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Abstract: Plants are constantly exposed to various phytopathogens such as fungi, Oomycetes, ne-
matodes, bacteria, and viruses. These pathogens can significantly reduce the productivity of impor-
tant crops worldwide, with annual crop yield losses ranging from 20% to 40% caused by various
pathogenic diseases. While the use of chemical pesticides has been effective at controlling multiple
diseases in major crops, excessive use of synthetic chemicals has detrimental effects on the envi-
ronment and human health, which discourages pesticide application in the agriculture sector. As a
result, researchers worldwide have shifted their focus towards alternative eco-friendly strategies to
prevent plant diseases. Biocontrol of phytopathogens is a less toxic and safer method that reduces
the severity of various crop diseases. A variety of biological control agents (BCAs) are available for
use, but further research is needed to identify potential microbes and their natural products with
a broad-spectrum antagonistic activity to control crop diseases. This review aims to highlight the
importance of biocontrol strategies for managing crop diseases. Furthermore, the role of beneficial
microbes in controlling plant diseases and the current status of their biocontrol mechanisms will be
summarized. The review will also cover the challenges and the need for the future development of
biocontrol methods to ensure efficient crop disease management for sustainable agriculture.

Keywords: biocontrol; natural products; rhizosphere microbes; plant diseases; sustainable agriculture

1. Introduction

Phytopathogens pose a serious threat to crop productivity worldwide. To provide
adequate food for the world’s growing population, an efficient management system is
required to control various crop diseases [1,2]. To date, the development of disease-resistant
crops, the application of chemical pesticides, and implementing effective strategies are
the primary approaches for controlling plant diseases. These approaches have been in-
strumental to increase crop output and quality over the past few decades [3]. However,
the excessive use of chemical pesticides has resulted in environmental pollution, thereby
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limiting their use in the agricultural sector [3,4]. Currently, researchers are exploring the
use of beneficial microorganisms as an eco-friendly strategy to control crop diseases [3,5]. A
diverse range of bacterial genera have demonstrated great potential as biocontrol agents for
various plant diseases. Fungi have also been shown to play a significant role in preventing
important diseases in major crops [5,6]. Research on fungal strains as biocontrol agents for
plant disease control has also received considerable attention. These fungi-based biocontrol
agents exhibit a significant antagonistic activity against a variety of soil and airborne plant
pathogens, making them potential biopesticides for field or greenhouse studies [5,7].

Biocontrol agents employ diverse mechanisms to protect plants against pathogenic
invasion. Using one or a combination of processes, they may interact with the pathogen
directly or indirectly to reduce plant disease [1,2]. BCA in the rhizosphere region competes
for space and resources, and interferes with pathogens’ pathogenicity through different sub-
stances such as lipopeptides, biosurfactants, bacteriocins, volatiles, and enzymes that have
antimicrobial effects by slowing the development or metabolic activity of pathogens [8].
BCA could disrupt pathogens’ quorum sensing (QS) by inhibiting the production of sig-
nal molecules that launch infections. One example is producing QS inhibitors that can
break down QS signal molecules, such as chitinases, pectinases, and lactonases. These
inhibitors prevent pathogen invasion and lead to reduced plant disease symptoms [9]. In
addition to direct interactions, BCAs may protect plants indirectly by triggering a defense
response or promoting plant growth [1,5]. As a result, the host undergoes a wide range
of biochemical and molecular defensive processes that serve as a defense mechanism
against various pathogens. Furthermore, beneficial microbes may promote plant growth
by enhancing nutrients and water uptake or by producing chemicals such as hormones
for maintaining plant fitness [7,10]. Many processes take part in the complex interactions
between pathogens, beneficial microbes, and plants. Therefore, identifying the mechanisms
responsible for biocontrol is a great challenge [1,10]. Hence, understanding the mechanism
of action behind a BCA’s protective effect will make it easier to optimize biological control;
establish ideal conditions for the interaction between the BCA, the pathogen, and the host;
and develop suitable formulations and application techniques to improve plant health and
sustainable agriculture.

Beneficial microbes, primarily bacteria and fungi, are abundant sources of various nat-
ural compounds that have the potential to control plant diseases at various levels. Microbes
that suppress plant pathogens produce natural compounds, including secondary metabo-
lites (SMs) [2,5]. These compounds are structurally diverse and low-molecular-weight
compounds that are not essential for survival unless microbes are exposed to unfavorable
conditions [11]. SMs, such as antibiotics, toxins, ribosomal peptides (RPs), non-ribosomal
peptides (NRPs), polyketides (PKs), and volatile organic compounds (VOCs), are widely
reported to possess an antagonistic activity against a variety of plant pathogens [1,12].
These compounds play a significant role in combating various diseases by establishing
plant−microbe interactions in the soil system. Certain beneficial microorganisms produce
SMs that stimulate plant defense responses and trigger systemic resistance against invading
pathogens [2,13]. According to biochemical and genomic investigations, SM genes linked
to biocontrol activity have been found to occur in gene clusters [3,14]. The development
of various omics techniques, such as whole-genome mining and genome bio-engineering,
will help uncover these genes responsible for novel secondary metabolites in different
microbes [11,15]. Hence, in-depth research on the fewer aspects of biocontrol strategies
will provide a bright future in the agriculture sector. This review will provide sufficient
information regarding the current status and future development of biocontrol strategies
for sustainable agriculture. We address the advancements that have been made in the
prospecting biocontrol strategy, factors affecting the biocontrol agents, and challenges with
a focus on legislative procedures and parameters that influence their use for commercializa-
tion development. Various bacterial and fungal biocontrol agents against plant pathogens
are listed in Table 1.
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Table 1. Various bacterial and fungal biocontrol agents against plant pathogens.

Plant Species Biocontrol Agents Pathogens Mode of Action Ref.

Bacterial strains

Citrus fruit Bacillus megaterium Blue mold In vitro antagonistic activity against
post-harvest disease [16]

Wheat Bacillus subtilis 26DCryChS Stagonospora nodorum
Berk

Antimicrobial metabolites (surfactants
showed antifungal activity against

S. nodorum disease)
[17]

Brassica campestris L Bacillus thuringiensis Sclerotinia sclerotiorum Suppressing S. sclerotiorum growth by
inducing systemic resistance [18]

Cotton/black root rot Paenibacillus alvei K-165 Thielaviopsis basicola

K-165 inhibited T. basicola growth
invitro through antibiosis and

significantly reduced root discoloration
and hypocotyl lesions on cotton

seedlings

[6]

Tomato and Soybean Bacillus velezensis DMW1 Phytophthora sojae
and Ralstonia solanacearum

Antimicrobial metabolites (fengycin,
iturin, and bacillomycin) demonstrated
antagonistic activity in vitro and in pot

experiments

[19]

Rice Bacillus atrophaeus FA12 and
B. cabrialesii FA26

Xanthomonas oryzae
pv. oryzae (Xoo)

In vitro, antagonistic activity against
various fungal pathogens significantly

reduced Xoo lesions in greenhouse
conditions

[20]

Rice Bacillus thuringiensis GBAC46 Aphelenchoides besseyi

In vitro antagonistic activity through
various proteins (Cry31Aa, Cry73Aa,
and Cry40ORF) and in greenhouse

conditions

[21]

Maize Pseudomonas protegens Pf-5 Pantoea ananatis DZ-12
Antimicrobial pyoluteorin showed
strong antagonistic activity against

P. ananatis in vitro and in vivo
[22]

Wheat and Maize Bacillus Subtilis ATCC6633 Fusarium graminearum
and Fusarium verticillioides

Antimicrobial mycosubtilin showed a
strong antagonistic activity against
F. graminearum and F. verticillioides

in vitro and in vivo

[23]

Tomato Bacillus atrophaeus GBSC56 Meloidogyne incognita
Antimicrobial VOCs showed

nematicidal activity and also produced
ROS in nematodes

[2]

Rice Bacillus spp.
GBSC56, SYST2, and FZB42 Aphelenchoides besseyi

Antimicrobial VOCs of Bacillus spp.
showed the strongest nematicidal

activity and accumulated ROS as well
as promoted rice growth

[24]

Soybean and Rice Pseudomonas parafulva
JBCS1880

Xanthomonas axonopodis pv. glycines,
and Burkholderia glumae

Strong antagonism and antibacterial
activity against Xanthomonas axonopodis

pv. glycines and
Burkholderia glumae

[25]

Rice Pseudomonas putida BP25 Magnaporthe oryzae BP25 showed strong biocontrol activity
against blasts caused by M. oryzae [26]

Pepper Bacillus licheniformis BL06 Phytophthora capsici
BL06 effectively reduced pepper

Phytophthora blight severity in vitro
and pot experiments

[27]

Wheat Bacillus atrophaeus strain TS1 Fusarium graminearum
TS1 was found as a potential biocontrol

agent to inhibit F. graminearum under
low temperatures

[5]

Tomato Bacillus amyloliquefaciens
FZB42 Sclerotinia sclerotiorum

Antimicrobial potential
(fengycin-induced systemic resistance

in tomatoes against S. sclerotiorum)
[1]

Rape Seed and Tabaco Bacillus amyloliquefaciens
EZ1509 Sclerotinia sclerotiorum

Bacillus strain EZ1509 showed a strong
antifungal activity against

S. sclerotiorum and also led to the
development of new biopesticides

[12]

Tomato Streptomyces sp. AN090126 Ralstonia solanacearum and
Xanthomonas euvesicatoria

Streptomyces sp. AN090126 can
combine with antibiotics effectively

control different bacterial plant
diseases

[28]
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Table 1. Cont.

Plant Species Biocontrol Agents Pathogens Mode of Action Ref.

Fungal strains

Tomato Paecilomyces lilacinus Meloidogyne javanica

P. lilacinum is used as a biocontrol
agent to control M. incognita and as a

better alternative against chemical
nematicides

[29]

Pineapple Purpureocillium lilacinum Meloidogyne javanica

The application of P. lilacinum
significantly reduced nematode egg
and egg mass production, reducing
root galling damage in pineapple

[30]

Onion Trichoderma asperellum Sclerotium cepivorum

T. asperellum BCC1 exerts efficient
biocontrol against S. cepivorum and
activates onion systemic defenses

against S. cepivorum under greenhouse
conditions

[31]

Okra Trichoderma virens Meloidogyne incognita
T. virens observed a reduction in
second-stage juveniles’ hatching

periods tested in vitro
[32]

Carrot Pochonia chlamydosporia Meloidogyne incognita

P. chlamydosporia reduced nematode
galls and

also decreased juvenile 2 nematodes
in vitro and pot experiment methods

[33]

Mango Trichoderma asperellum T8a Colletrotrichum gloeosporiodes

T. asperellum T8a plays a role in
biological control against

C. gloeosporioides and controlling
anthracnose disease in mangoes

[34]

Beans Trichoderma asperellum Sclerotinia sclerotiorum

T. asperellum the reduced disease
severity index and antagonistic activity
against S. sclerotiorum in field trials of

beans

[35]

Cabbage Trichoderma hamatum Sclerotinia sclerotiorum

T. hamatum LU593 reduced apothecial
production, decreased disease severity

index, and could potentially control
S. sclerotiorum disease in cabbage

[36]

2. Beneficial Bacteria and Crop Disease Management

Many studies have investigated the role of beneficial bacteria in promoting plant
growth and disease resistance in crops. At present, many bacteria from various genera,
including Bacillus, Paenibacillus, Agrobacterium, Bradyrhizobium, Acinetobacter, Azospirillum,
Azotobacter, Pseudomonas, Rhizobium and Streptomyces, have been documented as biocontrol
agents to control various diseases in major crops [2,4]. Phytopathogens, mainly bac-
teria, fungi, and nematodes, cause serious plant diseases, which present a significant
barrier to sustainable crop health and yield [37]. Crops are highly affected when in-
fected by pathogenic bacteria such as Pseudomonas savastanoi, Xanthomonas axonopodis, and
Ralstonia solanacearum, although inoculation with Bacillus spp. suppresses pathogen growth
and reduces disease severity in many infected crops [4,37]. The use of beneficial bacteria
can improve plant growth and control various bacterial, fungal, and nematode diseases
without harming the environment, as listed in Table 1.

Beneficial bacteria create biofilms and secondary metabolites, such as surfactin, iturin,
bacillomycin, and fengycin, which reduce the plant pathogen population by establish-
ing plant−microbial interactions in the rhizosphere region [1,38]. Bacillus spp. attach
to mycelial cell walls and deform hyphae through the production of extracellular en-
zymes such as chitosanase, protease, glucanase, and cellulase [5,39]. Lipopeptides, in-
cluding fengycin, iturin, pumilacidin, mixirin, and surfactin, are antifungal peptides
that function against pathogenic fungi in rhizospheres [1,3]. Many bacteria, particularly
Bacillus, Pseudomonas, and Burkholderia spp. are known to suppress nematodes in various
plants by affecting nematode behavior such as feeding and reproduction [3,40]. Previous
studies have shown that biological treatment with Bacillus isolates was effective in control-
ling a root−knot nematode infestation. They have also been reported to reduce nematode
populations in infested roots and soil [2,24]. Bacillus spp. have also been reported to stim-
ulate induced systemic resistance in plants against various pathogens through increased
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defense-related enzyme activity, such as polyphenol oxidase, peroxidase, and phenylala-
nine ammonia-lyase (PAL), as well as root exudates and modifications such as amino acids
and polysaccharides [1,41].

The biocontrol bacteria Bacillus and Pseudomonas spp. have been reported to be
effective against various phytopathogens in major crops. The presence of several biosyn-
thetic gene clusters responsible for the synthesis of secondary metabolites were found
in Bacillus velezensis isolates [1,42]. These chemically varied bioactive metabolites may be
used as a resource for the development of new drugs. The recent studies on bioactive sub-
stance synthesis, chemical compositions, interesting bioactive gene clusters, and biological
applications of B. velezensis and related Bacillus species will be effective at preventing plant
diseases to ensure sustainable agriculture [5,43]. There are numerous uses for antimicrobial
compounds made by B. velezensis in the management of plant pathogens. B. velezensis
uses the lipopeptides surfactin, iturin, and fengycin to produce antagonistic effects against
R. solanacearum and Fusarium oxysporum [12,44]. B. velezensis QST713 is used industrially as
a biocontrol agent to protect Agaricus bisporus, an edible mushroom, in a compost micro-
model and inhibit Trichoderma aggressivum f. europium, which causes green mold disease [45].
To carry out their actions, they seem to principally rely on antibiosis and the development
of systemic resistance in a variety of plant species [2,46]. Additionally, B. subtilis has been
identified as a key player in the control of different crop diseases. B. subtilis IBFCBF-4 is
a potential biocontrol agent for watermelon Fusarium wilt. An important example of an
exogenous endophyte for preventing banana Fusarium wilt in China is the B. subtilis R31
strain isolated from Dendrobium orchid leaves [47,48]. Thus, extensive research should be
conducted to develop efficient formulation technology and to investigate various natural
products with the determination of their antimicrobial activity in vitro as well as in the
field to manage different crop diseases efficiently.

3. Beneficial Fungi and Crop Diseases Management

Beneficial fungi produce large quantities of bioactive compounds that can be used
as agrochemicals for crop protection. The development of fungal strains as BCAs for
plant diseases has drawn a lot of attention because it has been found that many beneficial
fungi inhibit the growth of various plant pathogens [5,49]. Trichoderma, Aspergillus, and
Penicillium are among the most popular fungal genera used as BCAs against both bacterial
and fungal plant diseases. Fungi, such as Gliocladium and Saccharomyces, have also been
reported to possess an antagonistic activity against a variety of pathogens [1,50]. Most fun-
gal endophytes, which are diverse microorganisms, live asymptomatically in the internal
plant tissues. Endophytic fungi interact closely and intricately with their hosts through
mutualism and in rare cases, parasitism [51,52]. They are crucial for protecting their hosts
from pathogenic bacteria and pests because of their capacity to produce a large variety of
structurally varied and physiologically active secondary metabolites [5,12]. Endophytic
fungi are a rich mine for discovering novel secondary metabolites with a wide range of
potential agricultural applications [53]. Numerous metabolites with various chemical
structures, including terpenoids, alkaloids, steroids, peptides, isocoumarins, benzopyra-
nones, and quinones, have been identified in endophytic fungi. The identification of these
metabolites provided a solid chemical basis for the development of agrochemicals that may
have antibacterial, antifungal, herbicidal, nematicidal, insecticidal, and other agricultural
uses [54,55]. Hence, there is a large variety of fungi that interact with plants in rhizospheric
and endophytic associations. Different antimicrobial products produced by biological
control agents, i.e., bacteria and fungi, and their impact on plant pathogens along with
plant growth parameters are briefly summarized in Figure 1.
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Figure 1. Different antimicrobial products produced by biological control agents, i.e., bacteria and
fungi, and their impact on plant pathogens and plant growth parameters. The antimicrobial products
produced by bacteria and fungi, such as the secondary metabolites fengycin, surfactin, and bacil-
lomycin D, induce systemic resistance and also have a broad-spectrum antagonistic activity against
different diseases. The volatile organic compounds (VOCs) produced by microbes improved plant
growth traits and reduced disease indexes, both directly and indirectly. The arrows show the different
antimicrobial metabolites produced by bacteria and fungi along with their benefits. The figure was
created with BioRender software (https://www.biorender.com/, accessed on 13 September 2023).

It has been discovered that many fungi, especially Trichoderma, are famous for their
broad-spectrum antagonistic activities against various phytopathogens. Trichoderma is a
widespread fungal genus found in soil as residents, saprotrophs, plant symbionts, and my-
coparasites. This genus contains filamentous fungi that have been extensively investigated
and employed as biocontrol agents against plant pathogens in agriculture [56,57]. The direct
and indirect control potential of BCAs against phytopathogens has been highly studied in
the last decade to ensure efficient plant disease management. It has been demonstrated that
Trichoderma controls insect pests directly through parasitism and the synthesis of insecticidal
compounds, repelling metabolites and antifeedant chemicals. The indirect approaches
include attracting natural enemies, stimulating systemic defense mechanisms of plant, and
parasitizing insect−symbiotic microbes [46,58]. Trichoderma use in agriculture is thus effec-
tive at fighting insect pests and plant pathogens, presenting it as a promising future option
for the advancement of sustainable agriculture. This fungus has shown a strong antagonis-

https://www.biorender.com/
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tic potential against more than 80% of plant pathogens [49,56]. T. aggressivum f. europaeum
TAET1 showed a strong antagonistic activity against Botrytis cinerea, Sclerotinia sclerotiorum,
and Mycosphaerella melonis by affecting mycelial growth. Additionally, it completely stopped
S. sclerotiorum sclerotia germination [59,60]. Trichoderma asperellum TaspHu1, isolated from
Juglans mandshurica Maxim. rhizosphere soils in China has been shown to enhance resis-
tance in tomato seedlings against leaf spot disease caused by Alternaria alternata [61]. It has
been clearly shown that Trichoderma has a significant role in inhibiting plant pathogens indi-
rectly in the rhizospheric region through enhanced plant immunity. Thus, Trichoderma spp.
can be employed in combination with several other alternative pest management techniques
for sustainable agriculture [49,56].

4. Biocontrol Mechanisms in Controlling Plant Diseases

Comprehending the biocontrol mechanisms of plant pathogens is imperative in estab-
lishing an optimal environment for effectively managing a diverse range of plant diseases.
Many studies have been conducted over the past 20 years related to the role of biocontrol
agents in terms of crop disease prevention, rhizosphere colonization, and plant-growth
promotion [1,62]. Biocontrol mechanisms of plant diseases mostly include antibiosis, the
creation of hydrolytic enzymes, competition for micronutrients, rhizosphere competence,
and the development of systemic resistance in host plants [49,63]. Several BCAs have
already been demonstrated to trigger induced system resistance (ISR) in various infected
crops. Beneficial bacteria such as Pseudomonas spp. and Bacillus spp. may assist in the
development of broad-spectrum disease resistance in plants through enhanced immu-
nity [2,64]. Many studies have shown that beneficial root endophytes, such as Glomus spp.
and Trichoderma, reduce endoparasitic nematode infections by activating the plant immune
system [46,46].

The potential of BCAs to manage plant diseases includes different methods. The
optimization of biocontrol will be made easier by studying the mechanisms behind the
beneficial role of microbes [4,48]. BCAs might use these mechanisms directly or indirectly
to combat plant diseases. In a direct approach, BCAs react antagonistically to the pathogen
in a direct manner, including antibiosis, parasitism, pathogenicity reduction, and infec-
tion, through competing in the rhizosphere [59,65]. This will promote the development of
BCAs in the rhizosphere, including the creation of biofilms that prevent pathogens from
colonizing the roots, the secretion of essential micronutrients such as siderophores, and an
effective micronutrient absorption system compared with pests [65,66]. Indirect strategies
involve promoting plant defensive responses, plant development, and soil fertilization to
induce resistance. A plant’s systemic resistance, which develops structural barriers and
induces the host to establish several biochemical and molecular defenses, can be initiated
by BCAs [41,67]. The defense must be indicated by phytoalexins, phytohormones, and
protective enzymes such as phenylalanine, chitinase, ammonia-lyase, phenolic compounds,
and PR proteins [1,5]. Here, an effort has been made to summarize the important informa-
tion previously documented in the literature and the current status of research related to
biocontrol mechanisms for crop diseases.

4.1. Microbial Natural Products: A Potential Weapon in the Agriculture Sector

Microbial compounds are natural products with a powerful potential to control plant
diseases. Different types of antimicrobial compounds have been isolated from benefi-
cial bacteria and fungi [11,12]. The important natural products isolated from biocontrol
microbes used for crop disease prevention are described in detail below.

4.2. Bacteria as a Valuable Source of Natural Products

Beneficial bacteria produce a diverse range of natural products to efficiently manage
various plant diseases. These antimicrobials produced by bacteria (2900), fungi (4900),
and actinomycetes (8700 distinct antibiotics) include lipopeptides, such as iturin, sur-
factin, and fengycin [1,68]. Pseudomonas species have also been reported to produce
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a variety of natural products, including extracellular enzymes such as cellulase, chiti-
nase, proteases, and beta-glucanase, as well as other antimicrobial compounds such
as phenazines, siderophores, cyanide, and 2,4-diacetyl phloroglucinol, to control many
plant diseases [69]. Members of the fengycin and iturin families are mainly responsible
for controlling many fungal plant diseases. The hyphae and conidia of various fungal
pathogens, including F. graminearum and Monilinia fructicola, have been observed to be
damaged by these lipopeptides [70,71]. However, iturins and fengycins have also infre-
quently been found to possess an antibacterial activity against Xanthomonas campestris and
Pectobacterium carotovorum [72], X. axonopodis pv. vesicatoria [73], or R. solanacearum [74].
Other biologically active substances produced by Bacillus species include mycosubtilin,
subtilisin, sublancin, bacilysin, chlorotetain, mycobacillin, rhizocticins, bacillaene, and
difficidin, all of which are useful in controlling various plant diseases [5,12].

The volatile organic compounds (VOCs) produced by bacteria have been documented
to promote plant growth and reduce the severity of crop diseases. Bacterial VOCs are
less toxic to human health and are more cost-effective as well; therefore, the identifica-
tion of different VOCs with a broad-spectrum antagonistic potential attracts significant
attention [2,4,75]. VOCs including alcohol, aldehydes, ketones, hydrocarbons, acids, and
terpenes are responsible for controlling multiple plant pathogens [37,40]. Many stud-
ies have been conducted on the antimicrobial properties of VOCs against S. sclerotiorum,
B. cinerea, A. solani, and M. fructicola [4,76]. In short, all bacterial natural products are useful
in controlling various crop diseases, maintaining soil fertility, and regulating rhizosphere
microbes for plant health.

4.3. Fungal Natural Products for Crop Disease Prevention

Fungi produce various substances that allow them to endure adverse environments.
Fungal-based compounds protect agriculturally important crops from different pathogens [43].
The biocontrol potential of fungi is due to their large source of bioactive compounds and their
capability to combat numerous crop diseases. Different types of natural products produced
by fungi, including antibiotics, polyketides, non-ribosomal peptides, aromatic compounds,
and heterocyclic metabolites, are shown in Figure 1. Numerous chemicals produced by
Trichoderma spp. are also used as biocontrol agents in controlling many crop diseases [49,56].
Trichoderma spp. and Gliocladium virens are known to produce numerous antifungal compounds,
such as gliovirin, viridiol, valinotrocin, viridin, gliotoxin, and heptelidic acid [77]. T. harzianum
strains T22 and TC39 have been described as producing antibiotics such as 1-hydroxy-3-
methylanthraquinone, azaphilone, harzianopyridone, and harzianolide. These natural prod-
ucts can suppress the growth of plant pathogens such as Botrytis cinerea, Rhizoctonia solani,
Leptosphaeria maculans, Pythium ultimum, and Phytophthora cinnamomin [78]. Different types of
secondary compounds have been isolated and identified from fungi using various methods,
including column chromatography, high-performance liquid chromatography (HPLC), liquid
chromatography−mass spectrometry (LC-MS), and gas chromatography−mass spectrometry
(GC-MS) [1,5]. The three strains of Chaetomium globosum, i.e., Cg-7, Cg-6, and Cg-5, produced
Chaetoglobosin, an antibiotic in their culture filtrate that is used to reduce post-harvest diseases
in numerous fruits [79]. The biocontrol of nematodes and plant diseases has so far been associ-
ated with Trichoderma. Many species be particularly effective as biocontrol agents, including
T. polysporum, T. harzianum, T. gamsii, T. atroviride, and T. viride [80].

A crucial element of soil−plant systems is the large variety of fungal communities,
which interact actively in the rhizospheric and endophytic regions [50]. The rhizosphere is
the area around a plant root that is inhabited by a unique population of microorganisms,
while the endospheric refers to the intracellular areas of plant tissues that are inhabited
by microbial endophytes without harming the host plants [4,81]. The interaction between
plants and fungi in the rhizospheric and endophytic regions is very important for growth
promotion and disease resistance against various pathogens [5,24]. Mycorrhizal species of
root-inhabiting fungi make up a significant portion of the rhizosphere’s fungus with a great
impact on plant life, including plant nutrition and growth, and provide tolerance to biotic
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stress [82]. Hence, these fungi can be utilized as eco-friendly biofertilizers, bioinoculants,
and BCAs in place of chemical pesticides [49].

4.4. Competition of Biocontrol Agents with Other Rhizosphere Microbes

Many microorganisms residing in soil interact with plants in a complex manner. These
microbes coexist in the rhizosphere and compete for food and space. In the rhizosphere,
pathogenic and non-pathogenic microbes compete for food and other resources [3,83].
These favorable interactions between plants and microbes occur regularly in the rhi-
zosphere, promoting plant growth and overcoming biotic and abiotic stresses [2,84].
Pseudomonas and Bacillus spp. are the most common root-colonizing bacteria in various
crops. Previous research has shown that P. jessenii RU47 efficiently colonized lettuce
roots against Rhizoctonia solani, resulting in growth promotion and a reduction in disease
severity [77]. Many studies have reported the potential of mycorrhizal fungi for efficient
root colonization in plants infected with different pathogens [49]. Trichoderma spp. can ben-
efit plants in several ways in terms of growth promotion and a reduction in disease severity.
Numerous studies have demonstrated that root colonization by Trichoderma harzianum
increases plant enzyme activity to establish resistance against various pathogens [49]. As
a result, successful root colonization by arbuscular mycorrhizal fungi (AMF) and some
strains of nonpathogenic bacteria can boost plant resilience to biotic stressors. Microbial
root colonization is significantly influenced by traits of the host plants and surrounding
microorganisms [24]. Plants have been proposed to actively attract soil microorganisms
by releasing chemicals into the rhizosphere to encourage bacteria that are beneficial to
plant growth and health [64,85]. Arabidopsis thaliana roots secrete malic acid, which helps
B. subtilis colonize the roots, providing improved plant defense against P. syringae [86].
Roots and their exudates supply nutrients to beneficial microbes to establish root coloniza-
tion against different pathogens [2,87]. In short, the study of the advantageous effects of
plant-associated microbiomes, such as the stimulation of plant growth and defense against
plant diseases, has been a hot topic of interest over the past few decades, although the
majority of the methods used by plants to attract bacteria are still unknown. This requires a
deeper understanding of the different aspects of microbes that encourage root colonization.

4.5. Biocontrol Agents Promote Plant Growth

Plant-growth-promoting microbes (PGPMs) help with efficient root colonization, com-
pete with other soil microorganisms, stimulate host defense systems against pathogens, and
promote plant growth through different mechanisms [6,62]. PGPMs have biocontrol agents
(BCAs) called plant-growth-promoting rhizobacteria (PGPR) and plant-growth-promoting
rhizofungi (PGPF) that fight crop diseases [37]. Earlier studies reported that Bacillus,
Pseudomonas, Actinobacteria, and Lactobacillus have been used in different crop protection
strategies [63,64]. The biocontrol strains B. pumilis and B. amyloliquefaciens displayed many
important characteristics, such as siderophore production, phosphate solubilization, IAA
production, and antagonistic activity toward fungal pathogens, which could improve plant
growth in terms of leaf number, biomass, and shoot length under field conditions [46,65].

Biofertilizers or microorganisms promote plant growth in many ways, including nitro-
gen fixation, phosphate solubilization, siderophore generation, and HCN production [31,66].
The contribution of rhizobial N-fixation to global agricultural systems is vital, ranging
from 20 to 22 Tg N per year to 40 Tg N per year. [67]. Many bacterial strains increase the
accessibility of Fe by producing organic acids or siderophores [31,68]. PGPR can produce
auxins that strongly affect root growth and architecture [69,70]. Indole-3-acetic acid (IAA),
an auxin produced by PGPR, has gained much attention in plant-growth promotion under
adverse conditions [19,71]. Auxin-producing PGPRs have been shown to regulate the ex-
pression of various genes involved in plant-growth promotion and defense systems [69,72].
PGPR strains also withstand stress through the production of other important phytohor-
mones such as gibberellins and cytokinins [73,74]. PGPR is known to produce complex
secondary metabolites such as flavonoids, terpenes, and phenolic compounds, which might
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draw particular microbes to the rhizosphere [6,75]. Finally, we can conclude that biocontrol
agents help promote plant growth through different mechanisms, which still demand
detailed studies employing modern techniques used in plant−microbial interactions. The
molecular mechanisms of biological control agents of bacteria and fungi on plant growth
traits and plant defense resistance are briefly reported in Figure 2.
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Figure 2. Molecular mechanism of biological control agents of bacteria and fungi on plant growth
traits and plant defense resistance. BCAs, such as fungi and bacteria, can produce various types of
phytohormones, nitrogen fixation, siderophore production, phosphate solubilization, and induced
systemic resistance, resulting in improved plant growth and control of plant disease. BCAs help
other bacteria and fungi to improve plant health. The different arrows show the different mecha-
nism connections emitted by fungi and bacteria. The figure was created with BioRender software
(https://www.biorender.com/, accessed on 13 September 2023).

5. Factors Affecting Biocontrol of Plant Diseases and Selection of Potential BCAs

Despite decades of research, biological control remains relatively insignificant in
managing plant health compared with chemical control. It has already been documented
that biocontrol of plant pathogens under laboratory conditions (in vitro or in planta) is more
effective than in open-field trials [2,5]. BCAs face greater challenges transferring from the
controlled environment of a laboratory experiment to the harsh conditions encountered in
the field [59]. BCA field efficacy may be equal to or better than that of synthetic pesticides;
however, this could change over time and across regions. In other words, a BCA that
inhibits or controls disease in the lab is unlikely to be efficient in open-field trials [85,88].
This is a result of all of the complex interactions that take place between the host, pathogen,
antagonist, and environment. For instance, the host undergoes a sequence of changes or
mutations that alter its physical and chemical features. The efficiency of the antagonist is
also affected by pathogenic behaviors [89]. The antagonistic potential of BCA may change
as a result of changes in the population and environment or from the existence of microbial
colonizers in the natural environment [37,89]. Trichoderma is the most extensively reported
fungal BCA, but its broader application has been hampered by its unpredictable nature
in the field. To create and put into practice Trichoderma-based agricultural production and
preservation methods, it is essential to fully understand how it interacts with plants, other

https://www.biorender.com/
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microbes, and the environment [49,90]. The factors limiting the efficacy of BCA are given
below in detail.

5.1. Plant Species Influence the Biocontrol Activity of BCAs

Different plant species and genotypes have a significant impact on the effectiveness of
the biocontrol potential of microbes [91]. Several studies have been conducted that show
the effect of plants on BCAs’ biocontrol activities. The degree of rhizosphere colonization,
the production of antibiotics by BCA, and the stimulation of induced systematic resistance
vary among different plant species [85]. In the rhizosphere region, the interaction between
BCAs and pathogens is mostly influenced by root exudate excretion, water and mineral
absorption, and other surrounding microbes [8,85]. The expression of plant genes is
reported to be involved in the rhizosphere enrichment process that provides fitness to
the plants by recruiting microbes from the surroundings [92]. The complexity behind the
specificity of BCAs for specific hosts must be uncovered with in-depth research to control
different plant diseases in a well-organized manner [13].

5.2. Pathogen Influence the Biocontrol Activity of BCAs

The behavior of pathogens toward BCAs is one of the most crucial factors in plant
disease control. Each pathogen interacts with the host differently due to genetic variety
and ecological fitness diversity [1,49]. It is crucial to emphasize that the pathogen behaves
differently from the BCAs because it is both harmful and vulnerable to antagonist activity.
Depending on the complexity of their mode of action, phytopathogens may display a wide
range of sensitivities to BCAs (including extremely low sensitivity). In a few generations,
some pathogens can adjust to the selection pressure imposed by BCAs [93]. The idea
that biological control lasts longer than chemical control is a widespread misconception.
According to research on pest management in fields, this assumption may not always be
true. Numerous pests have developed tolerance to one or more Bt toxins, while the codling
moth Cydia pomonella has established resistance to the C. pomonella granulovirus [59].

The durability of biological control of plant diseases, in contrast with pest management,
has received little attention [94]. Similar to single-mode chemical fungicides, populations
of pathogens could change into forms that are resistant to BCAs. This would make it less
likely that BCAs will be able to reduce plant diseases for a long time. Therefore, a weak
spot in the pathogen life cycle must be found as an opportunity window for successful
biocontrol [93]. BCAs should enter the window of opportunity and stop the progression of
pathogens. For example, the window of opportunity for some unspecialized necrotrophic
pathogens is to obstruct the nutrient uptake required for growth. If BCAs are abundantly
present near the pathogen spores, the depletion of local nutrients from the disease spore
could hinder or stop germination [85].

5.3. Biocontrol Agents and Their Specific Nature

The ability of BCAs to adapt to local biotic and abiotic environmental conditions
is the primary cause of their reduced field efficiency. Therefore, to completely under-
stand this phenomenon, it is important to study the distribution pattern of BCAs in the
rhizosphere [1,95]. To obtain pertinent biocontrol results, additional suitable native BCA
strains should be collected and examined. The mode of action of BCAs, their selectivity
against plant pathogens, and their resistance to harsh climatic conditions play a significant
role in their success [2,64]. The efficacy of the biocontrol agent improves when an optimal
association exists. Therefore, the application of BCAs at the right time is crucial for effective
biocontrol. If the antagonist is applied before the infection becomes established, biocontrol
will be effective [85,96].

Furthermore, it is crucial to understand how BCAs function to attain the best disease
control effect. Numerous characteristics of fluorescent Pseudomonas make them excellent
BCAs. These features comprise (i) the ability to efficiently colonize roots, hypocotyls, tubers,
and other parts of the plant; (ii) the convenience of cultivation in the lab; (iii) the synthesis



Molecules 2023, 28, 6735 12 of 24

of various secondary metabolites; (iv) being able to utilize various kinds of organic com-
pounds, which are usually found in exudates from roots and seeds; and (v) compatibility
with common pesticides and biological agents [97]. Hence, future studies should focus on
identifying novel strains with potent biocontrol characteristics by investigating unexplored
microbial diversity. This could involve extensive sampling and screening of different
habitats in order to identify microorganisms with a broad-spectrum antagonistic activity
against various phytopathogens.

5.4. Environmental Stresses Impact on BCA Activity

The microbial makeup of the soil and its environment has a significant impact on the
efficacy of biological control measures. Soil biology research should be able to figure out the
unique qualities of different species, especially those that live in the rhizosphere of plants,
by figuring out what each possible microbe brings to the biocontrol process. Similarly,
the ecological study should investigate all biotic and abiotic factors that have a significant
impact on BCAs as crucial components of plant health [59]. Many BCAs are extremely
susceptible to changes in the biotic and abiotic environment. It is not always possible to
transfer their efficiency from the laboratory to the field [52,98]. For instance, although
many Pseudomonas and Bacillus BCAs function well in trials, they cannot effectively handle
disease in a variety of field conditions [99]. Therefore, it is important to select a BCA that
has stable efficacy under various environmental conditions, such as soil texture, moisture,
temperature extremes, or competition [10,97]. Furthermore, knowledge about the ecological
and biological components of the soil can improve the efficacy and success of BCAs in
the control of plant diseases [100,101]. Finally, investigating how biocontrol strategies can
contribute to enhancing crop resilience in the face of climate-change-induced stressors
could be an important avenue. Understanding the interactions between biocontrol agents,
pathogens, and changing environmental conditions could guide future research.

6. Challenges in Establishing Beneficial Microbes as BCAs

This biological control strategy was initially employed at the end of the 19th century.
Displaying an array of advantages, the literature has also mentioned many limitations of
this biocontrol strategy for controlling plant diseases [98,102]. As the method offers an
effective alternative to chemical pesticides for controlling pests and plant diseases, there
are still various challenges to overcome. These challenges are briefly discussed below.

6.1. The Journey of Biocontrol Agents from Lab to Field

Researchers are screening potential microbes as part of their work to create biologi-
cal pesticide remedies that are very effective for controlling plant diseases in agriculture.
These strains are usually chosen based on factors such as disease resistance, host range,
availability, formulation, mass production, and farmer practice [1,103]. PGPR performance
can be assessed by considering geographical locations, host crop species, soil types, and
environmental factors. [10,89]. The growth of BCAs is typically easier to observe in con-
trolled environments such as greenhouses. The preference of most researchers at this stage
might be associated with the reliability of the environment [2,104]. The performance of
BCAs in greenhouse trials can provide important theoretical and practical support for
field utilization. As a result, the feasibility and efficacy of PGPR for commercial horti-
culture production, disease management, and field climate change conditions may be
ensured [5,105].

The stability of BCAs is affected by the method of formulation, shipment, and storage
environment. To achieve high levels of BCA strategy success, it is important to improve
the formulation technology, extend the storage duration of the BCA product, optimize
the production of selected microbial strains, and achieve large-scale application through
low-cost manufacturing companies [98,106]. Many scientists are looking for a solution to
increase the shelf-life of PGPR by lowering the storage temperatures and/or changing the
combination of additive mixtures [107]. During the formulation and field efficacy trials,
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private sector partners and licensed laboratories conduct the essential environmental and
human health assessments, as well as quality assurance for the ultimate commercialization
of biopesticides [108]. Before utilizing biopesticides on a large scale in the field, government
authorities must grant permission. Typically, the biopesticide registration and regulation
portfolio includes modified versions of synthetic pesticides as well as risk evaluation. This
includes ecotoxicological and toxicological tests, as well as studies into their mechanism of
action and host spectrum. The majority of these requirements are difficult for authorities to
achieve because producing effective biopesticides while maintaining acceptable safety and
consistency standards for commercialization might be a difficult task [108,109].

6.2. Limited Number of Registered Biopesticides and Lack of Awareness

Despite their well-documented efficacy, BCAs now account for less than 5% of the
crop protection sector’s commercial value [110]. The identification, characterization, and
registration of potential microbes takes more time and requires academic−industry collab-
orations [102,111]. Furthermore, using natural resources to manage diseases (i.e., BCAs)
raises several ethical and legal issues that might affect the biodiversity of an area [111,112].
In this situation, new BCA species and populations have been restricted from entering
specified countries. However, commercial applications of PGPR in protected environments
such as greenhouses are significantly easier due to the availability of more isolated and con-
trolled environments and they have potentially less detrimental ecological impacts [77,113].
Another challenge that has risen as a result of the extensive use of PGPR-based biocontrol
is regulatory concern. At present, every country has its own regulatory system, which
varies widely. For example, high development costs for new commercial BCAs have been
recognized as an obstacle to the BCA industry’s development in Australia [98,114]. To
facilitate the registration and commercialization of novel BCAs and their products, BCA
registration requires extensive cooperation among governmental institutes, universities,
and industry sectors. The number of programs that provide financial and ecological bene-
fits plays a vital role in biopesticide registration [102,115]. Hence, local usage and global
marketing commercialization must fulfill international legislation. The International Bio-
logical Control Organization (IOBC) was established to bring together scholars, scientists,
and professionals from a wide range of industries and fields to identify barriers and offer
recommendations to overcome them [116,117].

Farmers might experience little or no financial gain when compared with chemical
insecticides, which are more predictable and reliable [113,118]. Farmers are discouraged
from using the biocontrol strategy if they lack of expertise and knowledge about successful
technological advances. Positive initiatives, which could include community talks, training
workshops, and free conferences, might increase awareness regarding the use of BCAs in
certain farming areas [77,119]. PGPR-based biocontrol provides substantial advantages in
terms of decreasing pesticide use in agriculture. Biocontrol management has a direct impact
on farmers’ expenses and income, but it also has an indirect impact on their financial benefits
due to its effect on farmland biodiversity and environmental sustainability [98]. However,
farmers have not fully utilized commercial biopesticides due to a lack of information and
awareness. Therefore, there is a need to strengthen the idea of biological management in
the farming community to restore their trust in the use of biopesticides.

6.3. Biopesticides Commercialization and Legislative Procedure

Despite their growing popularity in crop disease management, biocontrol agents cur-
rently represent only 1% of agricultural control techniques, whereas synthetic-based pesti-
cides account for 15% in the agriculture sector [120]. The commercialization of biopesticides
is a multi-step procedure that faces numerous challenges. Before being licensed for com-
mercialization, similar to synthetic pesticides, BCAs are subjected to risk evaluations [121].
European Regulation (EC) No. 1107/2009 specifies standards based on risk assessment in
plant protection product marketing. European Communities (EC) Regulation No. 540/2011
specifies microbes that have been certified to be used as biological controls in Europe.
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As a result, commercial authorizations for biopesticides (and synthetic pesticides) can be
obtained after an extensive procedure. However, the current trend of reducing the use
of synthetic pesticides and simplifying the regulatory process for low-risk products may
allow BCAs to be commercialized worldwide [108,109].

7. Biotechnological and Omics Techniques for Biocontrol Strategy Improvement

A large amount of microbial genomic data are easily accessible and have opened a
new chapter for the discovery of potential BCAs [122]. Integrating advanced omics and
metagenomic techniques could provide a deeper understanding of the interactions between
beneficial microbes and pathogens. Studying the genomic, transcriptomic, and proteomic
profiles of microbes, pathogens, and plants during biocontrol interactions could reveal key
mechanisms and factors influencing disease suppression [123,124]. It is expected that by
using biotechnological approaches, researchers will be able to develop potential BCAs for
efficient control of multiple crop diseases [43]. Based on the information we have collected,
we have done our best to summarize the recent advancements in biocontrol strategies in
light of prominent emerging biotechnological and omics techniques.

7.1. Biotechnological Techniques Linked with Biocontrol Strategy

Using biotechnological techniques and synthetic biology provides an interesting di-
rection for biocontrol strategy improvement. Through advanced techniques in micro-
bial engineering, researchers could create microorganisms with strong phytopathogen
suppression features, including increased synthesis of antimicrobial substances and ef-
ficient colonization of plant surfaces [125,126]. There are many examples where BCAs
are successfully modified for desired traits. Using a genetic engineering tool, intro-
ducing glucanase gene to Trichoderma, resulted in increased resistance to diseases such
as Pythium, Rhizoctonia, and Rhizopus [57]. Transferring a Serratia gene expressing the
chitinase enzyme to the Pseudomonas endophyte also reduced Rhizoctonia solani disease
in beans [57,127]. The biosynthetic locus phlACBDE from strain CPF-10 was cloned
into a mini-Tn5 transposon, and then the chromosome of Pseudomonas fluorescens P32
improved tomato tolerance to R. solanacearum bacterial wilt and wheat resistance to
Gaeumannomyces graminis var. tritici [128]. Several microorganisms associated with plants
can produce plant hormones such as auxin, ethylene, and cytokinins, all of which play
important roles in plant growth and disease resistance [1,2]. The pathways responsible for
these hormones are engineered to express them in other species. Heterologous expression
of the IAA synthesis pathway in Bacillus spp. significantly increased IAA production,
efficiently enhancing plant growth in harsh conditions [129,130]. The banana endophytes
Kosakonia sp. S1 and Enterobacter sp. E5 produced ACC deaminase, which enhanced banana
plant development and improved tolerance to Fusarium wilt. Hence, researchers might be
able to formulae a BCA that will efficiently mitigate the harsh conditions in the open field
and maintain plant health [131,132]. Using tools such as CRISPR/Cas, we can insert muta-
tions into specific sections of the genome with high precision and efficiency. In addition,
mutations can be made in multiple genes at the same time, enabling the determination of the
role of various genes in biocontrol. Engineered BCA could help detect plant physiological
variations caused by biotic stresses, besides delivering desirable characteristics [133,134].

7.2. Biocontrol Strategy in the Era of Multi-Omics

An effective approach to better understanding the interactions of BCAs with the host
plant, pathogen, and environment is now offered through an influx of new generations of
molecular technologies [135]. The name “omics” refers to these emerging technologies that
involve next-generation sequencing (NGS) technology, proteomics, metabolomics, genomics
(including its derivatives pangenomics and metagenomics), and transcriptomics [126,136].
The use of diverse omics approaches could ultimately accelerate the development of BCAs
against plant diseases. Omics also provide insight into the complex molecular mechanisms
that support plant−pathogen interactions, aiding in the identification of functional elements
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in pathogens involved in disease [123,137]. The details of different Omics techniques used to
improve biocontrol strategy are briefly summarized in Figure 3.
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Figure 3. Multi-omics approaches such as genomics, metagenomics, proteomics, transcrip-
tomics, and metabolomics need to be used to identify potential microbial strains, a source of
antimicrobial products. Omics also provides insight into the complex molecular mechanisms
that support plant−pathogen interactions. The picture was made with the BioRender program
(https://www.biorender.com/, accessed on 13 September 2023).

Exploring endophytes’ role in plant disease protection is an exciting area of omics
research. Endophytes are microorganisms that reside within plant tissue without causing
visible symptoms and are vital for plant health. At present, most studies have focused
on the function of one or a few endophytes rather than complete communities [53,127]. It
has been reported that Burkholderia phytofirmans PsJN, through various extra-cytoplasmatic
functional group elements (sigma factors and group IV), assist other bacteria in moni-
toring changes in their environment, such as extreme temperatures, and in altering their
metabolism to survive in harsh conditions. This study used a dual omics technique, apply-
ing high-throughput DNA sequencing to identify Burkholderia, as well as other bacteria, and
conducting critical metabolomics. Microorganisms that inhabit the soil are essential compo-
nents of the ecosystem, playing crucial roles in plant growth, development, defense, and
responses to stress [138,139]. As a result, understanding the relationship between plants
and the soil microbial community utilizing metagenomics will be useful in constructing
agricultural systems for progressive sustainable agriculture production [38,137]. The use of
metagenomic techniques in the study of soils inoculated with organic manures would be
beneficial for developing fertilization strategies to decrease the dependence on chemical
fertilizers [140].

https://www.biorender.com/
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7.3. Microbiome-Based Solution for Plant Disease Management

Multi-omics and next-generation sequencing (NGS) reveal enormous microbial diversity
across many plant species, as well as different phytopathogen antagonistic microbes [38,123].
According to newly available data, a wide range of microorganisms effectively interact with
plants in the rhizosphere region. The knowledge related to different factors that influence
microbes in the rhizosphere region will be helpful for future efficient biocontrol strategies [141].
The earliest plants grown on Earth, mosses, are notable for their extraordinary microbiological
diversity and high level of antagonistic potential because of their ecology [142,143]. In addition,
medicinal plants have been determined to be a fascinating source of biodiversity. It has recently
been discovered that archaea are a component of the plant microbiome, and their impacts on
plants, as well as their biocontrol potential, remain unexplored [144,145]. Hence, the use of
different omics techniques will enable us to identify different untapped microbes from different
regions that can be formulated further to improve the biocontrol strategy [146].

Furthermore, to maintain ecosystem diversity and health, integrated breeding and
biocontrol measures are essential [147]. These systematic approaches are essential to prevent
further biodiversity loss and encourage long-term farming practices. Crop breeding has
been highlighted as a major force in natural evolution. Currently, the breeding strategy
is aimed at controlling diseases, increasing yield, and various growth features; however,
in the past, only a few plant phenotypes were randomly selected, and changes in the
plant microbiome were ignored [87,148]. Although the use of PGP bacteria in the field
appears to be a viable strategy for sustainable agriculture, efficacy has proven inconsistent,
probably due to variations in environmental conditions, poor microbial colonization, and
low long-term stability in the rhizosphere [94,149]. These limitations could be minimized by
genetic or genome engineering of active root colonizers or improved colonization with large
phyto-microbiome subpopulations [132]. Soon, consortiums of microbes and biocontrol
products may be utilized to improve biodiversity associated with crops via microbiome
engineering to accomplish specific microbiome outcomes.

7.4. Microbiome Engineering: A Shining Approach in Biocontrol Strategy

It has already been documented that agriculture could benefit significantly from micro-
biome engineering. Therefore, a modified microbiome with essential features is required for
crop disease management [132]. Plant-associated beneficial microorganisms have enormous
potential for commercial and sustainable agriculture. Plant microbiome engineering can be
achieved in two ways: bottom-up methods involve isolating, altering, and reviving certain
microbes, whereas top-down approaches involve synthetic ecology, which includes horizon-
tal gene transfer to a variety of hosts in situ and then phenotyping the microbiome [112,132].
The recent advancements in genome engineering tools, computational tools, genome-wide
functional tools, and meta-omic tools can improve our ability to design microbes for bio-
control and biofertilization, as well as increase agricultural productivity and yield [126].
Current advances also report some devices that permit the evaluation of engineered mi-
crobiome function before field studies. For instance, lithographic 3D printing has made
it possible to create small microscopic containers for arranging several bacterial species
in virtually any 3D geometry [132]. It will enable us to study their interactions at a micro-
scopic level and compare them with those of native strains. The “tracking root interactions
system” (TRIS), a microfluidic device developed to track root−bacteria interactions, is also
beneficial for studying the engineered microbiome [150]. From a practical point of view, it
would be extremely helpful to develop microbiomes that are long-lasting, stress-resistant,
and capable of increasing agricultural output. Finally, microbiome bioengineering is a
fascinating choice for improving plant health. This approach, still in the early stages, will
provide enormous benefits to biocontrol methods in the future [126].

8. Research Gaps and Future Direction

Biocontrol of plant diseases is an emerging strategy that still leaves many gaps for
future research work. The journey of biocontrol agents from lab to field requires multiple
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efforts to reach a high peak. Further research could focus on discovering novel strains
with potent biocontrol features by exploring untapped microbial diversity. This could
involve extensive sampling and screening of various habitats to discover microbes with
broad-spectrum antagonistic activity against different plant pathogens. By integrating
modern omics and metagenomic approaches, researchers may be able to gain advanced
knowledge of the relationships between beneficial bacteria and pathogens. The genomic,
transcriptomic, and proteomic profiles of microorganisms and plants during biocontrol
interactions may reveal critical mechanisms and factors affecting disease suppression.
Using synthetic biology principles to design beneficial bacteria with better biocontrol
capabilities could be a future avenue. Researchers could develop microorganisms with
more disease-fighting properties, such as improved antimicrobial substance production or
increased colonization of plant surfaces. In addition, nanotechnology-based biopesticides
offer an environmentally responsible and efficient pest management. Biopesticides, in
particular nano-biopesticides, have the potential to revolutionize global agriculture in
terms of protecting crops for sustainable agriculture.

Modification of the plant microbiome to increase the growth and activity of beneficial
microbes could be a promising approach. Upcoming research could look into fruitful
ways to manipulate the composition and function of the plant microbiome to produce
an environment suitable for biocontrol. The performance of BCAs in the greenhouse
experiment can provide significant theoretical and practical support for field utilization.
Future research could focus on large-scale trials to evaluate the practical effectiveness of
biocontrol agents in different agroecosystems and under varying environmental conditions.
Biocontrol could be incorporated into complete IPM programs that include a variety
of techniques, such as cultural practices, resistant crop varieties, and biological control
agents. Such integrated approaches, when developed and optimized, could lead to more
sustainable and reliable crop protection systems.

Future research should also look into the economic feasibility and societal conse-
quences of utilizing biocontrol technologies on a broader scale. Analyzing the cost-
effectiveness and potential benefits for farmers and the agriculture sector as a whole
would be useful. It is critical for the widespread use of biocontrol strategies to spread
knowledge about them among farmers, extension services, and policymakers. More efforts
could concentrate on building educational programs and outreach campaigns to improve
awareness and make biocontrol measures more practical. Considering biocontrol’s po-
tential to minimize dependency on chemical pesticides, further study could help build
regulatory frameworks and policies that support the safe and effective use of biocontrol
agents in agriculture. Finally, investigating how biocontrol methods can help enhance crop
resilience in the face of climate-change-induced challenges could be a promising direction.
Future studies could be motivated by knowledge of the relationship between biocontrol
agents, diseases, and changing environmental conditions. Researchers can improve the
subject of biocontrol to create more sustainable and effective crop disease management
systems by focusing on the research gaps mentioned above.

9. Conclusions

The application of beneficial microbes to control crop diseases is a safe and eco-friendly
strategy that has attracted the attention of many scientists in the crop protection sector. This
review addresses the importance of biocontrol strategies in preventing important diseases in
crops. Moreover, for effective biological control strategies in the future, more research studies
must be conducted on some less developed aspects, including the development of potential
biocontrol agents and the use of biotechnology in conjunction with “omics” techniques to
improve biocontrol strategies. Targeted and predictive biocontrol methods can be developed
through a comprehensive strategy and the incorporation of microbiome-based solutions. In
addition, a combination of breeding and biocontrol measures is needed to preserve ecosystem
diversity and health. Thus, integrated approaches are needed to protect biodiversity from
further decline and to maintain sustainable agricultural practices. Therefore, this review will
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be more helpful to researchers studying plant−microbe interactions as it provides sufficient
knowledge on the current status and needs for the further development of biocontrol strategies
to ensure a sustainable plant disease management system.
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