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Abstract: Controlling the stereoselectivity of 1,2-cis glycosylation is one of the most challenging
tasks in the chemical synthesis of glycans. There are various 1,2-cis glycosides in nature, such as α-
glucoside and β-mannoside in glycoproteins, glycolipids, proteoglycans, microbial polysaccharides,
and bioactive natural products. In the structure of polysaccharides such as α-glucan, 1,2-cis α-
glucosides were found to be the major linkage between the glucopyranosides. Various regioisomeric
linkages, 1→3, 1→4, and 1→6 for the backbone structure, and 1→2/3/4/6 for branching in the
polysaccharide as well as in the oligosaccharides were identified. To achieve highly stereoselective 1,2-
cis glycosylation, including α-glucosylation, a number of strategies using inter- and intra-molecular
methodologies have been explored. Recently, Zn salt-mediated cis glycosylation has been developed
and applied to the synthesis of various 1,2-cis linkages, such as α-glucoside and β-mannoside, via
the 1,2-cis glycosylation pathway and β-galactoside 1,4/6-cis induction. Furthermore, the synthesis
of various structures of α-glucans has been achieved using the recent progressive stereoselective
1,2-cis glycosylation reactions. In this review, recent advances in stereoselective 1,2-cis glycosylation,
particularly focused on α-glucosylation, and their applications in the construction of linear and
branched α-glucans are summarized.

Keywords: α-glucan; stereoselective 1,2-cis glycosylation; α-glucosylation

1. Introduction

Stereoselective synthesis of 1,2-cis glycosides is one of the most challenging issues in
the chemical synthesis of glycans [1–7]. Various 1,2-cis glycosides in nature have been found
as α-glucoside and β-mannoside in glycoproteins, glycolipids, proteoglycans, microbial
polysaccharides, and bioactive natural products. In the structure of polysaccharides such as
α-glucan, 1,2-cis α-glucosides were found to be the major linkage between the glucopyra-
nosides. Various regioisomeric linkages, 1→3, 1→4, and 1→6 for backbone structure, and
1→2/3/4/6 for branching in the polysaccharide as well as in the oligosaccharides were
identified.

α-D-glucans

α-D-glucan is a homopolysaccharide and a simple polymer of α-D-glucopyranoside
(α-D-Glcp) [8,9]. D-Glucose, the component of the D-glucans, is photosynthesized
in plants and widespread in nature and exists in its D-glucopyranose form in α-D-
glucans [10]. The most common and linear example of α-D-glucan is (1→4)-α-D-glucan
(amylose), which plays an essential role as an energy source for metabolism [11]. The
chain length of amylose is known to be in the order of 500–6000 glucose units, depending
on its botanical origin. Three crystalline forms of amylose, A-, B-, and C- (a mixture of A
and B) granules [12], containing random and short helical segments, have been reported.
Crystallized structures were found in the V form [13–15], and each segment composed of
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six glucose residues formed a left-handed, single-stranded helical structure [16]. Branched
(1→4)-α-D-glucans are called amylopectin and glycogen, the analogues of starch for en-
ergy storage in plants and animals, fungi, and bacteria, respectively. The structures of
amylopectin and glycogen are well known to be more compact than that of linear amy-
lose. (1→4)-α-D-glucan is biologically synthesized by glucosyltransferase [17–20] and
amylosucrase (sucrose-1,4-α-glucan glucosyltransferase [21–24] and (1→4)-α-D-glucan
branching enzymes [25–30]).

α-D-glucans also have extremely complex structural diversity according to various re-
gioisomers, making non-branched and branched α-D-glucans with (1→6)-, (1→4)-, (1→3)-,
and (1→2)-glycosidic linkages and molecular masses according to the degree of polymer-
ization (Figure 1). The α-D-glucans have been obtained from various species, listed in
Table 1 [31–36].
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Table 1. Various α-D-glucans in nature.

Linkage Name Source Ref.

Linear Side Chain

(1→4)-α - Amylose Mycobacterium tuberculosis [85,86]
(1→4)-α - Amylose Streptomyces venezuelae [87]
(1→4)-α - Amylose Fusicoccum amygdale [88]
(1→4)-α - Amylose Agaricus blazei [89]
(1→4)-α - Amylose Pleurotus ostreatus [84]
(1→4)-α - Starch Rice bran [90]
(1→4)-α (1→6)-α Glycogen Saccharomyces cerevisiae [91]
(1→4)-α (1→6)-α Glycogen Agaricus bisporus [92]
(1→4)-α (1→6)-α Glycogen Cordyceps sinensis [93]
(1→4)-α (1→6)-α Glycogen Coprinus comatus [94]
(1→4)-α (1→6)-α Glycogen Flammulina velutipes [95]
(1→4)-α (1→6)-α Glycogen Gastrodia elata Bl [96]
(1→4)-α (1→6)-α Glycogen Lonicera japonica Thunb [97]
(1→4)-α (1→6)-α Glycogen Actinidia chinensis [98]
(1→4)-α (1→2); (1→6)-α Glycogen Tricholoma matsutake [71]

(1→4)(1→6)-α - Reuteran Lactobacillus reuteri [99]

(1→4)(1→6)-α - Pullulan
Aureobasidium pullulans

Cyttaria harioti
Tremella mesenterica

[100]

(1→4)(1→6)-α - Pullulan Tremella mesenterica [101]

(1→3)-α - Pseudonigeran

Aspergillus flavipes
Aspergillus flavus

Aspergillus fumigatus
Aspergillus ochraceus

[102]

(1→3)-α - - Aspergillus fumigatus [103–106]
(1→3)-α - Pseudonigeran Aspergillus nidulans [107–109]
(1→3)-α - - Aspergillus niger [110,111]
(1→3)-α - Pseudonigeran Aspergillus niger NNRL 326 [111]
(1→3)-α - - Aspergillus wentii [112]

(1→3)-α - Pseudonigeran Blastomyces dermatiditis
(yeast form) [113,114]

(1→3)-α - Pseudonigeran Eupenicillium crustaceum [111]
(1→3)-α - Pseudonigeran Fusarium oxysporum [111]
(1→3)-α - Pseudonigeran Fusicoccum amygdale [88]
(1→3)-α - Pseudonigeran Histoplasma capsulatum [115]
(1→3)-α - Pseudonigeran Histoplasma farciminosum [116]
(1→3)-α - Pseudonigeran Paracoccidioides brasiliensis [117]

(1→3)-α - Pseudonigeran Penicillium brevi-compactum
Penicillium decumbens [102]

(1→3)-α - Pseudonigeran Penicillium expansum [118]
(1→3)-α - Pseudonigeran Penicillium chrysogenum [119]
(1→3)-α - Pseudonigeran Poria cocos [120]
(1→3)-α - Pseudonigeran Agrocybe cylindracea [121]
(1→3)-α - - Amanita muscaria [122]
(1→3)-α - Pseudonigeran Armillaria mellea [123]
(1→3)-α - Pseudonigeran Cryptococcus albidus [124]
(1→3)-α - Pseudonigeran Cryptococcus terreus [124]
(1→3)-α - Pseudonigeran Ganoderma lucidum [125]
(1→3)-α - Pseudonigeran Ganoderma tsugae [126]
(1→3)-α - - Laetiporus sulphureus [127]
(1→3)-α - Pseudonigeran Lentinus edodes [128]
(1→3)-α - Pseudonigeran Piptoporus betulinus [127]
(1→3)-α - Pseudonigeran Pleurotus ostreatus [36]
(1→3)-α - Pseudonigeran Pleurotus eryngii [88]
(1→3)-α - Pseudonigeran Polyporus tumulosus [129]
(1→3)-α - Pseudonigeran Schizophyllum commune [130]
(1→3)-α - Pseudonigeran Tremella mesenterica [101]

(1→3)-α (1→6)-α Mutan

Lactobacillus reuteri
Streptococcus mutans

Streptococcus salivarius
Streptococcus sownei

[131,132]

(1→3)(1→4)-α - Nigeran

Aspergillus niger
var.awamori

Aspergillus niger
var.unknowy

some Aspergillus species

[133]
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Table 1. Cont.

Linkage Name Source Ref.

Linear Side Chain

(1→3)(1→4)-α - - Aspergillus wentii [112]
(1→3)(1→4)-α - - Cladosporium herbarum [134]
(1→3)(1→4)-α - Elsinan Elsinoe leucospila [135]
(1→3)(1→4)-α - - Neurospora crassa [136]
(1→3)(1→4)-α - Nigeran Few other Penicillium species [137]
(1→3)(1→4)-α - - Schizosaccharomyces pombe [124]
(1→3)(1→4)-α - Nigeran Armillaria mellea [123]
(1→3)(1→4)-α - - Coriolus versicolor [138]
(1→3)(1→4)-α - Pseudonigeran Cryptococcus neoformans [139]
(1→3)(1→4)-α - Pseudonigeran Laetiporus sulphureus [127]
(1→3)(1→4)-α - Pseudonigeran Lentinus edodes [128]
(1→3)(1→4)-α - Isolichenin Cetraria richardsonii [140]
(1→3)(1→4)-α - Isolichenin Cetraria islandica [140]
(1→3)(1→4)-α - Isolichenin Letharia vulpine [140]
(1→3)(1→4)-α - Everniin Evernia prunastri [141,142]

(1→3)(1→4)-α - Nigeran

Parmelia carperata
Parmelia cetrarioides

Ramalina species,
Cladonia species

[140]

(1→3)(1→4)-α - Isolichenin

Alectoria sarmentosa
Alectoria sulcate
Cetraria species
Usnea species

Parmelia species

[141,142]

(1→3)(1→6)-α (1→3)-α Alternan Leuconostoc mesenteroides
Streptococcus salivarius [131,132]

(1→3)(1→6)-α - - Termitomyces eurhizus [45]
(1→3)(1→4)(1→6)-

α
- Acroscyphan Acroscyphus

sphaerophoroides [141,142]

(1→6)-α - - Coriolus versicolor [138]
(1→6)-α - - Sarcodon aspratus [143]
(1→6)-α - - Termitomyces eurhizus [45]
(1→6)-α - Starch Banana [144]

(1→6)-α - Starch Dimocarpus longan Lour cv
Shixia [145]

(1→6)-α - Starch Pueraria lobata (willed) ohwi [146]
(1→6)-α - Starch Ipomea batatus [147]

(1→6)-α 1 - - Chlorella vulgaris [148]
(1→6)-α (1→3)-α - Lobelia chinensis [149]

(1→6)-α (1→2); (1→3);
(1→4)-α Dextran

Lactobacillus species
Leuconostoc dextranicum
Leuconostoc mesenteroides

Streptococcus mutans
Weissella species

[131,132]

(1→2)-α - - -
1 sulfated glucan.

Regioisomeric linear (1→6)-α-D-glucans (isomaltosides) were isolated from Amillar-
iella tabescens and Sarcodon aspratus [37–39]. A dextran [40] obtained from lactic acid bacteria,
such as Lactobacillus, Leuconostoc, Weissella, and Streptococcus, has a (1→6)-α-D-glucan back-
bone with up to 50% branching as α-(1→3), α-(1→4), or α-(1→2) linkages. Several glucosyl
transferase (Gtf) enzymes synthesize dextrans with [41,42] and without branching [43–48].
The complex branched structures make the dextrans effective energy storage molecules
that release D-glucose slowly via enzymatic hydrolysis [49–53].

Linear (1→3)-α-D-glucan (pseudonigan) was identified from Aspergillus niger [48] as
a storage polysaccharide [54]. To the best of our knowledge, a linear (1→2)-α-D-glucan
has not yet been identified. The (1→3)-α-D-glucans are major components of the cell
wall of filamentous fungi [55–57] and dimorphic yeasts [58–61] and are synthesized via
the primer for (1→3)-α-D-glucans by intracellular amylases. The structural analysis of
(1→3)-α-D-glucan was reported and it was mentioned that three crystalline forms I–III
of (1→3)-α-D-glucan were detected and interconverted via dehydration and hydration
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reactions [32,62]. Various biological functions of (1→3)-α-D-glucan were investigated such
as immunological activity via Toll-like receptor 4 (TLR4) [63–65], which has been shown in
the case of (1→4)-α-D-glucans as well as β-D-glucans [66].

More complex branching structures have been discovered in various linear glu-
cans [33,67,68]. From dextran, NRRL B1397, an α-D-Glc-(1→2)-α-D-Glc-(1→6)-D-Glc
structure [69–73] was identified and the D-Glc-(1→2)-branching moiety was found to be an
α-glucoside to tricholomal (1→4)-α-D-glucan [74].

The most common and linear example of a stereoisomeric β-D-glucans is cellulose,
composed of β-D-Glcp, which plays a fundamental role as a structural component of the cell
wall [75,76]. As physiologically active biological response modifiers (BRMs), the structure
of glucans and the biological activity relationship of β-D-glucans have been reported
to be adjuvants in bacterial, viral, or protozoan infections, and potent antitumor drugs,
depending on the molecular weight, degree of branching, conformation, and intermolecular
associations of glucans [76–81]. In the case of the synthesis of β-D-glucans, a common
methodology such as stereoselective β-D-glucopyranosylation via the effect of neighboring
group participation from the 2-O-acyl group can be effectively used [82–84].

2. 1,2-cis glycosylation

Stereoselective O-glycosylation is a key step in the assembly of biologically relevant
oligosaccharides. The target oligosaccharide contains 1,2-cis- or 1,2-trans-configurated
O-glycosidic linkages to the C-2–O bond of the non-reducing side residue of the
glycoside. The 1,2-cis linkages, such as α-glucopyranoside, α-galactopyranoside, β-
mannopyranoside, β-rhamnopyranoside, and other glycosides, are found in natural
glycans, including glycoconjugate such as glycoproteins, glycolipids, proteoglycans,
microbial polysaccharides, and glycosylated natural products. Controlling the stere-
oselectivity in the formation of 1,2-cis glycosides is extremely challenging in synthetic
chemistry, as in the case of α-gluco (2-equatorial)- and β-manno (2-axial)-type gly-
coside formations, although the method for the 1,2-trans isomers was developed by
using the effect of neighboring group participation from theC-2 acyl group as the first
choice of the chemist. Various methods using inter- [150–155] and intra- [156–158]
molecular procedures have been developed for the stereoselective synthesis of 1,2-
cis glycosides [153,159], depending on the acceptor molecules [160,161], and further
developments have been reported in recent years [162–165].

The 2-O-ether-protected glycosyl donors predominantly afford the axial glyco-
sides via stereoelectronic effects [166–173] (Figure 2). Using this methodology, 1,2-cis
gluco-type pyranosides were selectively obtained. However, the selectivity is not pre-
dictable, mainly because of the many controversial results reported from a variety of
examinations using many types of donors suitably optimized to the demand of their
targets. Based on basic observations, the solvent effect [174–180], the concentration
effect [181–185], and other factors [186–188], including a very recent approach using an
SN2-predicting, leaving group enhanced by a coordinating acceptor [189,190], were also
accepted as factors for the stereoselectivity of glycosylation. This review focuses on two
effective and stereoselective methods for glucan synthesis: the use of C2-o-tosylamide
(TsNH)-benzyl (TAB) ether for bimodal glycosylation [191–193] and ZnI2-mediated
1,2-cis glycosylation [194].
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2.1. Bimodal Glycosylation Approach
2.1.1. Bimodal Glycosylation Approach for 1,2-cis α-glucosylation

Because of the structural diversity of glucans, a unified strategy for the assembly of
pure glucans is yet to be developed. For the stereocontrolled synthesis of both α- and
β-glycosides, a general strategy that applies to the construction of all types of glucans by
exploiting a bimodal [195–199] glucosyl donor equipped with C2-o-TAB ether [200–204] by
the simple switching of the reaction conditions was developed in our laboratory [191,192]
(Scheme 1). The synthesis of the glycosyl trichloroacetimidate donor with C2-O-TAB
ether was carried out through a five-step transformation from the C2-OH of the thiogly-
coside derivative via C2-O-ether formation with o-azidobenzyl bromide [205,206] and
NaH, reduction in the azide moiety by triphenylphosphine, and tosylation of the resultant
amine. This was followed by the hydrolysis of the thioglycoside and subsequent treat-
ment with trichloroacetonitrile in the presence of 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU)
(Scheme 1a).

The selective formation of β-glucosides was achieved when the activation of trichloroace-
timidate was carried out by bis(trifluoromethanesulfonyl)imide (Tf2NH) [207–210] in pro-
pionitrile (EtCN) at low temperatures (−40 to −78 ◦C) (β-directing conditions). Using the
same glucosyl donor, an alternative activation by triflic acid (TfOH) in Et2O under diluted
conditions at room temperature predominantly provided α-glucosides as the major product
(α-directing conditions) (Scheme 1b). After glucosylation, the selective liberation of the 3-, 4-,
or 6-OH functionality in the presence of the TAB group at the C2 position and deprotection
of the TAB group to liberate the 2-hydroxy group allowed for further glycosylations. The
versatility of the bimodal glucosylation method was demonstrated by effectively assembling
fragments of natural and non-natural glucans [191].

When the PhSO2 group of an equatorially oriented TAB group at the 2-O-position
interacts with the glycosyl cation through neighboring group participation in the presence
of Tf2NH in EtCN, β-glycosides are predominantly formed (Scheme 1c). The stereodirecting
effects of the TAB group have been explained by the contribution of hydrogen bonding
between tosylamide and benzylic oxygen, forming a quasi-bicyclic form, such as the 2-
phthalimide (NPhth) group as a 1,2-trans directing group [211–213]. The activation of the
donor moiety to initiate the formation of the oxocarbenium ion results in subsequent NGP
by the sulfonamide oxygen to provide β-glycosides. Contrary to 1,2-trans-glycosylation, in
ether solvents, the disruption of the intramolecular hydrogen bonding may result in the
interaction with the incoming acceptor via intermolecular hydrogen bonding, controlling
the 1,2-cis attack to afford α-glucosides selectively. Reactions using the perbenzylglucosyl
trichloroacetimidate donor without the NHTs group in the presence of Tf2NH in EtCN
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provided the corresponding glycosides with diminished stereoselectivity (α/β = 11/ 89
compared with β-only for 6a), whereas the stereoselectivity was similar (α/β = 83/17) to
6a (84/16) in the presence of TfOH in Et2O [191]. These results also support the proposed
mechanism.
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2.1.2. Bimodal Glycosyl Donor Approach for Application to 1,2-cis α-galactosylation and
1,2-cis-β-mannosylation

The bimodal α- and β-glycosylations were simply applied to the stereoselective syn-
thesis of both α- and β-galactosides using a bimodal galactosyl donor with C2-O-TAB
ether by the simple switching of the α- and β-directing reaction conditions, respectively,
optimized for glucosylation [191]. The galactosyl donor has equatorial C2-O-TAB, which
should similarly induce α- and β-selectivity as the glucosyl donor (Scheme 2a).

As in the case of bimodal α- and β-glucosylation, it was found that the hydrogen bond
donating ability of the TsNH group of the 2-O-TAB group caused an interaction with the
incoming alcohol (ROH), thereby leading to 1,2-cis-selective glycosylation, as mentioned
before. Next, 2-O-TAB was used for 1,2-cis-selective mannosylation [214]. In addition,
by changing the reaction conditions that disrupt the intermolecular hydrogen bonding,
the selective formation of the 1,2-trans-α-glycoside is possible (Scheme 2b). Although the
construction of α-mannosyl linkages can be achieved by neighboring group participation or
through the exploitation of stereoelectronic effects, the β-linkage of mannoside is challeng-
ing to construct stereoselectively [215]. Well-established methodologies for β-mannoside
synthesis include direct glycosylation with 4,6-O-benzylidene protected donors [216–222]
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and indirect methodologies, including intramolecular aglycon delivery (IAD) [156,223–229],
intermolecular H-bond-mediated aglycone delivery [230], stereochemical inversion of β-
gluco or β-galacto glycosides [231–235], and anomeric O-alkylations [236].

An overstoichiometric amount of the Zn2+ salt (2 equiv.) is required for β-mannosylation
using a mannosyl donor with an imidate or phosphite as the leaving groups. Under these
conditions, oxygen atoms at the 2- and 3-position coordinate with Zn2+, cleaving the in-
tramolecular hydrogen bonding [237,238] (Scheme 2c). Afterward, the liberated NH group
will be able to interact with an incoming nucleophile in an intermolecular fashion, reversing
the stereocontrolling effect of the TAB group. The use of Cu(OTf)2 in toluene, especially at
elevated temperatures with the same phosphite donor, afforded the α-isomer predominantly.
The application of this bimodal mannosyl donor to the synthesis of all possible stereoisomers
of trisaccharide D-Man-(1→2)-D-Man-(1→6)-D-Glc [239–243] was achieved.
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2.2. ZnI2-mediated Stereoselective Glycosylation Approach
2.2.1. ZnI2-mediated 1,2-cis α-glucosylation

As shown in the case of bimodal α- and β-mannosylations using the 2-O-TAB group
that interacted with/without the acceptor (ROH), the effect of Zn2+ salt (2 equiv.) was
revealed for β-mannosylation, using the mannosyl donor with imidate or phosphite as the
leaving group. It has been observed that the Zn2+ cation not only activates the donor leav-
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ing group but also coordinates with oxygens at the 2- and 3- positions to induce the effective
interaction of TAB with an incoming nucleophile during 1,2-cis-β-mannosylation [214].
Combined with the enhancement of the fixed conformation of the pyranose ring by the
4,6-O-cyclic protection reported by Crich [244,245], a simple ZnI2-mediated procedure
involving activation and direction to control the stereoselectivity for glucosylation has
been developed as a novel general synthetic strategy for the construction of α-glucoside
as one of the most abundant 1,2-cis-glycosidic bonds in nature [194]. To the best of our
knowledge, the effective use of ZnI2 for 1,2-cis glycosylation using a simple trichloroacetim-
idate donor has not been reported until recently. Using various acceptors, ZnI2-mediated
α-glucosylation was demonstrated using 4,6-O-naphthylidene (NapCH<)-protected donors
(6a) to demonstrate its versatility and effectiveness (Figure 3, Scheme 3(a-1)). The modular
synthesis of various α-glucans with both linear and branched backbone structures using
this simple approach was successfully achieved, as described in Section 3.2.1.
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TS structure for 1,2-cis α-glucosylation; (c-1) stereoselective cis β-galactosylation and (c-2) TS structure
for 1,2-cis α-glucosylation. TS structures were proposed by DFT calculations. For Ar, P, and R, CH3-,
CH3-, and CH3CH2- were used for the calculation instead of Nap, Bn, and an acceptor molecule,
respectively.

In addition to the experimental investigations and theoretical calculations, the ZnI2-
mediated 1,2-cis glycosylation was analyzed (Scheme 3(a-2)) [194]. Theoretically, ZnI2
activates the anomeric leaving groups on the donor molecule as Lewis acids and enhances
glycosyl iodide formation. Subsequent activation of glycosyl iodide by another ZnI2 leads
to an intermediate that is also coordinated with the first ZnI2, which effectively coordinates
with both hydroxyl groups on the acceptor, forming a six-membered structure with a
trichloroacetimidate ion and the O-2 of the donor. Subsequent stereocontrolled nucleophilic
attacks from the same side to the O-2 of the donor afford a 1,2-cis linkage, which then
dissociates to the desired products.

2.2.2. ZnI2-mediated 1,2-cis β-mannosylation, and cis β-galactosylation

As we have successfully developed a ZnI2-directed general strategy for 1,2-cis α-
glucosylation using a 4,6-O-naphthylidene and 2-O-benzyl (Bn)-protected glucosyl donors
with excellent stereoselectivity [194], the ZnI2-mediated 1,2-cis glycosylation strategy
has been applied to other linkages, such as 1,2-cis β-mannosides [217] and 1,2-cis α-
galactosides [246]. In recent years, various methods have been developed [247–249] for
stereoselective glycosylation to obtain more difficult 1,2-cis linkages with equatorial gly-
cosides found in the core structure of the N-glycans [250–257]. The ZnI2-directed strategy
can be extended to the 4,6-O-tether and 2-O-benzyl-protected mannosyl trichloroacetimi-
date donors [217], promising an alternative β-mannosylation methodology via a similar
1,2-cis stereoselectivity to 1,2-cis α-glucosylation (Figure 3, Scheme 3(b-1)). ZnI2-promoted
mannosylation has also been used to synthesize the core structure of N-glycan effectively.
The ZnI2 coordination with both a hydroxyl group on the acceptor and the O-2 of the
donor after glycosyl iodide formation, followed by anomerization from the β- to α-isomer
and the subsequent activation of α-glycosyl iodide by the second ZnI2, afforded a 1,2-cis
β-mannosidic linkage [217] (Scheme 3(b-2)).

In contrast, glycosylation with 4,6-O-naphthylidene and 2-O-benzyl-protected galacto-
syl trichloroacetimidate donor (6aGal) under ZnI2 activation conditions resulted in 1,2-trans
β-galactosylation [246] (Figure 3, Scheme 3(c-1)). Based on the experimental and the-
oretical investigations, β-galactosylation should be promoted by the dual roles of the
proposed zinc cations as the activator and mediator of the structural restriction-enhanced
cis stereodirecting intermolecular interaction, unexpectedly from the 4- or 6-position of
the 4,6-O-naphthylidene-protected galactosyl donor, and not from the 2-position, as in the
1,2-cis cases of glucosylation and mannosylation (Scheme 3(c-2)).

3. Recent Progress on the Synthesis of α-glucans
3.1. Application of the Bimodal Glycosylation Approach for Stereoselective 1,2-cis α-glucosylation
toward the Synthesis of α-glucans
3.1.1. Bimodal Glycosylation Approach for the Synthesis of Linear α-glucans

The construction of (1→2/3/4/6)-α-linkages of glucosides is a challenge because
it is restricted by the 1,2-cis-stereocontrolled glycosylation methodologies and impacts
assembly strategies [258]. The glucosyl donor equipped with a TAB group at the C2
position was examined for further elongation at that position after the deprotection of
the TAB group of the glycosylation products to liberate the 2-hydroxy group [191]. The
conversion was performed in four steps: (1) Boc protection, (2) deprotection of the Ts group
via Mg treatment, (3) Boc deprotection, and (4) treatment with 2,3-dichloro-5,6-dicyano-1,4-
benzoquinone (DDQ). Both α- and β-glycosides were converted into 2-hydroxy α- and β-D-
Glc-(1→6)-α-D-Glc-OMe, respectively. (Scheme 4a,b). The resultant disaccharide acceptors
were treated with C2-o-TAB-protected bimodal glucosyl donor under α- and β-directing
conditions to afford four possible D-Glc-(1→2)-D-Glc-(1→6)-α-D-Glc-OMe derivatives
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(12), including α-D-Glc-(1→2)-α-D-Glc-(1→6)-α-D-Glc-OMe (α,α-12) [69–73]. This TAB
approach should be applicable in the particular case of (1→2)-branched (1→3/4/6)-α-D-
glycans or motifs.
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glycosylation methodology using TAB-protected donor. (a) Synthesis of α-D-Glc-(1→2)-α-D-Glc-
(1→6)-α-D-Glc-OMe and β-D-Glc-(1→2)-α-D-Glc-(1→6)-α-D-Glc-OMe from α-5f; (b) synthesis of α-
D-Glc-(1→2)-β-D-Glc-(1→6)-α-D-Glc-OMe and β-D-Glc-(1→2)-β-D-Glc-(1→6)-α-D-Glc-OMe from
β-5f.

Figure 1 glucan fragment, a 6-hydroxy α-D-Glc-(1→6)-α-D-Glc-OMe derivative was pre-
pared using 4,6-O-naphthylidene-3-O-triisopropylsilyl (TIPS)-2-O-(o-TAB)-D-glucopyranosyl
trichloroacetimidate (1f*) and methyl 2,3,4-tri-O-benzyl-D-glucopyranoside (4) as the donor
and acceptor, respectively (Scheme 5a) [193]. Several iterations of glycosylation under α-
directing conditions and subsequent reductive ring-opening reactions to regioselectively liber-
ate the 6-hydroxy group afforded methyl α-isomaltotetraoside [α-D-Glc-(1→6)]4-OMe (16).

The iterations of the glycosylation of allyl 4,6-O-benzylidene-2-O-(o-TAB)-D-glucopyra-
noside (19) with 4,6-O-naphthylidene-3-O-triisopropylsilyl-2-O-(o-TAB)-D-glucopyranosyl
trichloroacetimidate (1f*) under α-directing conditions and subsequent deprotection of the
TIPS group to liberate the 3-hydroxy group afforded the tetrasaccharide fragment (22) of
linear (1→3)-α-D-glucan named pseudonigeran from Aspergillus niger (Scheme 5b).
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Scheme 5. Synthesis of linear and branched α-glucan fragments using TAB-protected glucosyl
donors. (a) Synthesis of linear (1→6)-α-D-glucan fragments and α-(1→3)-branched (1→6)-α-D-
glucan fragment; (b) synthesis of linear (1→3)-α-D-glucan fragments; (c) synthesis of linear (1→4)-
α-D-glucan fragments; (d) synthesis of linear (1→4)-α-D-glucan pentasaccharide; (e) synthesis of
α-(1→6)-branched (1→4)-α-D-glucan hexasaccharide.

The iterations of glycosylation of methyl 2,3,6-tri-O-benzyl-D-glcopyranoside (23)
with 4,6-O-benzylidene-3-O-benzyl-2-O-(o-TAB)-D-glucopyranosyl trichloroacetimidate
(1f**) was performed under α-directing conditions. Furthermore, the subsequent regios-
elective reductive ring-opening reaction to liberate the 4-hydroxy group afforded the
pentasaccharide derivative (26) with the backbone structure of linear (1→4)-α-D-glucan
(Scheme 5c), which was also elongated with 4,6-O-naphthylidene-3-O-triisopropylsilyl-2-O-
(o-TAB)-D-glucopyranosyl trichloroacetimidate (1f*) under α-directing conditions to afford
a hexasaccharide derivative (Scheme 5d).
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3.1.2. Bimodal Glycosylation Approach for the Synthesis of Branched α-glucans

For the construction of a branched α-glucan fragment, the α-(1→3)-branch in the
linear (1→6)-α-D-glucan backbone, one of the components of dextran, was examined
via the initial introduction of the α-(1→3)-branch (Scheme 5a, branching). The disac-
charide obtained via the glycosylation of 4,6-O-naphthylidene-3-O-triisopropylsilyl-2-O-
(o-TAB)-D-glucopyranosyl trichloroacetimidate (1f*) with methyl 2,3,4-tri-O-benzyl-D-
glucopyranoside (4) under α-directing conditions, followed by the subsequent deprotec-
tion of the TIPS group, afforded the corresponding 3-OH disaccharyl acceptor (14). The
subsequent α-selective glucosylation of the resultant acceptor with 3,4,6-tri-O-benzyl-2-O-
(o-TAB)-D-glucopyranosyl trichloroacetimidate (1f) under α-directing conditions followed
by a reductive ring-opening reaction to liberate the 6-hydroxy group and successive glyco-
sylation under α-directing conditions afforded the tetrasaccharide fragment of a branched
α-(1→6)-linked (1→3)-α-D-glucan (18) after hydrogenolysis.

The introduction of an α-(1→6)-branch into the linear (1→4)-α-D-glucan backbone
was also examined via double α-glucosylation of the diol acceptor. After the synthesis of
tetrasaccharide fragment (26) of linear (1→4)-α-D-glucan, deprotection of the benzylidene
group by TFA in CH2Cl2 afforded the 4,6-diol (24) at the nonreducing D-glucose residue
(Scheme 5c). The α-glucosylation of the resultant diol acceptor with 3 equiv. of the 4,6-O-
benzylidene-3-O-benzyl-2-O-(o-TAB)-D-glucopyranosyl trichloroacetimidate donor (1f**)
under α-directing conditions afforded a fully protected branched hexasaccharide fragment
(30) in one pot (Scheme 5e, branching).

3.2. Application of ZnI2-mediated Stereoselective 1,2-cis α-glucosylation toward the Synthesis of
α-glucans
3.2.1. ZnI2-mediated Glycosylation Approach for the Synthesis of Linear α-glucans

An alternative method for the synthesis of linear (1→3)-α-D-glucan, which con-
stitutes the Pseudonigeran isolated from Aspergillus niger, has been shown using the
ZnI2-directed α-glucosylation methodology [194]. After the first ZnI2-directed (1→3)-
α-glucosylation between 6b and 31, the deprotection of the C-3-O-TIPS group of the
resultant α-linked disaccharide (32) with TBAF in tetrahydrofuran (THF) afforded the
corresponding disaccharide (33) with a C-3 hydroxy group (Scheme 6a). ZnI2-promoted
glucosylation of the disaccharide acceptor (33) with the glucosyl donor (6b) gave the α,α-
linked trisaccharide with high α-selectivity in a 71% yield. Repeating the deprotection and
glucosylation steps yields the α,α,α-linked tetrasaccharide (34) stereoselectively, which
was followed by the global deprotections via the desilylation and hydrogenolysis of 35 to
complete the total synthesis of nigerotetraoside (37), a fragment of linear (1→3)-α-D-glucan.
The desilylation of C-3-O-TIPS on tetrasaccharide (34) provided the acceptor (35), while
the treatment of 34 with PdCl2 in methanol, followed by a reaction with CCl3CN and
DBU, afforded the corresponding tetrasaccharyl trichloroacetimidate donor (36). Subse-
quent [4 + 4] coupling between the donor (36) and acceptor (35) with the ZnI2-promoted
methodology under optimized conditions accomplished the synthesis of the target α-D-
glucan nigerooctaoside (38) (Scheme 6b), suggesting the powerful synthetic applicability
of the ZnI2-promoted glucosylation to oligosaccharide donors and acceptors with multi-
ple repeating units (tetrasaccharides) in a fragment condensation strategy for assembling
higher-molecular-weight glucans.
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3.2.2. ZnI2-mediated Glycosylation Approach for the Synthesis of Branched α-glucans

The versatility of the ZnI2-promoted glucosylation method has been shown by synthe-
sizing branched α-glucan tetrasaccharides, such as (1→6)-α-branched (1→4)-α-D-glucan
and (1→3)-α-branched (1→6)-α-D-glucan [194] (Scheme 6c,d).

The synthesis of α-(1→6)-branched (1→4)-α-D-glucan (46) was initiated by the stere-
oselective ZnI2-mediated glucosylation of the 4-OH acceptor 23 with 2-O-benzyl-4,6-O-
benzylidene-3-O-2-naphthylmethyl (NAP)-D-glucopyranosyl donor (6a) for an α-(1→4)-
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linked disaccharide (39), followed by the liberation of C-6-OH using the selective reduction
protocol of 4,6-O-benzylidene acetal with BH3·THF and trimethylsilyl trifluoromethane-
sulfonate (TMSOTf). The second ZnI2-mediated α-(1→6)-glucosylation of the resultant
acceptor (40) with the donor (6a) provided the linear α-D-glucan trisaccharide fragment (41)
stereoselectively. The subsequent hydrolysis of 4,6-O-benzylidene acetal using TFA in DCM
afforded 4,6-diol (42), and a treatment of the resultant 4,6-diol of 42 with NaH and BnBr,
followed by the selective removal of the NAP ether of 43 with DDQ, afforded the C-4-
OH (44) at the residue in the middle of the same trisaccharide linkage (Scheme 6c). The
resultant acceptor (44) was then glycosylated with a donor (6a) for branching under the
ZnI2-mediated α-glucosylation conditions to provide the desired fully protected tetrasac-
charide (45), which was followed by hydrogenolysis to complete the total synthesis of the
branched α-glucan (46).

To introduce the (1→3)-branching to the (1→6)-α-D-glucan backbone, (1→6)-α-D-glucan
trisaccharide derivative (47) was obtained by the stereoselective ZnI2-mediated glucosylation
of the 6-OH acceptor (4) with donor (6a) followed by reductive ring-opening of naphthylidene
acetal under BH3·THF and TMSOTf conditions, and the second stereoselective ZnI2-mediated
glucosylation with the 3-O-TIPS-protected donor (6b). The liberation of the C-3-OH group
by deprotection of the TIPS group of 47 with TBAF/AcOH afforded the corresponding
48, and the third ZnI2-promoted α-glucosylation with the donor (6a) afforded the desired
(1→3)-α-(1→6)-α-D-glucan tetrasaccharide (18) after hydrogenolysis via 49 with exclusive
α-stereoselectivity (Scheme 6d). For the target branching structure, installing a functionality
on the donor or acceptor moiety for the chemoselective liberation of the hydroxy group at a
suitable position is required for the design of the synthesis, as shown here.

4. Conclusions

In this review, recent advances in stereoselective 1,2-cis glycosylation, focusing on α-
glucosylation by bimodal glycosylation using o-TsNHbenzyl ether and ZnI2-mediated α-
glucosylation, and their applications in the construction of various types of linear branched
glycans, are discussed. These enable a systematic investigation of the glucan structure-
biological activity relationships with a whole series of possible structural isomers that would
become simpler and more facile. In addition, recent approaches toward cyclic α-glucans
such as cyclodextrins with a small ring size (down to three glucose residues in the ring) used
conformationally counterbalanced donors between equatorial- and axial-rich forms. The
automated α-glucan synthesis of up to 20 glucose residues was reported by Yamada [259]
and by Seeberger [260], respectively. As Yu reported very recently [199], the synthesis and
structural analysis of α-glucans could be possible with MD calculations to allow a more reliable
estimation of the van der Waals volumes of α-glucans. Further structural investigations are
valuable and may enable various applications, such as biotechnology for medicine and
cosmetics, functional foods, drug delivery, and immunological responses.
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