adsorption of nitroarenes and anilines via surface hydroxyls of the
electrocatalyst. Moreover, using TEMPO as the electron medium, gram-scale reactions
were realized with high selectivity.
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Figure 17. Synthesis of azobenzene by electrochemical synthesis using Ni3Fe-MOF-OH as elec-
trodes [90]. (The optimal reaction conditions: nitroaromatics (8 mmol); anilines (12 mmol); KOH
(1 mol); TEMPO (8 mmol); Ni3Fe-MOF-OH; 1.4 V; 3 h).

Gong et al. prepared a kind of N-doped carbon nanotube-supported Ni-Co alloy
nanoparticle (NiCo@N-CNTs) via a simple reductive pyrolysis strategy for the electrochem-
ical synthesis of azobenzene [91]. In the Ni–Co-alloy nanoparticles, CoNPs confined at the
tip of N-doped CNTs (N-CNTs) showed excellent activity and thermal stability toward
thermochemical selective hydrogenation of aldehyde, ketone, carboxyl, and nitro groups. It
was found that when Ni-Co@N-CNTs acted as cathodes, 100% conversion with 99% selec-
tivity of oxidized azobenzene were achieved. Furthermore, in order to improve the energy
utilization efficiency, the authors designed a NiCo@N-CNTs||Ni(OH)2/NF dual electrode
electrolyzer, as shown in Figure 18. Simultaneous cathodic reduction of nitrobenzene and
anodic oxidation of 5-hydroxymethylfurfural were achieved, with high yields. This work
provides a new idea for the design and fabrication of highly active, durable, and low-cost
electrocatalysts for other electrocatalytic syntheses.
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Figure 18. Schematic diagram of NiCo@N-CNTs||Ni(OH)2/NF dual electrode electrolyzer [91].
(The optimal reaction conditions: nitroarenes (25 mmol); KOH (1 mol); NiCo@N-CNTs; 0.8 V; room
temperature; 7–11 h).

Zhang et al. reported a method for the cross-coupling reaction of aromatic nitro
compounds to aromatic azo compounds via base-free electrochemistry using SmI2 as a
catalyst, as shown in Figure 19 [92]. Under the optimized conditions, desired asymmetric
azo compounds were synthesized, with 83% yield and 99% selectivity. In this strategy, the
electron-donating groups exhibited better adaptability. Moreover, the samarium electrode
was rarely consumed in the reaction process and can be reused more than 100 times. The
preliminary mechanistic study suggested that the formation of azobenzene was accom-
plished by successive single-electron reductions. The key step was the reduction of nitro
benzene to a radical anionic intermediate. The rapid dimerization of this intermediate to
produce oxo azobenzene was followed by a single-electron transfer reduction to form the
desired product mediated by SmIIX2.
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Figure 19. Electrocatalytic reduction of nitrobenzene using SmI2 as electrode [92]. (The optimal
reaction conditions: nitroarenes (1 mmol); TMSCl (2 mmol); n-Bu4NPF6 (0.04 mol); THF (50 mL);
SmI2 (10 mol %); current intensity (0.05 A); 20 ◦C; 5 h).

Although electrochemistry has many advantages, there are still some issues that need
to be addressed. For example, in the process of electrochemical reaction, the electron
transfer between the electrode and the substrate is heterogeneous, which would lead to
overpotential and make the functional group tolerance of the reaction worse.
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2.4. Photocatalytic Method

Photocatalytic synthesis is an emerging method in the organic field, in which the
catalyst utilizes light energy to promote organic reaction. Compared with traditional or-
ganic synthesis, it has the advantages of mild reaction conditions, fast reaction speed, high
selectivity, and lower energy consumption. Zhou et al. reported that Pd nanoparticles
loaded on mesoporous CdS (Pd@ CdS) can act as a highly active and selective photocatalyst
in water under visible light irradiation [93]. The photocatalytic conversion of glucose to
arabinose and nitrosobenzene to azobenzene could be carried out simultaneously, catalyzed
by the composite catalyst with ideal selectivity, as shown in Figure 20. In this process,
photoexcited electrons were transferred from mesoporous CdS to PdNPs, thus inhibiting
the recombination of electron–hole pairs and providing the active site on Pd for the re-
duction of nitrosobenzene to azobenzene, while glucose was photo-oxidized by holes to
arabinose through C1-C2 bond cleavage. Moreover, the formic acid generated by glucose
oxidation was conducive to the hydrogenation reaction of nitrobenzene. On the other hand,
nitrobenzene promotes the conversion of glucose by accepting photoexcited electrons and
H+ generated from water cleavage and glucose reforming.
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Figure 20. Photochemical reduction of nitrobenzene catalyzed by Pd@CdS [93]. (The optimal reaction
conditions: nitrosobenzene, (100 µmol); glucose (100 µmol); water (1 mL); Pd@ CdS (0.025 g with
2 wt% metal); visible light irradiation (λ > 420 nm); 25 ◦C; 1 h).

Wang et al. reported a kind of CQDs/ZnIn2S4 nanocomposite for the controlled
hydrogenation of nitrobenzene under visible light. By simply adjusting the alkalinity
and hydrogen source, azobenzene or azoxybenzene were selectively produced [94]. When
triethanolamine was used as the hydrogen source, 76% aniline was obtained. However, after
a large amount of base was added, azobenzene was mainly produced, as shown in Figure 21.
When irradiated by visible light, ZnIn2S4 was excited to generate electrons and holes, and
CQDs (carbon quantum dots) transfer photogenerated electrons away from ZnIn2S4. With
the assistance of triethanolamine (TEOA) as the hydrogen source, the electron-rich CQDs
promote the gradual hydrogenation of nitrobenzene to aniline. Meanwhile, TEOA also
acts as an electron donor, which reacts with photogenerated holes in ZnIn2S4 to complete
the whole photocatalytic cycle. The introduction of bases such as NaOH into the reaction
system promotes the condensation of nitrosobenzene with N-phenylhydroxylamine to form
azoxybenzene, which can be further hydrogenated to produce azobenzene. Despite many
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advantages, photocatalytic synthesis still faces challenges such as low quantum efficiency,
low solar energy utilization, and insufficient catalyst recycling rate.
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Figure 21. Photocatalytic reduction of nitrobenzene catalyzed by the CQDs/ZnIn2S4 compos-
ite [94]. (The optimal reaction conditions: nitrobenzene (0.2 mmol); 3.0 wt% CQDs/ZnIn2S4 (10 mg);
TEOA/MeOH/H2O (2:1:1, 2 mL); N2; NaOH (6 mL); LED irradiation; 13 h).

Overall, photocatalysis is one of the key technologies currently being developed, and
the design and synthesis of core catalysts are the most important factors. Catalysts based on
noble metals are clearly not suitable for the promotion and application of this technology.

2.5. Biochemical Methods

Entering the 21st century, humanity has been facing an unprecedented crisis of survival
and development due to continuous depletion of fossil fuels and increasing environmen-
tal pollution. Therefore, the traditional chemical industry must undergo revolutionary
transformation. Biochemistry is just one of the technologies needed for the sustainable
development of society. In the field of organic synthesis, the core of biochemistry is to
use enzymes to replace traditional industrial catalysts, to promote chemical reactions with
high efficiency and selectivity, and simultaneously, to reduce energy consumption and
environmental pollution. Sousa et al. reported the synthesis of azo compounds via the
oxidative coupling of primary aromatic amines catalyzed by laccase under mild reaction
conditions, as shown in Figure 22 [95]. The enzyme first promoted the aerobic oxidation
of amine to form an unstable intermediate of amino cation radical, which subsequently
underwent deprotonation to produce an amino neutral radical. Then, two free radicals were
coupled to form HN-NH bonds, which were dehydrogenated to give the corresponding
azo compounds. However, there is one drawback of this strategy that cannot be ignored:
for substrates containing electron-withdrawing groups, unstable radical intermediates may
be generated, which results in low yields.
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Figure 22. Biosynthesis of azo compounds catalyzed by laccase. [95]. (The optimal reaction conditions:
aromatic amines (5 mmol); pH (6); CotA laccase (1 UmL−1); O2; 37 ◦C).

Ethyl lactate is a biodegradable and environmentally friendly biomass-derived solvent
which is completely degradable, having non-toxicity and low-corrosivity. Pariyar et al.
used ethyl lactate as a solvent for the facile one-step synthesis of symmetrical and asym-
metrical aromatic azo compounds from amines [96]. In the strategy, ethyl lactate was used
as an effective mediator to synthesize azobenzene from aniline under catalyst-free condi-
tions, as shown in Figure 23. The oxidation of aniline by potassium peroxomonosulfate
(oxone) is possibly conducted via a free radical mechanism or electrophilic oxygen transfer,
producing the unstable nitrosobenzene. Subsequently, another molecule of aniline attacks
the nitrosobenzene, followed by dehydration to give trans-azobenzene. In the process,
ethyl lactate acted as a biological enzyme. Furthermore, the amines with electron-donating
groups gave higher yields than those with electron-withdrawing groups. The most impor-
tant advantage of this method is the use of environmentally friendly solvents, which act as
mimic enzymes. However, the mechanism has not been elucidated yet, and this method is
currently not suitable for the synthesis of asymmetric azo compounds.
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Figure 23. Synthesis of azobenzene from aniline mediated by ethyl lactate [96]. (The optimal reaction
conditions: aniline (1 mmol); oxone (0.5 mmol); ethyl lactate; room temperature; 90 ◦C; 12 h).
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2.6. Nitrogen–Halogen Exchange

In recent years, construction of -N=N- bonds using hydrazine hydrate as an inorganic
dinitrogen source has received much attention, being a direct and green pathway for the
synthesis of aromatic azo compounds. Xie et al. reported a copper-catalyzed diarylation
reaction of hydrazine with cyclic/linear diaryl iodonium salts, which converted inorganic
hydrazine into organic nitrogen-containing compounds to obtain a series of azobenzene
derivatives, as shown in Figure 24 [97]. In this strategy, phthalhydrazide (PHA) was first
formed via the hydrazinolysis of phthalic anhydride. At the same time, the coordination
of CuI with 2,2′-bipyridine yielded a kind of CuI-complex (Int-A). The next process has
two possible pathways: (1) Int-A underwent ligand exchange with PHA, followed by an
oxidative addition of cyclic diphenyliodonium triflate (2a) to produce Int-B and Int-D in
sequence (pathway a); (2) Int-A undergoes direct oxidative addition with 2a to produce
Int-C, followed by ligand exchange to form Int-D (pathway b). Next, reductive elimination
of Int-A gives the monoaryl compound IM 1. A second oxidative addition of IM 1 with
Int-A gives Int-E, prior to subsequent intramolecular ligand coupling to form Int-F. A
second reductive elimination of Int-A releases compound IM 2, which then undergoes
K2CO3-mediated deprotection and oxidation to give the azo compound and potassium
phthalic acid.

Molecules 2023, 28, x FOR PEER REVIEW 17 of 23 
 

 

2.6. Nitrogen–Halogen Exchange  

In recent years, construction of -N=N- bonds using hydrazine hydrate as an inorganic 

dinitrogen source has received much attention, being a direct and green pathway for the 

synthesis of aromatic azo compounds. Xie et al. reported a copper-catalyzed diarylation 

reaction of hydrazine with cyclic/linear diaryl iodonium salts, which converted inorganic 

hydrazine into organic nitrogen-containing compounds to obtain a series of azobenzene 

derivatives, as shown in Figure 24 [97]. In this strategy, phthalhydrazide (PHA) was first 

formed via the hydrazinolysis of phthalic anhydride. At the same time, the coordination 

of CuI with 2,2′-bipyridine yielded a kind of CuI-complex (Int-A). The next process has 

two possible pathways: (1) Int-A underwent ligand exchange with PHA, followed by an 

oxidative addition of cyclic diphenyliodonium triflate (2a) to produce Int-B and Int-D in 

sequence (pathway a); (2) Int-A undergoes direct oxidative addition with 2a to produce 

Int-C, followed by ligand exchange to form Int-D (pathway b). Next, reductive elimination 

of Int-A gives the monoaryl compound IM 1. A second oxidative addition of IM 1 with 

Int-A gives Int-E, prior to subsequent intramolecular ligand coupling to form Int-F. A sec-

ond reductive elimination of Int-A releases compound IM 2, which then undergoes 

K2CO3-mediated deprotection and oxidation to give the azo compound and potassium 

phthalic acid. 

 

Figure 24. Synthesis of azo compounds by hydrazine–halogen exchange [97]. (The optimal reaction 

conditions: N2H4·H2O (0.2 mmol), ([Ph-I-Mes]OTf (0.4 mmol), phthalic anhydride (1 mmol), CuI (10 

mol %), and K2CO3 (2 mmol), DMF (2 mL), air.) 

N-aryl-N’-silyldiazenes are a kind of kinetically stable aryl nucleophilic reagent. 

Finck et al. synthesized a series of asymmetrical azobenzene derivatives via palladium-

catalyzed C-N coupling reactions between N-aryl-N′-silyl diazenes and aryl halides, as 

shown in Figure 25 [98]. First, L2Pd0(I) underwent oxidative addition with X-Ar2 to pro-

duce aryl palladium(II) halide (II). Then, the intermediate II underwent σ-bond complex-

ation with the N-aryl-N’-silyldiazenes to produce transition state III. Subsequently, tran-

sition state III released Me3Si-X to produce intermediate IV, which was finally reduced to 

give asymmetric aromatic aromatics as well as L2Pd0(I), thus completing the catalytic cy-

cle. It is worth noting that the presence of the base is crucial, and Cs2CO3 was the opti-

mized choice.  

Figure 24. Synthesis of azo compounds by hydrazine–halogen exchange [97]. (The optimal reaction
conditions: N2H4·H2O (0.2 mmol), ([Ph-I-Mes]OTf (0.4 mmol), phthalic anhydride (1 mmol), CuI
(10 mol %), and K2CO3 (2 mmol), DMF (2 mL), air).

N-aryl-N′-silyldiazenes are a kind of kinetically stable aryl nucleophilic reagent.
Finck et al. synthesized a series of asymmetrical azobenzene derivatives via palladium-
catalyzed C-N coupling reactions between N-aryl-N′-silyl diazenes and aryl halides, as
shown in Figure 25 [98]. First, L2Pd0(I) underwent oxidative addition with X-Ar2 to produce
aryl palladium(II) halide (II). Then, the intermediate II underwent σ-bond complexation
with the N-aryl-N′-silyldiazenes to produce transition state III. Subsequently, transition
state III released Me3Si-X to produce intermediate IV, which was finally reduced to give
asymmetric aromatic aromatics as well as L2Pd0(I), thus completing the catalytic cycle. It is
worth noting that the presence of the base is crucial, and Cs2CO3 was the optimized choice.
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Overall, the strategy of nitrogen–halogen exchange has shown good application
prospects in the construction of asymmetric aromatic azo compounds, but the tolerance of
functional groups and product yields still need to be further improved.

3. Conclusions

Azo aromatic compounds are important functional molecules and chemical raw mate-
rials which are widely used in the fields of organic dyes, optical materials, and so on. Due
to the shortcomings of traditional synthesis methods, the design of new materials involv-
ing azo molecules at the molecular level requires significant improvements in synthesis
methods. This paper reviews the recent research advances in the synthesis of aromatic azo
compounds, including symmetric, asymmetric, and cyclic azo compounds, and with an
emphasis on the pioneering contribution of functional nanomaterials to the field. We hope
that this review will point out the advantages and limitations in the current applications
of functional nanomaterials for the synthesis of aromatic azo compounds, and provide
new ideas for the preparation of azo compounds and their derivatives. Although the
catalysis of nanomaterials can overcome some of the shortcomings of traditional meth-
ods, their preparation and cost may limit their large-scale application. Therefore, finding
cheaper nanomaterials and improving their recyclability will continue to be an important
research direction.
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Abbreviations

Entry Abbreviation Full name of compound
1 HOAc Acetic acid
2 DCM Dichloromethane
3 m-CPBA m-Chloroperbenzoic acid
4 DMAP 4-Dimethylaminopyridine
5 TCCA Trichloroisocyanic acid
6 NPs Nanoparticles
7 OC1R Discrete nanoscopic organic cage
8 UV Ultraviolet
9 NCs Nanocrystalline
10 h-BN hexagonal Boron nitride
11 IPA i-Propyl alcohol
12 Ni/G Ni/graphene nanocomposite
13 NMC-Fe Fe and N co-doped mesoporous carbon
14 MC-Fe Fe-doped carbon materials
15 NMC N-doped carbon materials
16 Co-Nx Cobalt/Nitrogen-doped carbon
17 Ni3Fe-MOF-OH Surface hydroxylated Ni3Fe metal-organic frameworks
18 TEMPO 2,2,6,6-tetramethylpiperidinyl-1-oxide
19 NiCo@N-CNTs N-doped carbon nanotube-supported Ni-Co alloy nanoparticles
20 N-CNTs N-doped carbon nanotubes
21 CQDs Carbon Quantum Dots
22 TEOA Trolamine
23 oxone Potassium peroxomonosulfate
24 PHA Phthalhydrazide
25 THF Tetrahydrofuran
26 TBHP t-Butyl hydroperoxide
27 EtOH Ethanol
28 ABTS 2,2′-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt
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