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Abstract: A new phosphorus-containing sorbent was prepared by copolymerizing ethylene glycol
dimethacrylate (EGDMA) and trimethylvinyl silane (TMVS) with diphenylvinylphoshine oxide
(DPVO). It was characterized and applied in the removal of cationic dyes such as C.I. Basic Yellow 2
(BY2), C.I. Basic Blue 3 (BB3) and C.I. Basic Red 46 (BR46) using the batch method. Spectroscopic
analysis indicated that the phosphinoyl group was introduced into the sorbent structure. Equilib-
rium adsorption data were fitted to the Langmuir, Freundlich, Temkin and Dubinin–Radushkevich
isotherm models. The Freundlich model is the most suitable to describe the adsorption of BB3 (the
Freundlich constant kF = 32.3 mg1−1/nL1/n/g) and BY2 on the sorbent (13.8 mg1−1/nL1/n/g), while
the Langmuir model is the most adequate to describe the adsorption of BR46 (the monolayer capacity
Q0 = 2.7 mg/g). The kinetics of the dye adsorption follows the assumptions of the pseudo-second-
order (the rate constants k2 = 0.087 ÷ 0.738 g/mg min) model rather than pseudo-first-order or
intraparticle diffusion. The presence of Na2SO4 and cationic surfactant in the aqueous solutions
inhibited dye retention by the DPVO–EGDMA–TMVS. Adsorbent regeneration efficiency does not
exceed 60% using 1 M NaCl and 1 M HCl solutions in the presence of 50% v/v methanol.

Keywords: phosphorus-containing polymers; polymeric sorbents; basic dye adsorption; Basic Blue 3;
Basic Yellow 2; Basic Red 46

1. Introduction

Functional synthetic polymers (FSPs) have recently received increasing interest in
many applications because of their interesting properties related to, e.g., relatively easily
tunable reactivity and high porosity of cross-linked FSPs [1,2]. The specific application
fields of FSPs are determined by the nature of functional groups and their location and the
structure of the polymer matrix [3,4].

In recent years, phosphorus-containing monomers and polymers have been the subject
of extensive research. FSPs containing different phosphorus groups and cross-linked
matrices are widely used in a variety of fields, ranging from nanotechnology, biotechnology,
biomedical engineering, food industry, hydrometallurgy, catalysis, purification of various
industrial and wastewater as polymer supports to adsorbents and ion exchange resins [5–9].

The first group of phosphorus polymers possess a phosphorus function in the main
chain (polyphosphoesters [10] and polyphosphazenes [11]). The polymers with phos-
phorus present in the side part of fundamental chain (phosphonate [12] or phosphinic
acid derivatives [13], fluoropolymers with phosphorus moiety [14]) are a second group.
New materials with unique structures like dendrimers or hyperbranched polymers are
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also of great interest [15]. Diphenylvinylphosphine oxide has been polymerized by free
radical copolymerization using monomers such as styrene and methyl methacrylate [16,17].
Copolymers with the addition of diphenylvinylphosphine oxide can be used as potential
flame-retardant materials [18]. Many classes of porous materials have been devised in
recent decades, with a great variety of chemical compositions, structural order and func-
tions. One of them is that sorbents possess phosphorus functions inside the structure.
Resins with phosphorus function were applied for the removal, preconcentration, recovery
and even determination of metal ions in aqueous solutions [19–25]. Resins with substi-
tuted phenylphosphinic acid ligands are used in Ga(III) or In(III) sorption [19]. Magnetic
nanocomposite (Fe3O4/SiO2/OPPh2) obtained by Naini et al. [20] was used as a palladium
ion adsorbent. Li et al. [21] applied a phosphine-based organic framework (P-COF) for
iodine capture. Islam et al. [22] prepared porous PVA/SiO2 composite functionalized with
phosphines as nickel and manganese ion adsorbent from aqueous media of different pH.
Resin consisting of silica and octyl(phenyl)-N,N-diisobutylcarbamoylmethylphoshine ox-
ide (CMPO) (CMPO/SiO2-P) was used for Nd(III) sorption from a HNO3 solution [23] and
preconcentration of selected actinide and lanthanide ions [24]. The styrene–divinylbenzene
chloromethylated copolymers functionalized with iso-propylamine and diethylphosphite
were examined for uptake of phenol and its derivatives from water [25]. A review of the
literature reveals few reports on the usefulness of adsorbents containing phosphorus moiety
for dye removal. Alosmanov et al. [26] described retention of arsenazo III toxic dye using
phosphorus-based sorbent obtained by the chemical modification of butadiene rubber.

The increasing consumption of dyes in various industries (such as textiles, paper
production, plastics, paints and varnishes, cosmetics and foodstuffs) from year to year
means that they are being generated into wastewater. Even small amounts of dyes in
water cause problems [27]. Dyes affect the inhibition of photosynthesis in reservoirs.
They exhibit toxic effects on flora and fauna and can penetrate the human food chain [28].
Most of the produced dyes are xenobiotics, i.e., chemical compounds that are foreign to the
organism and not found in nature, but at the same time exhibit biological activity. Especially
dangerous to aquatic ecosystems and humans are the degradation products of azo dyes,
such as aromatic amines, hence the need to remove them from sewage. One technique that
makes this possible is adsorption. It has many advantages over other wastewater treatment
methods, as described by Akhtar et al. [28].

The aim of the paper was the DPVO–EGDMA–TMVS adsorbent synthesis. It was
prepared by the crosslinking of diphenylvinylphosphine oxide (DPVO) with a mixture
of ethylene glycol dimethacrylate (EGDMA) and trimethylvinyl silane (TMVS). Then, the
material was applied as a potential polymeric sorbent for removal of basic dyes such as
BB3, BY2 and BR46 from aqueous solutions. Given that literature reports on the use of
such adsorbents for dye removal are rare, it seemed appropriate to prepare this type of
material and evaluate its adsorption properties. The parameters such as dye concentrations,
phase contact times as well as electrolytes and surfactant addition on dye retention were
examined. Regeneration studies of the DPVO–EGDMA–TMVS were also investigated.

2. Results and Discussion
2.1. Synthesis of DPVO and DPVO–EGDMA–TMVS Sorbent

We previously described a functionalized polymeric sorbent based on 1,2-bis ((E)-
2-diphenylphospinoylethenyl)-cyclohex-1-ene [29]. A phosphorus monomer containing
cyclohexene ring and two ethenyl functions with phosphine oxide moieties was copoly-
merized with divinylbenzene. The resulting resin was used as a polymeric sorbent. In this
study, we presented a polymeric sorbent based on diphenylvinylphosphine oxide 3 as a
phosphorus-containing monomer. DPVO was copolymerized with a mixture of ethylene
glycol dimethacrylate and trimethylvinyl silane. DPVO 3 was prepared in a two=step
procedure (Scheme 1). Secondary diphenylphosphine oxide 1 reacts with chloroacetic acid
in the presence of aqueous KOH solution in dimethyl sulfoxide as a solvent. After crys-
tallization, we obtained diphenylphosphinoylacetic acid with a 92% yield. The resulting
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diphenylphosphinoylacetic acid 2 reacts next with paraformaldehyde in the presence of
DABCO (1,4-diazabicyclo [2.2.2]octane) and iPr2NH (diisopropylamine) as a catalyst. After
column chromatography, we obtained target DPVO 3 with 85% yield.
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Scheme 1. Synthesis of diphenylvinyl phosphine oxide DPVO 3.

2.2. Characteristics of Polymeric Sorbent
2.2.1. Morphology

The actual shapes of the studied microspheres are presented in Figure 1. The parent
copolymers EGDMA–TMVS are characterized by a regular shape and low dispersion of
microsphere rays. They have diameters in the range of 250–450 µm whereas microspheres
with DPVO have diameters in the range of 50–100 µm. The addition of diphenylvinyl-
phosphine oxide resulted in a significant reduction in particle sizes of the microspheres.
Additionally, the material has the tendency to agglomerate.
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A well-developed surface and the presence of micro- and meso-pores become im-
portant for the effective sorption processes. For this reason, parameters such as: specific
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surface area, pore volume and average pore diameter were established using the nitrogen
adsorption method on the surface of the dry microspheres. Table 1 shows the characteristics
of the porous structure of the microspheres obtained.

Table 1. Porous structure properties of the obtained material.

Sorbent

Surface Area
BET

Pore
Total Volume

Pore
Mean Size

(m2/g) (cm3/g) (nm)

EGDMA–TMVS 223 0.444 7.754

DPVO–EGDMA–TMVS 137 0.504 15.029

The EGDMA–TMVS parent material has a BET surface area of 223 m2/g, a total pore
volume of 0.444 cm3/g and an average pore size of 7.754 nm. The addition of DPVO to
obtain modified polymeric sorbents led to a decrease in the BET parameter to 137 m2/g. On
the other hand, increases in the pores’ total volume (0.504 cm3/g) and mean size (15.029 nm)
were observed. A large DPVO molecule moved the pores towards the mesopores.

2.2.2. ATR–FT–IR Analysis

Fourier-transform infrared spectroscopy with an attenuated total reflection appliance
(ATR–FT–IR) was applied to record the DPVO 3 spectra (Figure 2). At 2993 cm-1 the C–H
stretching vibrations are observed in the alkane. In the 1570 cm−1 region, C=C stretching
vibrations appeared. The presence of the bending vibration of the C=C double bond at
985 cm−1 was detected. The P=O bond vibration at 1171 cm−1 region was noted [29].
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In the ATR–FT–IR spectra of the DPVO–EGDMA–TMVS sorbent (Figure 3a), the signal
from the C=C double (1578 cm−1) disappeared. We observed the signal of the stretching
vibration of the C–H in an alkane at 2900–3000 cm−1 (symmetric and asymmetric stretching
vibrations of methylene group). In the range of 1170 cm−1, the vibration of the P=O group
can be distinguished.
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Figure 3. ATR–FT–IR spectra of (a) DPVO–EGDMA–TMVS sorbent and (b) selected regions after
basic dye sorption.

After BB3 and BY2 sorption on the DPVO–EGDMA–TMVS, some peaks were shifted,
and new ones were also detected in the ATR–FT–IR spectra. The ATR–FT–IR spectra of
sorbent with BR46 dyes show no new peak. In ATR–FT–IR, BY2 signals from iminium salt
at 2358 cm−1 were observed. After the sorption BY2, a new peak at the 1690–1700 cm−1

region was detected. This signal indicates the sorption of the tested dyes in iminium form.
Shifted bands at the 1000–1200 and 1460 cm−1 regions indicate C–N stretching bonds. In
the spectra of the sorbent with BB3, signals from dye at 1500–1550 cm−1 were observed.

2.2.3. The pH of Zero-Point Charge (pHPZC)

The pHPZC of the obtained sorbent is a factor which determines the pH value at which
its surface is electrically neutral. The pHPZC of DPVO–EGDMA–TMVS was found to be 6.4
(Figure 4). At pH lower than pHPZC, the surface of DPVO–EGDMA–TMVS is positively
charged, while at pH higher than the pHPZC value the adsorbent surface has a negative
charge. Therefore, the negatively charged surface of the sorbent interacts with the cationic
dyes under experimental conditions.
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3. Assessment of the DPVO–EGDMA–TMVS Adsorption Properties
3.1. Determination of Equilibrium Parameters

The practical use of adsorption techniques is directly related to the parameters of
the structure of the adsorptive material and the conditions for conducting the process.
An important parameter is the adsorption capacity (qe), the value of which makes it
possible to assess the use of an adsorbent as an effective and efficient material for removing
contaminants. Hence, mathematical models are constantly being sought to describe this
phenomenon occurring at the phase boundary in order to determine the optimal parameters
for performance of the experiment. Of the many isotherm models applied to describe the
adsorption of dyes on the polymeric sorbents under equilibrium conditions, the Langmuir,
Freundlich, Temkin and Dubinin–Radushkevich equations are the most commonly used:

Ce

qe
=

1
Q0kL

+
Ce

Q0
(1)

log qe = log kF +
1
n

log Ce (2)

qe =

(
RT
bT

)
lnA +

(
RT
bT

)
lnCe (3)

lnqe = lnqm − kDRε2 (4)

where qe—adsorption capacity (mg/g); Ce—equilibrium concentration of basic dye solu-
tions (mg/L); Q0—the monolayer adsorption capacity (mg/g); kL—the Langmuir constant
(relating to the free energy of adsorption) (L/mg); kF (mg1–1/n L1/n/g) and 1/n—the
Freundlich constants concerning adsorption capacity and the surface heterogeneity, respec-
tively; R—gas constant (8.314 J/mol K); T—temperature (K); A (L/g) and bT (J/mol)—the
Temkin constants; qm (mg/g)—maximum adsorption capacity; kDR (mol2 J2)—constant
related to the adsorption energy; ε (J/mol)—adsorption potential [30].

The isotherm parameters were calculated via linear regression using the corresponding
Ce/qe vs. Ce, log qe vs. log Ce, qe vs. ln Ce and ln qe vs. ε2 plots. Moreover, the mean
free energy (E, kJ/mol) necessary for the removal of basic dye species from the adsorption
sites to the infinity was estimated based on the Dubinin–Radushkevich isotherm applying
Equation (5) [30]:

E =
1√

2kDR
(5)
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The values of determination coefficients (R2), chi-square (χ2) and residual sum of
squares error (SSE) were calculated to establish the best fitting model of adsorption [30–33].
The isotherm parameters are listed in Table 2.

Table 2. Values of parameters calculated in terms of isotherm models used.

Isotherm Parameter
Basic Dye

BY2 BB3 BR46

Freundlich

kF (mg1−1/n L1/n/g) 13.8 32.3 2.23
1/n 0.53 0.61 0.05
R2 0.938 0.974 0.746
χ2 16.8 5.12 0.014

SSE 1166 668 0.034

Langmuir

kL (L/mg) 0.057 0.205 2.13
Q0 (mg/g) 148.1 189.2 2.7

R2 0.707 0.737 0.999
χ2 16.9 14.9 0.003

SSE 969 883 0.008

Temkin

bT (J g/mol mg) 149.9 112.8 18,725
A (L/mg) 3.87 11.1 20,059,104

R2 0.697 0.745 0.755
χ2 95.8 87.2 0.416

SSE 3333 4090 0.944

Dubinin–
Radushkevich

qm (mg/g) 47.8 62.6 2.7
kDR (mol2 J2) 5.15 × 10−8 3.62 × 10−8 2.86 × 10−7

E (kJ/mol) 3.11 3.71 1.32
R2 0.485 0.644 0.992
χ2 271.9 173.5 0.0005

SSE 11,230 12,904 0.0013

Figure 5 shows the adsorption data of BY2, BB3 and BR46 on the DPVO–EGDMA–TMVS
sorbent with the fitting of the experimental data to the abovementioned isotherm models.

Based on the data listed in Table 2 and presented in Figure 5, it can be concluded that
the Freundlich model is the most suitable one for evaluation of BY2 and BB3 retention on the
DPVO–EGDMA–TMVS. The model refers to the multilayer adsorption in the investigated
experimental model on a heterogeneous surface with non-uniform energetic adsorption
sites of various binding energies. The Freundlich isotherm assumed physical adsorption.
The weak hydrogen bonds as well as electrostatic interactions among dye cations of BY2,
BB3 and BR46 and negatively charged surface groups of the DPVO–EGDMA–TMVS under
experimental conditions may be considered as the binding mechanism. The determination
coefficients were found to be 0.974 and 0.938 for BB3 and BY2, respectively, and were
greater than those determined for the other models. The values of χ2 and SSE for the
Freundlich model were calculated to be 16.8 and 1166 for BY2 as well as 5.12 and 668 for
BB3, respectively. The Freundlich constants kF were calculated as 32.3 mg1−1/n L1/n/g for
BB3, which indicated preferential sorption compared to BY2 (13.8 mg1−1/n L1/n/g). The
1/n parameters were less than 1, which pointed to favorable adsorption of BB3 and BY2
on the DPVO–EGDMA–TMVS sorbent. For the Langmuir adsorption model, assuming
monolayer adsorption, the R2 = 0.999 value was greater than for the Freundlich model
(R2 = 0.746) during BR46 adsorption on the DPVO–EGDMA–TMVS sorbent. The smallest
values of χ2 and SSE were obtained, too. The monolayer adsorption capacity of the DPVO–
EGDMA–TMVS for BR46 was equal to 2.7 mg/g. Significantly higher values of Q0 were
calculated for BB3 (189.2 mg/g, R2 = 0.737) and BY2 (148.1 mg/g, R2 = 0.707).
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The Temkin model assumed that the adsorption heat of dye molecules in the surface
layer declines linearly rather than logarithmically. The bT values were varied between 112.8
and 18,723 J g/mol mg. However, the R2 values in the range 0.697–0.755 obtained for the
Temkin isotherm model were smaller than for the Freundlich one.

From the Dubinin–Radushkevich isotherm model, such parameters as qm, kDR and E
were calculated. This model was proposed for the adsorption process related to volume
filling of micropores. The qm reflecting the maximum sorption capacities of the DPVO–
EGDMA–TMVS for dyes was equal to 47.8 mg/g for BY2, 62.3 mg/g for BB3 and 2.7 mg/g
for BR46. The model does not match well with the experimental data as the determination
coefficients R2 were in the range 0.485–0.992. However, χ2 and SSE for BR46 adsorption
were found to be 0.0005 and 0.0013, respectively. The mean free energies E were calculated
in the range 1.31–3.71 kJ/mol, which exposed the physical characteristics of the basic dye
adsorption on the polymeric sorbent. Unfortunately, the determination coefficients for the
Dubinin–Radushkevich isotherm model are small, indicating that it does not satisfactorily
describe the adsorption system.

The data summarized in Table 3 allow a reliable comparison of the equilibrium data
obtained with the results already published and concerning the adsorptive removal of BB3,
BY2 and BR46 dyes from aqueous solutions using adsorbents of different types.
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Table 3. Sorption capacities of different adsorbents compiled on the basis of literature review.

Basic Dye Sorbent Equilibrium Sorption Data Ref.

BY2

Bagasse fly ash Langmuir model: qe = 31.18 mg/g at 30 ◦C,
pH = 7, a.d. = 1 g/L [31]

poly(DVB), DVB-VBCl,
poly(EGDMA),
EGDMA–VBCl

Freundlich model:
kF = 4.56–7.85 mg1−1/n L1/n/g at 25 ◦C,

a.d. = 0.02 g/20 mL
[32]

poly(DVB), CyP(Ph)4-DVB,
poly(DVB)-CyP(Ph)4-DVB

Freundlich model:
kF = 4.56–14.2 mg1−1/n L1/n/g at 25 ◦C,

a.d. = 0.02 g/20 mL
[29]

Co-participated lignin
hybrid with ZrO2 and SiO2

Freundlich model: kF = 11.1–45.7 mg1−1/n L1/n/g
at 20–60 ◦C, a.d. = 0.02 g/20 mL

[33]

DPVO–EGDMA–TMVS
sorbent

Freundlich model: kF = 13.8 mg1−1/n L1/n/g
at 25 ◦C, pH = 8, a.d. = 0.02 g/20 mL

This study

BB3

Ethylenediamine
modified rice hull

Langmuir model: qe = 3.29 mg/g at 25 ◦C, pH = 4.7, a.d.
= 0.05 g/20 mL [34]

Sawdust Langmuir model: qe = 28.69–27.5 mg/g at 20–50 ◦C,
a.d. = 0.2 g/20 mL

[35]
Cladium mariscus saw-sedge Langmuir model: qe = 44.29–42.07 mg/g at 20–50 ◦C,

a.d. = 0.2 g/20 mL

C/SiO2 composite Langmuir model: qe = 925–1296 mg/g at 20–60 ◦C,
a.d. = 0.02 g/20 mL [36]

poly(DVB), CyP(Ph)4-DVB,
poly(DVB)-CyP(Ph)4-DVB

Freundlich model: kF = 20.1–53.7 mg1−1/n L1/n/g
at 25 ◦C, a.d. = 0.02 g/20 mL

[29]

DPVO–EGDMA–TMVS
sorbent

Freundlich model: kF = 32.3 mg1−1/n L1/n/g at 25 ◦C,
pH = 8, a.d. = 0.02 g/20 mL

This study

BR46

Natural bentonite from
Valle del Cauca (Colombia)

Langmuir model: qe = 555.6 mg/g at 25 ◦C,
pH = 7, a.d. = 0.01 g/100 mL [37]

Nickel oxide
nanoparticle-modified

diatomite

Langmuir model: qe = 105 mg/g pH = 8,
a.d.= 0.005 g/25 mL [38]

C/SiO2 composite qe = 41.9–176.1 mg/g at 20–60 oC,
pH = 4.7, a.d. = 0.02 g/20 mL [39]

DPVO–EGDMA–TMVS
sorbent

Langmuir model: qe = 2.13 mg/g at 25 ◦C,
pH = 8, a.d. = 0.02 g/20 mL This study

where DVB—divinylbenzene, VBCl—4-vinylbenzene chloride, EGDMA—ethylene glycol dimethylacrylate,
CyP(Ph)4—bis α,β-unsaturated phosphorylated cyclohexene, a.d.—adsorbent dose.

3.2. Determination of Kinetic Parameters

The efficiency of basic dye sorption on the DPVO–EGDMA–TMVS as a function of time
is an extremely important research step to evaluate the suitability of the adsorbate material
in removal of dyes from wastewater. As the contact time between the adsorbent and
adsorbate phases increases, an increase in the amount of adsorbed dyes from solutions was
observed with the 10 mg/L initial concentrations of BY2, BB3 and BR46. The equilibrium
state of sorption for BY2 and BB3 solutions established almost immediately (after 5 min
of adsorbate–adsorbent contact time), while for BR46 it was after 20 min. The determined
sorption capacities under experimental conditions for BY2, BB3 and BR46 are 9.0 mg/g,
10.0 mg/g and 4.5 mg/g, respectively. The description of the kinetics of sorption was based
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on the kinetic models such as pseudo-first-order (PFO), pseudo-second-order (PSO) and
intraparticle diffusion (IPD) [40–42]:

log(qe − qt) = log(qt)−
k1

2.303
t (6)

t
qt

=
1

k2q2
e
+

1
qe

t (7)

qt = kit0.5 (8)

where qe and qt (mg/g)—basic dyes amounts adsorbed at the equilibrium (known as
adsorption capacities) and at specific time t, k1 (1/min)—PFO equation rate constant, k2
(g/mg min)—PSO equation rate constant, ki—intraparticle diffusion rate constant (mg/g
min0.5).

The kinetic parameters of these models were calculated from plots presented in
Figure 6 and are compiled in Table 4.
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Table 4. Kinetic parameters calculated from the PFO, PSO and IPD models for basic dye sorption on
the DPVO–EGDMA–TMVS sorbent from the 10 mg/L solutions.

Model Parameter
Basic Dye

BY2 BB3 BR46

qe,exp (mg/g) 9.0 10.0 4.5

PFO

qe (mg/g) 0.83 0.37 2.6
k1 (1/min) 0.011 0.011 0.086

R2 0.835 0.804 0.925
χ2 56.6 67.6 13.6

SSE 469.9 655.3 47.6

PSO

qe (mg/g) 8.54 9.83 4.58
k2 (g/mg min) 0.544 0.738 0.087

R2 0.999 0.999 0.997
χ2 0.152 0.094 0.147

SSE 1.234 0.913 0.347

IPD

ki (mg/g min0.5) 0.083 0.005 0.467
R2 0.899 0.058 0.753
χ2 0.003 0.002 0.551

SSE 0.265 0.023 1.822

The PFO model assumed that the adsorption rate is directly proportional to the
concentration difference between the amount of adsorbed substance at equilibrium and
after a certain time [40]. It is generally applicable in the initial phase of the adsorption
process, and the kinetics follows the PFO model when adsorption occurs through the
transfer of adsorbate in the pores of the adsorbent. The values of the kinetic parameters
of the PFO model calculated from the plot log(qe − qt) vs. t (Figure 6a) and listed in
Table 4 indicate that it cannot be applied to describe the experimental data. A significant
discrepancy was observed between the values of the sorption capacities calculated from the
model and those determined experimentally (e.g., for BY2 qe,exp = 9.0 mg/g, qe = 0.83 mg/g).
This is also reflected in the low values of the determination coefficients (0.804 for BB3, 0.835
for BY2 and 0.925 for BR46) as well as high values of χ2 (67.6 for BB3, 56.6 for BY2 and 13.6
for BR46) and SSE (655.3 for BB3, 469.9 for BY2 and 47.6 for BR46).

The analysis of the obtained results indicates that the model that best describes the
kinetics of the sorption of BY2, BB3 and BR46 dyes on the studied sorbent is the pseudo-
second-order model. This is due to the linear course of the relationship t/qt vs. t [41]
(Figure 6b) and the highest values of R2 (0.997 for BR46, 0.999 for BY2 and BB3). More-
over, the adsorption capacity values (qe) calculated from the PSO model are close to the
experimental values of qe,exp. This is also reflected in the low values of χ2 and SSE (Table 4).

The intraparticle diffusion model assumed that the diffusion of adsorbate in the liquid
film around the sorbent is the slowest step of the process [42]. However, the plot of qt vs.
t0.5 is not a straight line passing through the origin (Figure 6c). The low values of χ2, SSE
and R2 (Table 4) suggest that the intraparticle diffusion model cannot be applied for fitting
of experimental kinetic data.

3.3. Auxiliaries Impact on Basic Dye Sorption

The dye sorption process can be influenced by auxiliaries (additives) such as elec-
trolytes, surfactants, acid, bases, oxidants present in dyeing baths or effluents. In the present
study, the sorption of BY2, BB3 and BR46 (C0 = 10 mg/L) by the DPVO–EGDMA–TMVS
was studied in the presence of sodium sulfate (5–15 g/L) and cationic surfactant CTAB
(0.1–0.5 g/L). Figure 7 illustrates the influence of the additives on the amounts of basic
dyes uptaken after 15 min of sorption.
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The basic dye uptake decreased with increasing amount of Na2SO4 and CTAB in
the solution as competition between Na+ ions or cationic surfactant and dye cations for
available adsorption sites. A similar reduction in dye sorption was observed during basic
dye retention on the hybrid adsorbent based on ZrO2–SiO2 and lignin [33].

3.4. Regeneration Studies

The regeneration process is crucial as it determines the practicality and economic
feasibility of adsorbent application in wastewater treatment and even controls the cost of
the entire treatment process. DPVO–EGDMA–TMVS regeneration was performed via the
chemical method using 1 M NaCl, 1 M NaOH and 1 M HCl aqueous solutions and in the
presence of 50% v/v methanol (MeOH). The percentage of desorption (%D) of the basic
dyes were calculated from Equation (9):

%D =
mdes
mads

100% (9)

where mdes—mass of desorbed dye (mg), mads—mass of adsorbed dye (mg).
The presence of methanol increased desorption of the dyes breaking weak physical

interactions between dyes and adsorbent. This is particularly evident in the application of
the 1 M NaCl + 50% v/v MeOH and 1 M HCl + 50% v/v MeOH eluents as presented in
Figure 8. However, %D for does not exceed 60%.
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4. Materials and Methods

Three basic dyes, namely C.I. Basic Yellow 2, C.I. Basic Blue 3 and C.I. Basic Red
46 produced by Sigma-Aldrich (Taufkirchen, Germany), were selected as adsorbates for
the study. The dyes properties are presented in Figure 9. The working solutions of dyes
of desired concentrations were prepared by diluting the stock solutions of the initial
concentration of 1000 mg/L.
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All chemicals and solvents were used without additional purification. KOH, NaOH,
HCl, NaCl, Na2SO4, acetonitrile, methanol and ethanol were bought from Avantor Perfor-
mance Materials Poland S.A. (Gliwice, Poland). Chloroacetic acid, DMSO, DABCO, PVA,
EGDMA, TMVS, α,α-azoisobis-butyronitrile (AIBN) and diisopropylamine were ordered
from Sigma-Aldrich (Taufkirchen, Germany).

Nuclear magnetic resonance (NMR) spectra were recorded on Bruker AV500 (1H
500 MHz, 31P 202 MHz, 13C NMR 126 MHz) spectrometers (Bruker; Billerica, MA, USA).
All spectra were obtained in CDCl3 solutions; the chemical shifts (δ) are expressed in ppm
using the internal reference to TMS and external reference to 85% H3PO4 in D2O for 31P.
Coupling constants (J) are expressed in Hz. The abbreviations of signal patterns are as
follows: s—singlet, d—doublet, t—triplet, q—quartet, m—multiplet. Mass spectra were
obtained with Shimadzu LC-MS (Kinetex® 2.6 µm Biphenyl 100 Å 50 × 2.1 mm LC-column,
MeCN/H2O with HCO2H additive mobile phase).

The porous structure of the obtained sorbents was characterized by nitrogen ad-
sorption at 350 ◦C using an ASAP 2405 adsorption analyzer (Micrometrics Instrument
Corporation., Norcross, USA). Before the analysis, the materials were outgassed at 120 ◦C
for 2 h. Specific surface areas were calculated using the Brunauer–Emmett–Teller (BET)
method, with the assumption that the area of a single nitrogen molecule in the adsorbed
state is 16.2 Å. Pore volumes and pore size distributions were defined by the Barrett–Joyner–
Halenda (BJH) method.

4.1. Synthesis of Diphenylvinylphosphine Oxide (DPVO)

Diphenylvinylphosphine oxide was synthesized according to a modified procedure [43].
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4.1.1. Synthesis of Diphenylphosphine Oxide

Secondary diphenylphosphine oxide was prepared according to the previously de-
scribed procedure [44]. Chlorodiphenylphosphine (92 g, Fluka 97%) was added to 1 N HCl
(500 mL), and the mixture was stirred at room temperature overnight. Then, the mixture
was extracted with methylene chloride, and the organic layer was washed with saturated
aqueous NaHCO3 solution and saturated aqueous NaCl solution, dried over Na2SO4 and
concentrated to give 74.6 g (88.5%) of diphenylphosphine oxide as a white solid of mp.
56–57 ◦C.

4.1.2. Synthesis of Diphenylphosphinoylacetic Acid 2

A 56% aq KOH solution (11.18 g KOH, 0.2 mol, 2.6 equiv) was added dropwise to
a stirred solution of the 15.5 g (76.66 mmol) secondary diphenyl phosphine oxide 1 and
7.97 g (84.3 mmol, 1.1 equiv) of chloroacetic acid in DMSO (30 mL) at r.t. After heating
for 1 h at 50 ◦C, the mixture was diluted with 75 mL of water. The aqueous solution was
acidified with 3 M HCl, and the crude mixture was extracted with CHCl3. The combined
CHCl3 extracts were dried (MgSO4), filtered and evaporated in a vacuum. The resulting
white powder was washed with dichloromethane.

White solid; yield: 18.10 g (91%); mp 145–146 ◦C (Lit. [43] mp 145–146 ◦C).
1H NMR (500 MHz, CDCl3): δ = 7.75–7.68 (m, 4 H), 7.55–7.32 (m, 6 H), 6.81 (br s, 1 H), 3.46
(d, J = 14.2 Hz, 2 H).
13C NMR (126 MHz, CDCl3): δ = 167.31 (d, J = 5.6 Hz), 132.44 (d, J = 2.8 Hz), 131.07 (d,
J = 10.3 Hz), 130.85 (d, J = 105.7 Hz), 128.75 (d, J = 12.6 Hz), 38.36 (d, J = 62.2 Hz).
31P NMR (202 MHz, CDCl3): δ = 30.42.

4.1.3. Synthesis of Diphenylvinylphosphine Oxide 3

A total of 18 g (69.17 mmol) of diphenylphosphinoylacetic acid 2, 75 mL of acetonitrile,
1.16 g (10.37 mmol, 15% mol) of DABCO, 1.47 mL of diisopropylamine (10.37 mmol, 15%
mol) and 1 g of MS were placed in round-bottom flask with reflux condenser equipment
with a balloon and magnetic stirrer. Next, the reaction mixture was stirred at 80 ◦C for
12 h. The mixture was filtered, and the filtrate was concentrated under reduced pressure.
Silicagel chromatography (15:1, methylene chloride/methanol) of the crude product led to
the isolation of 13 g (56.9 mmol, 83%) oxide 3 as a white solid [43].

mp 115–116 ◦C (Lit. [43] mp 116–117 ◦C). 1H NMR (500 MHz, CDCl3): δ = 7.74–7.66
(m, 4 H), 7.57–7.50 (m, 2 H), 7.50–7.43 (m, 4 H), 6.67 (ddd, J = 24.6, 18.4, 12.6 Hz, 1 H),
6.39–6.20 (m, 2 H). 13C NMR (126 MHz, CDCl3): δ = 134.86, 132.22 (d, J = 105.0 Hz), 131.96
(d, J = 2.7 Hz), 131.39 (d, J = 10.0 Hz), 131.09 (d, J = 98.3 Hz), 128.62 (d, J = 12.2 Hz). 31P
NMR (202 MHz, CDCl3): δ = 23.94. LCMS: m/z [2 M + Na]+ calculated for C28H26O2P2Na+:
479.1300; found: 479.1309.

4.2. Synthesis of Polymeric Microspheres

In the first stage, the phosphorous compound DPVO was dissolved in benzyl alcohol
for 2 h (1 g/5 mL). The 1 g suspension stabilizer (polyvinyl alcohol, PVA) and 150 mL
purified water were placed in a three-necked flask (250 mL) equipped with a mechanical
stirrer, an air condenser and a thermometer. The mixture was stirred intensively to dis-
solve PVA for 30 min at 80 ◦C. Next, the ethylene glycol dimethacrylate (EGDMA) and
trimetoxyvinylsilane (TMVS) were added to the previously prepared mixture DPVO with
benzyl alcohol (Figure 10).

The AIBN (initiator) in the amount of 1.5 wt.% of mass monomers was added. The
molar proportions of 1:1:0.5 (EGDMA/TMVS/DPVO) were applied for monomers. Addi-
tionally, parent copolymer (EGDMA + TMVS) was synthesized. The whole content was
intensively mixed and appended to the aqueous phase. The stirring conditions at 80–85 ◦C
were as follows: 350 rpm and 8 h. The prepared microspheres were filtered off then washed
using distilled hot water and acetone.
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The appearances and morphologies of the microspheres were studied using a Mor-
phologi G3 Malvern optical microscope (Malvern Panalytical Ltd., Malvern, UK).

Attenuated total reflectance ATR FTIR spectra were recorded using a Bruker Tensor 27
FTIR spectrophotometer (resolution of 4 cm−1, 32 scans accumulated).

The pH of zero-point charge (pHPZC) of DPVO–EGDMA–TMVS was determined by
applying the solid addition method [45]. A total of 0.2 g of DPVO–EGDMA–TMVS was
immersed for 24 h in 0.01 M KNO3 (20 mL) of the initial pH (pH0) values ranging from 1.4
to 9.9 The pH was adjusted using 1 M HCl or 1 M NaOH. After 24 h, the final pH (pHf)
of the solutions was controlled using a pH meter CP-411 (Elmetron, Zabrze, Poland). The
pHPZC value was determined by plotting the curve pH0 versus ∆pH (∆pH = pH0 − pHf).

4.3. Adsorption and Desorption Tests

The batch adsorption method was used to investigate the adsorptive properties of
DPVO–EGDMA–TMVS. The adsorption tests were performed at room temperature. The
adsorbent mass and adsorbate volume of desired concentration used in the batch experi-
ments equaled 0.02 g and 20 mL, respectively. The working parameters of Elpin 358+ (Elpin,
Lubawa, Poland) laboratory shaker were as follows: rotary speed 180 rpm, amplitude 8.
Separation of phases was achieved by filtration after predetermined time intervals (24 h
for equilibrium test and 1–240 min for kinetic test). The adsorption experiments were
performed in triplicate, and the mean value was calculated. For the measurement of basic
dye concentrations in the aqueous phase, a Cary 60 (Agilent Techn., Santa Clara, CA, USA)
UV–Vis absorption spectrophotometer was used. The assessment of the basic dyes content
was performed at 430 nm for BY2, 531 nm for BR46 and 654 nm for BB3.

The regeneration of the DPVO–EGDMA–TMVS loaded with basic dyes (conditions:
BB3, BY2 or BR46—10 mg/L, volume—20 mL, amount of DPVO–EGDMA–TMVS—0.02 g,
time of sorption—240 min, amplitude—8, rpm—180, temperature—room) was carried out
by applying the experimental conditions for regeneration: 0.02 g of DPVO–EGDMA–TMVS
with loaded dyes (10 mg/g BB3, 9.0 mg/g BY2, 4.5 mg/g BR46) was put in the Erlenmeyer
flasks and shaken with the solutions 1 M NaOH, 1 M HCl, 1 M NaCl, 50% v/v CH3OH,
1 M NaOH + 50% v/v CH3OH, 1 M HCl + 50% v/v CH3OH, 1 M NaCl + 50% v/v CH3OH)
in the volume of 20 mL. After separation of sorbent, the basic dye concentrations were
measured spectrophotometrically and calculated as the percentage of desorption (%D).
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5. Conclusions

The paper described synthesis and characterization of a new sorbent (DPVO–EGDMA–
TMVS) based on diphenylvinyl phosphine oxide, ethylene glycol dimethacrylate and
trimethylvinyl silane. The sorbent beads of spherical shape have diameters in the range
of 50–100 µm, surface area BET was 137 m2/g, the pores’ total volume was 0.504 cm3/g
and pore mean size was 15.029 nm. The pHPZC of DPVO–EGDMA–TMVS was found
to be 6.4. The applicability of the obtained sorbent for the removal of basic dyes such
as BY2, BB3 and BR46 was confirmed. The equilibrium state of sorption for the dye
solution of the initial concentration 10 mg/L was established after 5 min of phase contact
time for BB3 and BY2, while for BR46 it was observed after 20 min. Kinetic parameters
calculated using different models indicate that the pseudo-second-order model (R2 values
were in the range 0.997–0.999) can be used for description of the adsorption experiment
rather than the pseudo-first-order or intraparticle diffusion. The pseudo-second adsorption
rate constants k2 were equal to 0.087, 0.544 and 0.738 g/mg min for BR46, BY2 and BB3,
respectively. Taking into account four adsorption isotherm models, the Freundlich and
Langmuir ones are the most suitable to describe BY2 and BB3 as well as BR46 adsorption at
equilibrium, respectively. The Freundlich isotherm model can be applied for description
of BY2 (R2 = 0.938) and BB3 (R2 = 0.974) adsorption on DPVO–EGDMA–TMVS, while
the Langmuir isotherm model fitted experimental data of BR46. The amounts of dyes
retained by the DPVO–EGDMA–TMVS in the presence of Na2SO4 and cationic surfactant
CTAB decreased in comparison to the systems without additives. Regeneration of the
adsorbent using 1 M NaCl and 1 M HCl solutions in 50% v/v methanol confirmed the
physical nature of the interactions between adsorbent and adsorbates. The obtained results
for the removal of basic dyes using the DPVO–EGDMA–TMVS adsorbent are important
both from a theoretical perspective and practical application; however, detailed economic
analysis of process is required.
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