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Abstract: Traditional natural products in China have a long history and a vast pharmacological
repertoire that has garnered significant attention due to their safety and efficacy in disease prevention
and treatment. Among the bioactive components of traditional natural products in China, bioactive
peptides (BPs) are specific protein fragments that have beneficial effects on human health. Despite
many of the traditional natural products in China ingredients being rich in protein, BPs have not
received sufficient attention as a critical factor influencing overall therapeutic efficacy. Therefore, the
purpose of this review is to provide a comprehensive summary of the current methodologies for
the preparation, isolation, and identification of BPs from traditional natural products in China and
to classify the functions of discovered BPs. Insights from this review are expected to facilitate the
development of targeted drugs and functional foods derived from traditional natural products in
China in the future.

Keywords: bioactive peptides; traditional natural products in China; preparation; isolation;
identification; functional classification

1. Introduction

Traditional natural products in China natural products with a rich history and estab-
lished therapeutic effects [1]. Its active components form the basis for the prevention and
treatment of diseases [2]. Currently, the small-molecule bioactive components of tradi-
tional natural products in China, such as glycosides, flavonoids, and alkaloids, have been
extensively studied [3]. However, macro-molecules, similar to BPs, have received insuffi-
cient attention, despite being the highest content of bioactive components in traditional
natural products in China and having a wide range of biological activities [4,5]. BPs are
sequences composed of 2–20 amino acids that possess therapeutic effects on the body upon
ingestion [6]. Depending on their specific therapeutic effects, BPs can be classified as
antioxidant peptides, antihypertensive peptides, anti-inflammatory peptides, anti-cancer
peptides, etc. [7]. It is worth noting that BPs derived from traditional natural products in
China generally do not exhibit biological activity when present in the form of parent pro-
teins and only after the parent protein undergoes enzymatic cleavage by specific enzymes
or chemical hydrolysis do the BPs become bioactive [8–10]. To date, the largest number
of BPs have been obtained from milk proteins, followed by meat, fish, eggs, and cereals,
and interest in BPs from other sources is growing [7,11]. Therefore, Over the past few
years, there has been a growing interest in exploring BPs in traditional natural products in
China and their functional analysis [10]. As a result, numerous functional BPs and chemical
structures have been identified in traditional natural products in China, which aligns with
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the reported therapeutic efficacy of traditional natural products in China [12]. In this paper,
we summarize the preparation, isolation, and identification methods of the reported BPs
from traditional natural products in China, then discuss the mechanisms of action of BPs
such as antioxidant peptides, antihypertensive peptides, anti-inflammatory peptides, and
others, and finally briefly discuss their structure-activity relationship, development status,
and future trends.

2. The Preparation Method of Bioactive Peptides
2.1. Enzymatic Hydrolysis

The enzymatic hydrolysis (EH) of the parent protein from traditional natural products
in China is currently the most popular method for obtaining BPs. This is primarily due
to the low content of endogenous BPs found in traditional natural products in China,
and extracting high-purity endogenous BPs poses certain challenges. Simultaneously,
BPs with diverse therapeutic effects obtained by controlling various reaction conditions
exhibit greater appeal. EH refers to the hydrolysis of substrate proteins by proteases
at a suitable length of time, temperature, pH, and substrate or enzyme concentration,
which mainly targets the peptide bonds in proteins to break them down into BPs or
amino acid fragments [13]. Therefore, when the conditions of EH or the enzyme species
change, it may indirectly impact the efficacy of BPs, firstly, when enzymatic conditions
change, factors such as enzyme activity can affect the degree of protein hydrolysis [14].
For example, the length of hydrolysis time is directly related to the degree of hydrolysis,
which impacts the molecular weight of BPs and ultimately affects their efficacy in the
organism [15]. Secondly, enzymes used in the hydrolysis of protein substrates have specific
recognition sites, which are determined by specific amino acids [16]. Changes in these
recognition sites can lead to alterations in the amino acid composition of BPs produced
by enzymatic hydrolysis, ultimately impacting their efficacy and enzymes currently used
for the preparation of BPs from traditional natural products in China, mainly including
alkaline protease, flavored protease, pineapple protease, papain, trypsin, neutral protease,
and pepsin [17,18]. EH is the most common method for the preparation of BPs from
traditional natural products in China. There are two main types of methods: The first is the
single EH method, specifically by comparing the efficacy index of BPs obtained by different
enzyme hydrolysis, and screening the optimal enzyme species for subsequent experiments.
Guo et al. prepared Hippocampus (seahorse) peptides using six proteases separately, and the
final results showed that Hippocampus peptides prepared via papain hydrolysis exhibited
elevated antioxidant and anti-fatigue activities. Ghanbari et al. found that among the
different proteases tested, alkaline proteases were most effective in generating BPs from
sea cucumber (Actinopyga lecanora) that possessed the highest levels of ACE-inhibitory
and antioxidant activity [19,20] (Figure 1). The second is the complex EH method, which
relies on the use of multiple enzyme species. It is worth noting that this method can
be further categorized into two subtypes: combinatorial EH and successive addition of
relay EH; for the combinatorial EH, Memarpoor-Yazdi et al. incubated the extracted
Zizyphus jujuba proteins using papain and trypsin and a combination of both, resulting
in an ACE inhibition rate of 26.1% (±2.0) for trypsin, which was higher than that of the
combined enzymes [21]. Li et al. studied the enzymatic preparation conditions for the
combinatorial EH of the BPs of Lycium barbarum by neutral protease and papain and
obtained the optimal preparation process with a neutral protease to papain addition ratio of
1:2.65 [22] (Figure 2). Successive EH involves a multi-step process in which the first enzyme
is allowed to complete its hydrolysis before the EH environment is adjusted and the second
enzyme is subsequently added for further hydrolysis, and so on, Bao et al. used dual EH
to prepare red deer(Cervus elaphus) antler hypoglycemic peptide, and change the order
of enzyme species addition for EH, and finally concluded that the EH order of alkaline
protease-flavor protease enzymatic products on α-glucosidase glycosidase inhibition rate,
protein recovery rate, and hydrolysis degree were 21.11%, 39.12%, and 19.88%, respectively,
which were higher than those of the EH order of flavor protease -alkaline protease [23]



Molecules 2023, 28, 6421 3 of 25

(Figure 3). Moreover, it was also applied in the preparation of black soybean blood lipid-
lowering peptide, iron yam immunomodulatory peptide, and angiotensin-converting
enzyme inhibiting peptide from hempseed protein [24–26]. As mentioned above, a key
step of the EH method is to obtain functional evaluation indexes through repeated in vivo
and in vitro functional evaluation experiments in order to screen the best enzyme species
or enzymatic conditions, which of course reveals that one of the disadvantages of the EH
method is the tedious screening process, besides, the by-products in the mixed peptides
and the bitter peptides are also disadvantages, but it is undeniable that the EH method is
almost the easiest method to produce consistent hydrolyzed peptides [12,27]. The optimal
conditions for the different enzymatic methods obtained by using protein hydrolysis degree
or the rest of the functionality indexes as indicators are shown in Table 1.
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Table 1. The optimal conditions for the different enzymatic methods.

Enzymatic Methods Raw Materials Types of Enzymes Used Enzymatic Hydrolysis Conditions Reference

Single EH

Ginkgo biloba seed Alcalase pH value: 8.0, temperature: 50 ◦C, time: 4.5 h,
enzyme addition: 3500 U/g. [17]

Alfalfa
(Medicago sativa L.)

Leaf
Papain

pH value: 7.5, temperature: 55 ◦C, time: 4 h,
enzyme addition: 3:100

(enzyme/substrate w/w).
[18]

Seahorse
(Hippocampus) Papain pH value: 6.0, temperature: 60 ◦C, time: 40 min,

enzyme addition: 2000 U/g. [19]

Sea cucumber
(Actinopyga lecanora) Alcalase

pH value: 8.0, temperature: 37 ◦C, time: 8 h,
enzyme addition: 1:100

(enzyme/substrate w/w).
[20]

Combinatorial EH

Zizyphus jujuba fruits Trypsin, papain pH value: 7.5, temperature: 37 ◦C, time: 4 h,
enzyme addition: 1:50 (enzyme/substrate w/w). [21]

Lycium barbarum Neutrase, papain pH value: 7.0, temperature: 51 ◦C, time: 4.3 h,
neutral protease-papain addition rate: 1: 2.65. [22]

Successive EH

Red deer
(Cervus elaphus) antler

Alcalase-
Flavourzyme

Alcalase pH value: 8.0, temperature: 60 ◦C, time:
3 h, enzyme addition: 5000 U/g, substrate

concentration: 12%.
Flavourzyme pH value: 6.5, temperature: 45 ◦C,
time: 1 h, enzyme addition: 6000 U/g, substrate

concentration: 5%.

[23]

Black Soybean Alcalase- Neutrase-
Flavourzyme

Alcalase pH value: 8.5, temperature: 60 ◦C,
time: 30 min.

Neutrase pH value: 7.0, temperature: 60 ◦C,
time: 60 min.

Flavourzyme pH value: 6.0, temperature: 60 ◦C,
time: 30 min.

[24]

Hempseed
(Cannabis sativa L.) Alcalase- Neutrase

Alcalase pH value: 10.0, temperature: 50 ◦C,
time: 4h, enzyme addition: 8000 U/g.

Neutrase pH value: 7.0, temperature: 45 ◦C,
time: 4h, enzyme addition: 8000 U/g.

[25]
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2.2. Solvent Extraction

Solvent extraction is a widely used method for extracting BPs from traditional nat-
ural products in China, based on the principle of polar similarity solubility, which can
be categorized into aqueous extraction method and organic solvent extraction method
depending on the different solvents used, among which aqueous extraction method is
the common extraction method of BPs from traditional natural products in China [28,29].
For example, Liu et al. used pure water to extract crushed and sieved Isatis indigotica
herbs at 4 ◦C for 24 h to obtain the crude peptides of Isatis indigotica [30]. The significant
advantage of the aqueous extraction method is the mild reaction conditions, which ensure
the stability as well as the safety of the BPs, but this method suffers from a low extraction
efficiency and time-consuming procedures [31]. Organic solvent extraction is usually used
for proteins or peptides containing aromatic amino acids as well as polar side chains [32].
Liu et al. prepared Ganoderma lucidum crude polypeptides using 2500 mL H2O/isopropanol
(1:15 w/v) by maceration for 4 h [33]. Li et al. used anhydrous ethanol to extract dried
gecko powder to obtain gecko crude polypeptides [34]. Notably, both aqueous and organic
solvent extraction methods typically entail the addition of neutral salts such as ammonium
sulfate and ammonium acetate to facilitate the precipitation of BPs or proteins [35]. Tie et al.
saturated Achyranthes bidentata powder aqueous extract solution with ammonium sulfate to
50% saturation, followed by centrifugation, and further saturated with ammonium sulfate
to 80% saturation [36]. In addition to the above two methods, adding acid or alkali can
also be used for peptide extraction, among which alkali extraction is the most used, and it
has been proved that its yield is higher than that of the organic solvent extraction method,
mainly because the high pH environment promotes the ionization of acidic and neutral
amino acids and disulfide bond breaking, thus improving the solubility of peptides or
proteins [31]. However, there are fewer reports on its application to the preparation of BPs
from traditional natural products in China, mainly because the high temperature and pH
increase required in the process of alkali hydrolysis may exist and difficult to control for the
structural damage of BPs leading to their reduced activity or even complete disappearance,
so currently for alkali extraction is mainly used in the reuse of agricultural waste such as
soybean oil meal in industry and the extraction of animal and plant crude protein, and it is
not suitable for the preparation of BPs from traditional natural products in China [37]. The
principles as well as the Pros and Cons of the above solvent extraction methods are shown
in Table 2.

Table 2. The mechanism as well as the Pros and Cons of the solvent extractions.

Methods Mechanism Advantage Disadvantage Reference

Aqueous extraction Polar similarity solubility
(Polar peptides)

Mild reaction conditions
(ensure peptide stability);

Simple and convenient
operation

Time-consuming;
Low extraction efficiency;

Introduction of
water-soluble impurities

[31]

Organic solvent extraction

Polar similarity solubility
(Peptides containing aromatic
amino acids and peptides with

many nonpolar side chains)

Higher extraction rate
(compared to aqueous
extraction); Reaction

conditions can be
controlled to obtain
different peptides

(e.g., solvent polarity,
pH, etc.)

Destruction of essential
amino acids such as serine,
threonine, and tryptophan;

Large solvent usage;
Degradation or

denaturation of peptides;
Peptide toxicity due to

organic solvent residues

[31,32,35,37]

Acid or alkali extraction

Disruption of disulfide, hydrogen,
and peptide bonds increases

peptide solubilization; Acidic and
neutral amino acids undergo

ionization to increase solubility in a
high pH environment

3. The Separation Method of Bioactive Peptides
3.1. Membrane Separation

Membrane separation techniques can be categorized into three methods, namely
nanofiltration (NF), ultrafiltration (UF), and microfiltration (MF), in ascending order of
pore size [38]. Of these, UF is the most widely employed technique for separating peptide
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mixtures due to its effectiveness and versatility [39]. The main principle of membrane
separation is the removal of low molecular weight analytes and impurities through the
membrane driven by pressure, while accomplishing the graded separation of peptides of
different molecular weights [40]. Ye et al. graded the concentrated supernatant after the
EH of sea cucumber (Stichopus japonicus) by using a UF membrane bioreactor system with
molecular weight cut-off (MWCO) of 5 kDa and collected the fractions with molecular
weights less than 5 kDa as sea cucumber peptides, Ding et al. used UF membranes with
MWCO of 5 kDa and 10 kDa for the EH of Velvet antler Alcalase and obtained three
different molecular weight fractions (>10 kDa, 5~10 kDa, <5 kDa) [41,42]. In addition to UF,
MF can be used for impurities removal before the separation of UF components because
the filtration pore size is larger than UF [43]. Yuan et al. filtered the supernatant of the
aqueous extract of bitter melon (Momordica Charantia L. Var. abbreviata Ser.) through an
MF membrane with a pore size of 0.2 µm, and subsequently, filtered the filtrate through a
UF membrane with a MWCO of 10 kDa to obtain two fractions, MC1 (>10 kDa) and MC2
(<10 kDa) [44]. It is worth noting that no reports have been seen on the application of
NF to the separation of BPs from traditional natural products in China, mainly because
of its MWCO of about 150–1000 Da, which is suitable for completing the separation of
small molecules such as oligosaccharides and multivalent ions by dissolution diffusion [45].
Membrane separation techniques have two limitations, Firstly, the consumption of large
sample volumes and the potential occurrence of membrane-peptide interactions may result
in the loss of target peptides during the separation process, Secondly, the separation effi-
cacy of peptide mixtures at high sample concentrations may be influenced by the “normal
distribution” of pore sizes in the membrane, leading to a non-uniform separation behav-
ior [40,46–48]. Therefore, membrane separation is only suitable for crude molecular weight
separation of peptide mixtures and must be used in cooperation with other separation
methods.

3.2. Gel Filtration Chromatography

Gel filtration chromatography, commonly referred to as size exclusion chromatography
(SEC), separates substances according to their molecular weight by regulating the pore
size of stationary phase materials [49]. In this method, the retention time of different
components in the peptide mixture varies in the gel column due to differences in molecular
weight, leading to a desired separation outcome [50]. The main advantage of SEC is the ease
of operation as well as the mildness of the reaction, which is beneficial for the separation
of mutability analytes such as BPs and ensures the accuracy of conformational structure
characterization [51,52]. The gels packings commonly used for BPs separation are: cross-
linked dextran (Sephadex), polyacrylamide (BioGel), cross-linked acryl dextran (Sephacryl),
agarose gels (Sepharose), and cross-linked agarose (Sepharose CL), and different types
and models of gels can be selected for separation according to the molecular weight level
of the sample, among which Sephadex is the most commonly used packings of peptide
mixture separation [53]. The mobile phase employed in SEC is typically deionized water,
but because of the intrinsic charge properties of peptides, an aqueous mobile phase with
a relatively high salt or ionic concentration is often utilized in SEC peptide separations
to achieve effective elution and reduce possible changes in peak shape due to secondary
interactions with the stationary phase [54]. Wang et al. further separated the membrane-
separated fraction F3 of Chinese angelica (Angelica sinensis) protein hydrolysate by a
Sephadex G-25 gel filtration chromatography column [55]. Mishra et al. extracted the
Ganoderma lucidum fruiting body (GLF) and Ganoderma lucidum mycelium (GLM) powder
with Tris-Cl buffer and the supernatant obtained after centrifugation was loaded into
Sephadex G-25 to obtain six fractions of GLF 1, GLF 2, and GLF 3 and GLM 1, GLM 2
and GLM 3 [56]. The disadvantage of SEC is the lower peak capacity, which means that
a longer column is required to complete the separation, thus affecting the practicability
of the method. Therefore, SEC is typically not sufficient for achieving specific separation
objectives and is often combined with membrane separation, ion exchange chromatography,
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or other methods. In protein hydrolysate separation, SEC and/or membrane separation are
often utilized in the initial stage to obtain the desired molecular weight or chain length,
followed by further characterization to achieve the desired outcome. For example, Zhou
et al. used 50 kDa, 10 kDa, 5 kDa, and 1 kDa UF membranes to separate walnut proteolytes
into five fractions, which were desalted by a macroporous adsorbent resin and loaded on
a Sephadex G-15 chromatographic column to collect the separation obtained at 280 nm
walnut ACE inhibitory peptide [57,58]. Notably, SEC generally offers a faster and more
efficient separation technique compared to membrane separation, while maintaining a high
level of resolution [59].

3.3. Ion Exchange Chromatography

Ion exchange chromatography (IEC) is one of the earliest developed chromatographic
techniques and is an important tool for the separation, screening, and structural analysis
of biomolecules [60,61]. In IEC, the stationary phase possesses ion-exchange properties
and interacts reversibly with ions present in the mobile phase, and separation is achieved
through the modulation of binding interactions between the stationary phase and the
analyte by adjusting the salt concentration or pH of the mobile phase using a gradient
elution approach [49,62,63]. IEC is typically classified into strong and weak anion exchange
chromatography, which utilize stationary phases featuring quaternary aminoethyl (QAE)
and diethylaminoethyl (DEAE) binding groups, respectively, as well as strong and weak
cation exchange chromatography which feature propyl sulfonate (SP) and carboxymethyl
(CM) binding groups, respectively, these different stationary phases enable the separation
of analytes based on their differential interactions with the oppositely charged groups on
the stationary phase [64,65]. In addition, in IEC the elution is accomplished by increasing
the linear elution salt concentration or buffer pH, but in order to maintain the biological
activity of the peptide, it is common to use a phosphate solution gradient elution [66].
Liu et al. uploaded Ganoderma lucidum oligopeptide (LZO) LZO-A-3 onto a DEAE-52
cellulose anion exchange column after UF membrane separation and used (NH4)2SO4
solution for gradient elution to obtain a total of six fractions (A-LZO-3-1~A-LZO-3-6) [33].
Zhao et al. obtained (Lycium barbarum protein) LBP-A-4 fractions from LBP by UF mem-
brane separation as well as Phenyl Sepharose CL-4B hydrophobic chromatography, and
then uploaded onto a DEAE-52 cellulose anion exchange column to obtain 10 fractions
(LBP-A-4-1 to 10) after gradient elution with (NH4)2SO4 solution [67]. IEC suffers from
two primary drawbacks; firstly, peptides with similar or identical total charges may exhibit
poor separation due to their comparable affinity for the stationary phase, necessitating
the addition of complementary separation techniques to achieve a satisfactory resolution,
secondly, the salt solution employed in gradient elution may introduce unwanted impurity
ions, which must be removed via techniques such as desalting using a dialysis bag in order
to mitigate potential interference with downstream applications [68].

3.4. Reversed-Phase High-Performance Liquid Chromatography

Liquid chromatography is a highly promising technique for separating complex pep-
tide mixtures and proteins in research applications [69]. Of these techniques, RP-HPLC has
emerged as the most widely applied approach in proteomics and was first employed for
peptide separation back in 1976 [70]. The separation of peptide mixtures by RP-HPLC is
mainly based on the differences in polarity and molecular weight, where low molecular
weight and low hydrophobic peptides are preferentially eluted in non-polar columns be-
cause of the lower interaction forces, resulting in shorter retention times [38,71]. The most
commonly used column for peptide separation by RP-HPLC is octadecyl silica, mainly
because it is a long-chain alkyl-bonded phase with better hydrophobicity, which is more
suitable for biological macromolecules, it is worth noting that when the peptide molecular
mass is less than 2 kDa usually use a C18 column with the same pore size as the separation
of small molecule mixtures, when the peptide molecular mass is overly large, usually need
a column with a pore size range of 30nm~200nm, in addition, the packing materials being
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studied for peptide and protein separation are Perhydro-26-membered hexaazamacrocycle-
based silica (L1lySil), Glycidylmethacrylate (GMA) grafted silica, etc., for the mobile phase,
RP-HPLC usually separates peptides by increasing the concentration gradient of the mobile
phase of organic solvents (e.g., acetonitrile, methanol or isopropanol), so the selectivity can
be improved by changing the composition of the mobile phase and selecting a high purity
silica column [72–76]. The use of C18 RP-HPLC column with organic solvent gradient
elution has been reported for the separation of velvet antler peptides and Zizyphus jujuba
peptides, etc. [42,77]. The advantage of RP-HPLC is its remarkable ability to rapidly analyze
complex analytes made up of numerous substances, which makes it almost perfectly suited
to the task of separating peptides and protein mixtures [65]. On the contrary, RP-HPLC has
two disadvantages, the most significant one for peptide mixtures is that the mobile phase
consisting of organic solvents and the hydrocarbon bonding in the stationary phase induce
changes in the natural conformation of peptides, leading to the loss of their biological
activity, and secondly, the steric conformation of peptides may prevent the interaction of
hydrophobic amino acids with the stationary phase, leading to the premature elution of
peptides [78–80].

3.5. Multidimensional Chromatographic Separation

It can be concluded from the above summary of various separation methods that
each method may be based on only one property of the peptide, and each method has its
advantages and disadvantages. For the separation of peptide mixtures, a variety of physical
and chemical properties may be involved, such as molecular weight, hydrophobicity, and
the number of charges carried, and when the protein is hydrolyzed, the number of peptides
to be separated is huge, and exceeds the maximum number of peaks (peak capacity)
that most columns can separate in one gradient time, so it is not ideal to use a single
method for separation [81,82]. Thus, when multiple properties are used to separate the
same peptide mixture, it allows for a mixed-mode separation, which can also be referred
to as multidimensional chromatographic separation (MCS), a concept first proposed by
Giddings in 1984 [83]. Multidimensional chromatographic separation (MCS) offers two
primary advantages over one-dimensional chromatographic separation, first, it enhances
separation capacity by independently exploiting multiple separation mechanisms to achieve
superior effects, thereby increasing overall efficiency and reducing sample complexity [84].
The second advantage of MCS is the increased peak capacity, which can be optimized by
integrating peptide separation techniques that rely on diverse physicochemical properties,
specifically, the total peak capacity (N) of MCS should represent the multiplication of the
peak capacity (Ni) of each individual separation mode utilized, such as N = N1 × N2 × N3
× . . . [85]. The most applied system in the separation of BPs is a two-dimensional system
consisting of membrane separation and RP-HPLC, such as Lan et al. further separated the
New Zealand red deer (cervus elaphus) velvet antler antioxidant peptides obtained by UF
membrane separation by RP-HPLC to obtain 10 fractions (S1–S10) [86]. In recent years,
three-dimensional or even multidimensional liquid chromatographic separation systems
with greater separation capacity have been derived and have been applied in peptidomics
studies [40,87]. For example, Gao et al. separated ginseng protein crude extracts by UF
membrane separation, hydrophobic chromatography, anion exchange chromatography,
gel filtration chromatography, and RP-HPLC, and finally purified the five oligopeptide
fractions of RSO-1~5 [88]. It should be noted that the incompatibility of mobile phases
across different separation modes and the resulting decrease in peak capacity due to
incomplete transfer are significant challenges that require attention in future research.

4. The Identification of Bioactive Peptides
4.1. Identification Based on Database Search

The development of MALDI and ESI opened up new possibilities for the integra-
tion of multidimensional separation and MS in protein and peptide analysis [89,90]. One
established approach is shotgun proteomics, wherein complex protein samples are first
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fragmented into peptides and then sequenced using LC-MS [91]. Compared to the tra-
ditional Edman degradation method, shotgun proteomics offers higher throughput and
sensitivity, and has become the preferred bioanalytical tool for proteomics in many labo-
ratories. This method greatly simplifies the sequence identification of peptide mixtures,
making it a more convenient option [92]. Database search (DS) is a peptide identification
method based on a protein sequence database (PSD), each protein in the PSD is simulated
enzymatic cleavage to form peptides after determining the restriction enzyme cutting sites
based on the user-specified protease, and simulated fragmentation is performed to obtain
the theoretical peptide spectrum, the theoretical peptide spectrum is compared with each
experimental MS/MS, the peptide score list is output according to the scoring scheme of
the DS tool, and the peptide with the highest score matches has the highest probability of
being correct, Thus database based peptide identification is relatively reliable when the
complete PSD is known as well as enzyme species [93–97] (Figure 4). Wang et al. used the
Orbitrap Elite™ Hybrid Ion Trap-Orbitrap Mass Spectrometer to determine the sequences
of sea cucumber peptides and searched the NCBI database, and identified a total of 3961
and 5876 peptide sequences in two fractions, SCP-1 and SCP-2, respectively [98]. Wang
et al. used the Uniport database as the basis and searched the raw files of the BPs mass
spectra of Colla Corii Asini using the Proteome Discoverer software (Version 2.4.0.305)
with the Sequest HT search engine and identified the highest relative content of peptides as
ISVPGPMGPSGPR, followed by SGDRGEAGPAGPAGPIGPVGAR and ISVPGPMGPSGPR,
the common feature of NCBI and Uniport is the storage of the entire set of annotated or
predicted non-redundant protein sequences in the form of FASTA [99,100]. In addition
to the above two, there are BIOPEP [101] and SwissProt [102], and it is noteworthy that
UniProt contains SwissProt, which is a confidence set for biologically existentially deter-
mined proteins [100]. DS peptide identification has several limitations, firstly, it may be
challenging to find matches between the mass spectrometry data and the sequences in the
database, particularly because some experimental peptides may come from proteins that
are not included in the PSD, or they may be variants or products of accidental degrada-
tion [103]. For the identification of BPs in traditional natural products in China, the lack
of BP sequence information can further complicate the identification process, as BPs are
often not well studied [104]. To address these issues, it is necessary to expand the search for
relevant PSDs or to explore alternative strategies, such as De novo sequencing or spectral
library searching, and it is essential to apply multiple hypothesis testing as well as adjust for
the false discovery rate to reduce the chances of false positives [105]. Secondly, non-specific
restriction enzyme cutting sites lead to a longer time to calculate results, which results in a
lower probability of matching peptide profiles [105].

4.2. Peptide Identification Based on De Novo

As mentioned above, when there is a lack of relevant data in the PSD, experimental
peptide data may not be able to obtain the correct results after spectral matching by DS.
Peptide identification from mass spectrometry data is typically performed using either DS
or De novo methods, the former relies on comparing experimental spectra to a protein
sequence database, while the latter directly infers peptide sequences based on the mass dif-
ferences of ion fragmentation peaks acquired by a secondary mass analyzer [93]. Although
DS has been a commonly used method for identifying peptides in proteomic research
and is generally considered more reliable, recent advancements in high-resolution mass
spectrometry instruments have enabled De novo sequencing as a useful alternative method
for identifying new peptides [106,107]. In comparison to DS, De novo sequencing can
provide more accurate and complete peptide sequence information, especially for complex
samples with peptides not included in the database or with multiple modifications. [108].
Therefore, De novo sequencing is becoming a valuable complementary method for peptide
identification in proteomics and peptidomics studies. The most obvious advantage of De
novo over DS identification is database-independent, secondly, the best current De novo
algorithms are orders of magnitude faster than large DS, and finally, De novo sequencing is
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particularly well-suited for identifying protein sequence variants, splice isoforms, extended
peptide sequences, and modified peptides containing non-protein or chemically-modified
amino acids [107,109,110]. Zhao et al. sequenced LBP 1~2 by HPLC-ESI-MS and obtained
the amino acid sequences of cyclic peptide-(Trp-Glu-Phe-Thr) and cyclic peptide-(Leu-Val-
His-Phe), respectively, by manually calculating the M/Z difference [67]. It is worth noting
that although De novo sequencing from MS/MS data can be carried out manually, several
tools are available that can automate this process [103]. For example, Yingchutraku et al.
obtained MS/MS spectra of Ganoderma lucidum water-soluble peptides by Q-TOF mass
spectrometry and imported the raw spectra files into Peak X studio 10.0 for automatic De
novo sequencing at the highest peptide ion intensity and identified the resulting amino
acid sequence as PVRSSNCA [111]. Shih et al. used a Thermo Q—ExactiveTM mass spec-
trometer to analyze the Cassia obtusifolia Seeds peptides with the highest hypotensive
activity and selected the 10 highest intensity ion peaks for secondary mass spectrometry
scanning and De novo sequencing using PEAKS Studio to identify the peptide sequence as
FHAPWK [112]. In addition, there are software applications such as Bruker Flex Analysis
(version 3.3) [77], and De novo explorer [113] for De novo sequencing of BPs in traditional
natural products in China. The biggest problem faced by De novo sequencing of peptides
is low accuracy, as well as resolution, the most advanced modern sequencing software
can only correctly identify peptide sequences in 30–50% of MS, mainly due to incomplete
sequences of interfering generated peaks masking sequence-specific fragments and pep-
tides with similar cleavage profiles, Secondly, the requirements for mass spectrometry map
quality, are high, mainly because if the peptides are to be accurately De novo sequenced,
the fragment ions generated by each peptide bond break need to be observed, and when
the MS/MS map quality is poor, it is extremely easy to cause signal loss of fragment
ions [97,100,114].
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4.3. Methods Combination

To improve the accuracy of peptide sequencing, methods have been developed to com-
bine DS with De novo, which is performed by first obtaining a sequence tag of 3–5 amino
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acids in length by De novo sequencing identification with peptide quality information, and
then comparing it with PSD to identify peptides, so this method can also be called sequence
tagging method [115,116]. Compared to sequencing peptides using one method alone,
firstly, the added specificity of sequence tags can help to reduce the number of hypothetical
peptides to be scored during spectrum matching, which can, in turn, help to narrow the
scope of downstream DS and reduce analysis time, and secondly, by focusing the analysis
on shorter peptide fragments, the accuracy of identifying individual amino acid residues
within a peptide sequence can be greatly improved, thereby reducing the potential for
false positives or ambiguities in peptide identifications [97,107,117,118]. However, for the
combined sequencing methods of BPs of traditional natural products in China, amino acid
sequences are mainly obtained by DS alignment and then using De novo sequencing to
identify the correctness of sequence results [119], or first sequenced by De novo and then
using DS to compare sequence results, there is no relevant report on the study of BPs of
traditional natural products in China by sequence tag sequencing [120]. While sequence
tags have the potential to improve the specificity and efficiency of peptide sequencing, their
use also presents certain limitations and challenges, one key issue is that the amount of
information contained in a sequence tag may be relatively limited compared to that of a full
peptide sequence, which can hinder the accuracy of identification in some cases, and the
risk of peptide misidentification is heightened when errors are made in the identification of
the sequence tag itself, which can propagate downstream errors and lead to false positives
or other artifacts [121].

5. Functional Classification of Bioactive Peptides

The BPs from traditional natural products in China have been classified into vari-
ous therapeutic categories based on their different effects on the body. These categories
include antioxidant peptides, antihypertensive peptides, anti-inflammatory peptides, anti-
cancer peptides, hypoglycemic peptides, hypolipidemic peptides, antimicrobial peptides,
anti-fatigue peptides, immune-regulating peptides, muscle synthesis, and performance-
enhancing peptides, as well as antifungal peptides. Additionally, the source materials for
preparing these different functional BPs from traditional natural products in China may
vary. Therefore, Table 3 summarizes the BPs that will be discussed in the corresponding
section, providing an overview of the majority of the BPs found in traditional natural
products in China thus far.

Table 3. Discovered BPs from traditional natural products in China.

Bioactive Peptides’s Functions Bioactive Peptides Source References

Antioxidant

Colla Corii Asini [26,119]
Velvet Antlers [74]

Ganoderma lucidum [75,111,122]
Ginseng (Panax ginseng Meyer) [123,124]

Cervus elaphus velvet antlers [125]

Anti-hypertensive
Zizyphus Jujuba Fruit [21]

Cassia Obtusifolia Seeds [112]
Ginkgo biloba seeds [126]

Anti-inflammatory

walnut [88]
Soybean [127]
Ginseng [128]

Velvet Antler [129]
Lycium barbarum L. [67]

Anti-cancer
Colla Corii Asini [99]

genus Rubia [130–142]

Hypoglycemic Torreya grandis Merrillii [143]
Ginseng [144]
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Table 3. Cont.

Bioactive Peptides’s Functions Bioactive Peptides Source References

Hypoglycemic
Hypolipidemic Red Deer Antlers [145]

Hypolipidemic

Hempseed [146]
Hericium erinaceus [147]

Eupolyphaga steleophaga [113]
Panax ginseng [148]

Antibacterial
Indian Ganoderma lucidum [56]
eupolyphaga sinesis walker [149]

Antifatigue Sea Horse (Hippocampus) [19]
Panax ginseng C. A. Meyer [150]

Immunomodulatory

Ginseng (Panax ginseng Meyer) [151]
Colla Corii Asini [152]

Iron yam [153]
Ginseng [154]

Panax ginseng [155]
Isatis indigotica [30]

Improve muscle synthesis
exercise performance Purple perilla (Perilla frutescens L. Britt.) seeds [156]

Antifungal

Taraxacum officinale Wigg. flowers [157]
Trapa natans fruits [158]

Satureja khuzistanica leaves [159]
Beetle Blaps rhynchopetera [160]

5.1. Antioxidant Peptides

The human body can maintain the antioxidant-oxidant balance via endogenous antiox-
idant enzymes and non-enzymatic factors to effectively scavenge reactive oxygen species
(ROS) under normal conditions, but when this balance is disrupted by external factors
such as ultraviolet radiation and excessive exercise, it may lead to various pathologi-
cal outcomes, so the consumption of antioxidant-rich foods may be an effective strategy
to offset the negative impacts of these environmental stressors and safeguard the over-
all health and well-being of individuals [161–163]. Antioxidant peptides are among the
most intensively studied BPs from traditional natural products in China, and their ac-
tivities have been found and confirmed in traditional natural products in China such as
ginseng [123,124], deer antler [74,125], Ganoderma lucidum [75,111,122], and Colla Corii
Asini [26,119]. The antioxidant pathways of antioxidant peptides mainly include DPPH
radical scavenging and ABTS radical scavenging [26,101,111,164,165], liposome oxidation
inhibition (LPA) [166], Oxygen Radical Absorbance Capacity (ORAC) [165], and metal ion
chelation [111,164], etc. The main factors affecting the efficiency of antioxidant peptides
are as follows: firstly, molecular weight and peptide length. In most cases, the number
of amino acids of antioxidant peptides is less than 20 and the molecular weight is less
than 3k Da, mainly because low molecular weight peptides are easier to reach the active
site through biological membrane to scavenge free radicals [167–169]. For example, Liu
et al. compared the antioxidant activity of antler peptides with different molecular weights
by five methods and found that antler peptide III with the smallest molecular weight
had the highest antioxidant activity, and the molecular weights were concentrated below
3496 Da [170]. Wang et al. used LC—MS/MS to identify the AsPH-F3 fraction with antioxi-
dant capacity, resulting in 27 of the peptides consisting of 6~19 amino acid residues; another
peptide consisting of 26 amino acids [55]. It is worth noting that the antioxidant capacity of
a peptide is primarily determined by its specific primary structural features, rather than
the presence or absence of individual amino acids as free versus peptide-bound forms, so it
is not necessarily the case that smaller molecular weight or shorter peptide segments are
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intrinsically more potent antioxidants than their larger counterparts [171]. Secondly, the
higher the content of hydrophobic amino acids, the stronger their antioxidant capacity is
generally considered, mainly because hydrophobic amino acids are more likely to bind
to hydrophobic fatty acid radicals and also inhibit the release of hydrogen from lipids by
binding to oxygen and delaying the lipid peroxidation chain reaction [172,173]. Liu et al.
compared antler peptides I, II, and III and concluded that antler peptide III, which had the
highest antioxidant capacity, contained the highest proportion of three hydrophobic amino
acids, Leu, Glu, and Gly. [170]. Finally, the N-terminus of antioxidant peptides is generally
a hydrophobic amino acid or a tyrosine capable of providing proton-scavenging radicals, as
shown by Liu et al. Structural identification of black bean peptides purified by multistage
chromatography yielded sequences as Tyr-Asn-Ile and Trp-Asn-Pro, respectively [170]. In
addition to this, Cys and Met can scavenge free radicals directly [171].

5.2. Anti-Hypertensive Peptides

Hypertension is one of the most common risk factors for the development of cardio-
vascular disease, and the hypotensive peptides found in plant proteins rely on multiple
principles, including ACE inhibition, renin inhibition, proximity to the protective axis
of the renin-angiotensin system(RAS), and cholecystokinin (CCK)-related vasodilation,
but the hypotensive peptides that have been reported rely mainly on the ACE inhibition
mechanism, so they are referred to as ACE inhibitory peptides most of the time [174,175].
ACE inhibition is specifically based on the principle that ACE inhibits vasoconstriction
by cleaving the C-terminal dipeptide His-Leu of angiotensin I into angiotensin II, and
ACE inhibiting peptides inhibit vasoconstriction by competitively or non-competitively
inhibiting and thus preventing the binding of ACE to angiotensin I [176,177]. The ACE
inhibition efficacy is generally correlated with peptide chain length, because large peptides
may have difficulty binding to the active site of ACE, so they are usually peptides with
chain lengths of 2-12 amino acids [178]. For example, Memarpoor-Yazdi et al. identified
Zizyphus Jujuba fruit peptides fractions F2 and F4 and obtained amino acid sequences
Ile-Glu-Arg and Ile-Gly-Lys, respectively, both with higher ACE inhibitory activity than
the three longer peptides TNLDWY, RADFY and RVFDGAV purified from Ginkgo biloba
seeds [21]. Notably, in some cases, the ACE inhibitory activity of long-chain peptides may
be higher than short-chain peptides, mainly because the catalytic site of ACE corresponds
to the three hydrophobic amino acids of angiotensin I. Therefore, the activity of ACE
inhibitory peptides is also related to the composition of terminal amino acids, of which the
three C-terminal amino acids contribute more to the hypotensive effect, mainly Tyr, Pro,
Trp, Phe, and Leu [179]. For example, Ma et al. found that the C-terminus of both Ginkgo
biloba seeds ACE inhibitory peptides TNLDWY and RADFY contained Tyr, and Shin et al.
identified the sequence of Cassia obtusifolia Seeds ACE inhibitory peptide as FHAPWK,
whose ACE inhibitory activity was superior to short peptides such as WVYY, WYT, SVYT,
and IPAGV due to its C-terminal Pro as well as Trp [112,126].

5.3. Anti-Inflammatory Peptides

The inflammatory response of the organism is an important process for external
damage and for maintaining the health of the organism, however, when inflammation
persists for a long time, the uncontrolled production of multiple biological factors can
lead to tissue damage and loss of immune function, resulting in the development of vari-
ous chronic diseases [180,181]. Currently, inflammatory diseases are mainly treated with
small molecule drugs, but their high toxicity as well as a broad range of side effects are
very obvious drawbacks in long-term treatment, therefore natural anti-inflammatory pep-
tides with high selectivity, low toxicity, and low dose characteristics are a better choice
for the treatment of inflammatory diseases [182,183]. Anti-inflammatory peptides act in
the body mainly by regulating the balance of pro-inflammatory factors such as IL-1β,
IL-6, IL-12, TNF-α, and anti-inflammatory factors such as IL-10 and TGF-β. The second
is to inhibit the expression of nitric oxide synthase (iNOS) and cyclooxygenase (COX-2)
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metabolic enzymes, thereby reducing the production of inflammatory mediators such as
prostaglandins (PGE2) and leukotrienes, and finally to regulate inflammatory signaling
pathways such as mitogen-activated protein kinase (MAPK) and nuclear factor-kapa B
(NF-κB), thereby regulating the expression of cytokines and inflammatory mediators in sig-
naling pathways [49,184,185]. The main factors affecting the efficacy of anti-inflammatory
peptides are the following, firstly, regardless of molecular weight, anti-inflammatory pep-
tides can be absorbed through the intestinal tract intact and modulate inflammatory sig-
naling pathways, but with increasing molecular weight, their effective dose is also in-
creasing [186]. Secondly, when anti-inflammatory peptides carry a positive charge overall,
this may make them a factor in regulating inflammatory signaling pathways, thus most
anti-inflammatory peptides contain positively charged amino acids, such as His, Arg,
Lys, Gao et al. used HPLC-ESI-MS to identify amino acid sequences of five fractions of
ginseng oligopeptides-1-5 and determined that all five anti-inflammatory peptides carry
His [88,180,187]. Finally, the presence of glutamine, as well as proline, may increase the
effect of anti-inflammatory peptides, but their mechanism of action has not been elucidated,
while they have not been reported in anti-inflammatory peptides from traditional natural
products in China [127,188]. Notably, similar to other BPs, the presence of N-terminal
hydrophobic amino acids plays an important role in the activity of anti-inflammatory
peptides [129,180].

5.4. Anti-Cancer Peptides

Cancer has long been a major problem for people around the world, and the current
main treatment for cancer is a combination of surgery, radiotherapy, and chemotherapy
leading to modulation of apoptotic pathways and selective induction of apoptosis, but
the drawback is the lack of drugs with high specificity, which can easily lead to systemic
undesirable effects [189–192]. Protein-based drugs can accurately induce apoptosis through
signaling pathways, while indirectly inhibiting tumor multiplication and possessing lower
cytotoxicity, and it is noteworthy that the anti-cancer ability of peptides is now being
widely exploited [193–195]. The mechanism of anti-cancer peptides is summarized in
two main points, which are to destroy the plasma membrane after binding to tumor cells
through an electrostatic effect and to induce the release of apoptosis-inducing agents such
as cytochrome c from damaged mitochondria [51,196]. The structural characteristics of
anti-cancer peptides are mainly as follows, firstly, anti-cancer peptides generally carry
positive charges overall, which facilitate electrostatic interactions with anionic lipopolysac-
charides in the outer membrane of cancer cells, thus perturbing membrane stability and
promoting cell membrane disruption, therefore peptides should carry positively charged
amino acids [197,198]. Wang et al. used Discovery Studio 2017 R2 (Dassault Systemes
Biovia, San Diego, CA, USA) software to screen Colla Corii Asini peptides with anti-cancer
activity based on the value of “-CDOCKER_Energry”, and each of the 10 peptides carrying
any one positive charge amino acid at the C-terminus [99]. Then, secondary structure plays
an important role in the activity of anti-cancer peptides. The hydrophobic interface formed
by α-helix facilitates the diffusion of pore structures generated on the surface of cancer
cell membranes, thus inducing apoptosis, and some studies have shown that peptides
containing alanine, leucine, glutamine, and lysine are more likely to form α -helix struc-
tures [197,199,200]. For example, among the three Agaricus peptides screened by Wang et al.
for the best anti-cancer activity, both peptides ANGLTGAK and NGLTGAK contain more
than three amino acids that are prone to α-helix formation [201]. It is worth noting that,
among the anti-cancer peptides of traditional natural products in China, cyclic peptides are
one of the most studied, whose structure is characterized by a closed loop formed by peptide
bonds or other chemical bonds between the C-terminus and the N-terminus of the peptide,
which has the advantage of mainly good stability in vivo compared to linear peptides,
as well as increased binding to cancer cell membrane receptors and cell penetration thus
improving cancer therapeutic effects [202–204]. The genus Rubia is the main source of anti-
cancer cyclic peptides in traditional natural products in China, and 32 cyclic peptides have
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been identified, mainly including RA-I~V [130], RA-VII [131], RA-VIII [132], RA-IX~X [133],
RA-XI~XIV [134], RA-XV~XVI [135], RA-XVII [136], RA-XVIII [137], RA-XIX~XXII [138],
RA-XXIII~XXIV [139], RA-XXV~XXVI [140] and Rubiyunnanin A~B [141], Rubiyunnanin
C~H [142]. The article summarizes the specific chemical structures in Figures 5–7 and
Table 4. The anticancer mechanisms of the cyclic peptide RA series derived from the genus
Rubia are believed to involve several aspects. Firstly, it is suggested that they might inhibit
protein synthesis by binding to the 80S subunit of the eukaryotic cell ribosome, thereby
impeding the translocation of aminoacyl-tRNA and peptidyl-tRNA [205,206]. Secondly,
they have been found to suppress the NF-kB signaling pathway and inhibit the prolifer-
ation, migration, and tube formation of human microvascular endothelial cells [142,206].
It is worth noting that the remarkable stability and enzymatic resistance of natural cyclic
peptides have inspired the design and chemical synthesis of cyclic peptides based on their
cyclic frameworks [207]. Compared to natural cyclic peptides, artificially synthesized cyclic
peptides can be designed with specific sequences to investigate the structure-function
relationships of individual amino acids [208]. With the continuous development of cyclic
peptide drug research and development, it is necessary to seek more efficient synthetic
pathways for cyclization. Currently, the mainstream approach involves the cyclization
of linear peptides, synthesized through solid-phase synthesis using artificially designed
sequences, by chemoselective peptide or non-peptide bond formation at the peptide seg-
ment terminus. In addition to this, enzyme-mediated peptide segment cyclization is also
employed [207].
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Table 4. Chemical structure of cyclic peptide from genus Rubia.

R1 R2 R3 R4 R5 R6 R7 R8 References

RA-I CH2OH CH3 H CH3 H H H CH3 [130]
RA-II CH3 H H CH3 CH3 H H CH3 [130]
RA-III CH2OH CH3 H CH3 CH3 H H CH3 [130]
RA-IV CH3 CH3 H CH3 CH3 H OH CH3 [130]
RA-V CH3 CH3 H CH3 H H H CH3 [130]

RA-VII CH3 CH3 H CH3 CH3 H H CH3 [131]
RA-X CH2CH2COOH CH3 H CH3 CH3 H H CH3 [133]
RA-XI CH2CH2COOH CH3 H CH3 H H H CH3 [134]
RA-XII CH3 CH3 H CH3 β-D-glc H H CH3 [134]
RA-XIII CH2CH2COOH CH3 H CH3 β-D-glc H H CH3 [134]
RA-XV CH3 CH3 H CH3 β-D-glc-Ac H H CH3 [135]
RA-XVI CH3 CH3 H CH3 β-D-glc H AcO CH3 [135]
RA-XVII CH3 CH3 H CH3 H H H CH2CH3 [136]
RA-XVIII CH3 CH3 H CH3 CH3 OH H CH3 [137]
RA-XIX i-Pr CH3 H CH3 CH3 H H CH3 [138]
RA-XX CH2CH3 CH3 H CH3 CH3 H H CH3 [138]
RA-XXI CH2CH3 CH3 H CH3 H H H CH3 [138]

RA-XXIII CH2CH2CONH2 CH3 H CH3 CH3 H H CH3 [139]
RA-XXVI CH2CH2CONH2 CH3 H CH3 H H H CH3 [139]
RA-XXV CH3 CH3 H H CH3 H H CH3 [140]
RA-XXVI CH3 CH3 H H H H H CH3 [140]

Rubiyunnanin C CH2CH2COOCH3 CH3 H CH3 H H H CH3 [142]
Rubiyunnanin D CH2CH2COOH H H CH3 H H H CH3 [142]
Rubiyunnanin E CH2CH2COOH H OH H H H H CH3 [142]
Rubiyunnanin F CH2CH2CONH2 CH3 H CH3 β-D-glc H H CH3 [142]
Rubiyunnanin G CH3 H H CH3 β-D-glc H H CH3 [142]
Rubiyunnanin H CH3 CH3 H CH3 β-D-glc H H CH3 [142]

5.5. Other Functional Peptides

In addition to the above four functional peptides, there are other functional BPs not
introduced, such as hypoglycemic [209], hypolipidemic [148], antibacterial [56], antifa-
tigue [19], and immunomodulatory [152], etc., but these functions BPs are less studied in
the field of BPs from traditional natural products in China or the research on the structure-
activity relationship is not deep, so we do not dwell on them in this paper and make certain
summary in Table 3 above. It is noteworthy that BPs from the same source may have
multiple functions, for example, the research team of Professor Li Yong at Peking Univer-
sity evaluated the BPs of Jilin ginseng for multiple activities and found that it possesses
six effects simultaneously: delaying alcoholic liver damage, antioxidant, hypolipidemic,
hypoglycemic, anti-fatigue, and anti-inflammatory [123,148,150,209–211]. The reason could
be the functional diversity of different peptides in a mixture of peptides from the same
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source due to amino acid sequence differences as well as structural differences, secondly, it
could be the hydrolysis of the parent protein in different ways due to different preparation
processes, and finally, it may be the case that the structural features of a single peptide
simultaneously fit the structural requirements of multiple BPs, resulting in a single peptide
with multiple functions.

6. Discussion

Although research on BPs in the efficacious components of traditional natural products
in China is in its preliminary stages, the discovery of BPs has unquestionably enhanced
our comprehension of the protein and nutritional attributes of traditional natural products
in China as a whole. The development of BPs from traditional natural products in China
has been discussed primarily from various perspectives. In terms of preparation, reported
methods have included EH and solvent extraction. EH involves hydrolyzing the parent
protein of traditional natural products in China to obtain BPs, and it is currently the most
commonly used method due to its mild reaction conditions that protect the bioactivity of
BPs. However, selecting optimal reaction conditions via efficacy evaluation index is often
necessary due to differences in enzymes and complex reaction conditions in EH, which
may result in differences in the performance of the final BPs. Yet, this method necessitates
cumbersome and complex experimental protocols and lacks studies on exploring the poten-
tial BPs of parent proteins. In terms of separation, multidimensional separation methods
offer an innovative approach to peptide separation by incorporating and compensating for
the respective strengths and weaknesses of individual separation methods. This method
makes full use of the physical and chemical properties of BPs to isolate complex peptide
mixtures into simpler peptide samples. However, it is important to emphasize that increas-
ing the number of separation dimensions in multidimensional separation methods will
not necessarily improve separation efficiency. Rather, it is crucial to ensure a simple and
effective interface between different separation dimensions under specific conditions to
maximize separation resolution and depth of peptide identification. In terms of identifica-
tion, there have been attempts to apply both De novo and DS methods. However, for the
identification of BPs from traditional natural products in China, these two methods only
complement each other’s identification capabilities but do not achieve complete coupling,
so the guarantee of accuracy still depends on multiple hypothesis testing and error rate
correction. In terms of functional classification and structure-activity relationships, research
on traditional natural products in China proteins and BPs is in its preliminary stages, which
has resulted in a limited scope of functional and structure-activity relationship studies on
some such peptides. However, despite the varied functions stemming from their structural
diversity, BPs often exhibit structure features such as smaller molecular weights, shorter
peptide chains, and a relatively high content of hydrophobic amino acids.

7. Conclusions and Prospect

In conclusion, there are several potential directions for future research and devel-
opment of BPs in traditional natural products in China. These include optimizing pep-
tide preparation techniques to enhance speed and accuracy, as well as establishing high-
resolution multi-dimensional separation systems based on peptide segments. Furthermore,
improving traditional natural products in China protein databases, promoting sequence-
tagged peptide identification methods, and investigating other functional and conforma-
tional relationships, as well as functional mechanisms, of BPs may yield valuable insights.
However, it is important to note that ensuring the functional efficacy of BPs from traditional
natural products in China in vivo is a key factor for future research and development. This
functionality is predicated on the successful delivery of BPs to their corresponding tissues
or cells within the organism. Unfortunately, BPs may often lose activity prematurely due
to enzyme degradation, structural denaturation, or instability during circulation within
the bloodstream, among other factors. Therefore, the targeted delivery of BPs to active
sites within the organism can be facilitated through the use of nanocarriers and scaffolds,
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and this technique has been successfully employed in the development of protein-based
anticancer drugs. In the future, BPs from traditional natural products in China should be
applied to the development of functional food and peptide drugs, and with the continuous
research of structure-activity relationships, it will no longer be difficult to produce the BPs
with multiple functions directly by chemical synthesis.
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