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Abstract: Progesterone injection is oily because of its poor solubility. It is necessary to develop new
dosage forms or delivery methods for Progesterone. Six cocrystals of Progesterone with nitrogen
heterocyclic compounds (2,6-diaminopyridine, isonicotinamide, 4-aminopyridine, aminopyrazine,
picolinamide and pyrazinamide) have been designed and prepared by ethyl acetate-assisted grinding,
of which four cocrystals (2,6-diaminopyridine, isonicotinamide, 4-aminopyridine and aminopyrazine)
had single crystal data in 1:1 stoichiometry. Metadynamics-genetic crossing was used to search and
optimize various cluster structures to explain the reason the other two cocrystals could not be obtained
with suitable size for single crystal X-ray diffraction. In contrast to the carboxyl group, the amide
group and amino group were good substituents in the pyridine/pyrazine ring for cocrystallization
with Progesterone, which meant inductive effect played an important role in nitrogen heterocyclic
compounds containing reactive hydrogen. All cocrystals were more soluble than Progesterone in
water, and Progesterone–pyrazinamide cocystal featured the best water solubility performance with
an approximately six-fold increase over free Progesterone. This successful attempt provides an
effective route for designing and manufacturing novel solid states of Progesterone.

Keywords: progesterone; pharmaceutical cocrystals; nitrogen heterocyclic compounds; cocrystal
particles with suitable size; metadynamics-genetic crossing

1. Introduction

Progesterone (PRO, Table 1) is the main bioactive progestational hormone secreted by
the ovary [1]. PRO can not only induce the transition of the endometrium to the secretory
stage and increase endometrium receptance to facilitate the implantation of a fertilized egg
but also act on the uterus, providing a good internal environment for the maintenance of
pregnancy [2,3]. PRO injection is oily because of its poor solubility [4,5]. The advantages
of oily injection are the exact curative effect and low price, while the disadvantages are
injection site pain, stimulation and scleroma. Due to the first-pass effect of the liver, the
absolute bioavailability of oral PRO is only 6~8% [6,7]. It is necessary to develop new
dosage forms or delivery methods of PRO.

A pharmaceutical cocrystal is a binary or multi-component crystal system formed by
the combination of drug active ingredient (API) and cocrystal former (CCF) through hydro-
gen bonds or other weak interactions between molecules [8–10]. By selecting CCFs with
different properties, the physicochemical properties of API can be improved or designed at
the molecular level without changing its structure, which is very important to maintain
the biological activity of API in vivo [11–14]. PRO is a good substrate for cocrystallization
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because there are two carbonyl groups in the molecule that can act as hydrogen bond
acceptors, and the steroidal parent nucleus can produce conjugation effects [15–18].

Table 1. Brief introduction to Progesterone.

Parameters Data

Chemical name 4-Pregnene-3,20-dione
Chemical formula C21H30O22
Molecular weight 314.46 g·mol−1

CAS Registry No. 57-83-0

Chemical structure
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2. Results 
2.1. General Analysis 

The PXRD patterns of six cocrystals showed that the diffraction peaks had obvious 
differences in the position, number, strength, geometric topology and so on (Figure 2). 
SEM images showed that each cocrystal had unique crystal habits and morphological 
characteristics. PRO had block morphology, PRO-DMP and PRO-PA had smaller flake 
morphology, PRO-INA had bigger flake morphology, PRO-APZ, PRO-AP and PRO-PZA 
had irregular morphology (Figure S1). In FT-IR spectra (Figure S2), the asymmetric 
stretching vibrations at 3500–3100 cm−1 indicated the presence of the amino or amide 

With our consistent aim to further explore the solid-state forms of PRO, cocrystals
of PRO with 2,6-diaminopyridine (DMP), isonicotinamide (INA), 4-aminopyridine (AP),
aminopyrazine (APZ), picolinamide (PA) and pyrazinamide (PZA) were prepared and
evaluated in stability and water solubility (Figure 1). Four cocrystals (DMP, INA, AP, APZ)
had single crystal data in 1:1 stoichiometry. Meanwhile, two cocrystals (PA, PZA) had
no suitable size for single-crystal X-ray diffraction. The reasons were calculated by MTD-
GC (metadynamics-genetic crossing). The calculation results showed that the tetramers
(2PRO/2PA) were stable, and the structural fluctuations of the tetramers cluster in ethyl
acetate solvent were increased and led to a deficiency in order structure. In contrast to
the carboxyl group, the amide group and amino group were good substituents in the
pyridine/pyrazine ring. This meant that for the cocrystallization of nitrogen heterocyclic
compounds containing reactive hydrogen, the inductive effect played an important role.
The cocrystals have been characterized by nuclear magnetic resonance, infrared spec-
troscopy, thermogravimetric analysis, differential scanning calorimetry, scanning electron
microscopy, powder X-ray diffraction and single crystal X-ray diffraction (for PRO-DMP,
INA, AP, APZ). The stability and solubility have also been explored systematically.
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Figure 1. Chemical structures of the CCFs used in this study.

2. Results
2.1. General Analysis

The PXRD patterns of six cocrystals showed that the diffraction peaks had obvious
differences in the position, number, strength, geometric topology and so on (Figure 2).
SEM images showed that each cocrystal had unique crystal habits and morphological
characteristics. PRO had block morphology, PRO-DMP and PRO-PA had smaller flake mor-
phology, PRO-INA had bigger flake morphology, PRO-APZ, PRO-AP and PRO-PZA had
irregular morphology (Figure S1). In FT-IR spectra (Figure S2), the asymmetric stretching
vibrations at 3500–3100 cm−1 indicated the presence of the amino or amide groups in all
six cocrystals. The 1H-NMR spectra clearly showed the 1:1 stoichiometry of PRO to the
CCFs in all six cocrystal forms (Figure S3). The chemical shift of PRO in 1H-NMR was
between 0.67 and 5.63 ppm, and nitrogen heterocyclic compounds had a larger chemical
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shift between 5.63 and 9.18 ppm. A sharp endothermic peak at 132 ◦C was shown in the
TGA-DSC curve of PRO, corresponding to the melting point of PRO. Six cocrystals had
similar thermodynamic behaviors with weight loss (Figure S4). The melting points of PRO
and six cocrystals are shown in Table 2.
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Figure 2. Powder X-ray diffraction (PXRD) of PRO and 6 cocrystals.

Table 2. Melting points PRO and 6 cocrystals.

Compounds Melting Points (◦C)

PRO 132
PRO-DMP 110
PRO-INA 130
PRO-APZ 112
PRO-AP 122
PRO-PA 122
PRO-PZA 126

2.2. Single X-ray Diffraction Experiments

The crystallographic parameters of PRO-DMP/INA/AP/APZ are listed in Table 3.
The single X-ray diffraction pattern is shown in Figure 3. PRO-DMP/INA/AP/APZ
cocrystals were composed of PRO and CCF with a ratio of 1:1.

Table 3. Crystallographic parameters of PRO-DMP, INA, AP, APZ.

Compounds PRO-DMP PRO-INA PRO-AP PRO-APZ

CCDC no. 2,131,361 2,131,362 2,131,375 2,131,374
Empirical formula C26H37N3O2 C27H36N2O3 C26H36N2O2 C25H35N3O2
Formula weight 423.59 436.58 408.57 409.56
Temperature / K 116.10 (14) 116.40 (14) 113.10 (14) 113.35 (10)
Crystal system monoclinic orthorhombic orthorhombic triclinic
Space group P21 P212121 P212121 P1
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Table 3. Cont.

Compounds PRO-DMP PRO-INA PRO-AP PRO-APZ

a / Å 13.0819 (5) 7.8943 (5) 7.6234 (6) 10.4819 (10)
b / Å 18.6192 (6) 12.9909 (17) 12.2741 (8) 10.7971 (10)
c / Å 19.7511 (8) 46.685 (2) 24.4042 (16) 11.1480 (11)
α/◦ 90.00 90.00 90.00 113.753 (9)
β/◦ 107.375 (4) 90.00 90.00 99.185 (8)
γ/◦ 90.00 90.00 90.00 90.928 (8)
Volume / Å3 4591.3 (3) 4787.7 (7) 2283.5 (3) 1135.45 (19)
Z 8 8 4 2
ρcalc / mg mm−3 1.226 1.211 1.188 1.198
µ / mm−1 0.078 0.078 0.075 0.076
F (000) 1840 1888 888 444
Crystal size / mm3 0.40 × 0.35 × 0.33 0.40 × 0.40 × 0.31 0.22 × 0.21 × 0.21 0.45 × 0.43 × 0.42
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Figure 3. Structure of (a) PRO-DMP, (b) PRO-INA, (c) PRO-AP and (d) PRO-APZ.

2.3. Stability Analysis

Stability experiment was performed to investigate the physical stability and transfor-
mation of the sample under different storage environments and physiological conditions.
PRO and six cocrystals all showed excellent physical stability in high temperature, high
humidity, high light intensity condition and in water suspension conditions (Figure S5).

2.4. In Vitro Dissolution Tests

In preparing new alternative crystal forms of chemical entities, water solubility was
one of the most important physicochemical parameters. In addition, solubility was closely
related to the bioavailability of drugs in vivo. Since PRO has poor solubility in water
(0.41 mg·mL−1), the synthesis of cocrystals is attractive. PRO-DMP/INA/AP/APZ/PA
featured 1.22 mg·mL−1, 1.74 mg·mL−1, 1.81 mg·mL−1, 1.55 mg·mL−1 and 1.63 mg·mL−1,
respectively, being 3- to 4.5-fold equilibrium concentration in water when compared with
PRO used in the solubility experiments (Figure 4). In particular, for PRO-PZA, the equi-
librium concentration reached 2.65 mg·mL−1, which was approximately 6.5-fold as large
as the solubility of free PRO. This result suggested that PRO-PZA could be a suitable
candidate for novel PRO pharmaceutical formulations with improved solubility. Beyond
that, there was no significant difference in PXRD patterns between raw material and the
residual phases after the solubility experiments for PRO and all cocryatals (Figure S5).
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2.5. Nitrogen Heterocyclic Ring CCFs That Cannot Form Cocrystals with PRO

Under ethyl acetate-assisted grinding conditions, some nitrogen heterocyclic ring CCFs
could not form cocrystals with PRO, such as heterocyclic amino acid and purine/pyrimidine
(Table 4). There were probably two reasons. One was the hydrogen bound to the CCF
too tightly; the other was the CCFs themselves being prone to forming intramolecu-
lar/intermolecular hydrogen bonds. As a result, they failed to form cocrystals with PRO.

Table 4. Some nitrogen heterocyclic ring CCFs could not form cocrystals with PRO.

Category Specific Compounds

Heterocyclic amino acid L-histidine, L-proline, DL-tryptophan
Purine/pyrimidine adenine, cytosine, guanine, thymine, uracil

Heterocyclic compound 2-acetylthiazole, 2,3′-bipyridine, 4,4′-bipyridine, folic acid, 5-(2-hydroxyethyl)-4-methylthiazole,
imidazole, orotic acid, piperazine, pyrazine, pyridine, saccharin

2.6. Substituted Pyridine Derivatives

Pyridine could not form cocrystal with PRO. As shown in Tables 5 and 6, in contrast to
the carboxyl group, amide group and amino group were good substituents, which meant
the electron inductive effect showed a very strong effect in cocrystallization of PRO and
pyrazine derivatives. Single crystal data could be obtained when there was a p-NH2 or
p-CONH2 on pyridine ring. The cocrystal of o-CONH2 on pyridine ring (PA) with PRO
could be confirmed by PXRD, TG, DSC and 1H-NMR, while the single crystal could not be
obtained successfully.

Table 5. Cocrystallization between PRO and pyridine with one substituent.

Pyridine with One Substituent o m p

-COOH − − −
-CONH2 + (PA) − +

√
(INA)

-NH2 − − +
√

(AP)
+: positive cocrystallization; −: negative cocrystallization;

√
: single crystal.
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Table 6. Cocrystallization between PRO and pyridine with two substituents.

Pyridine with Two Substituents Position Reaction

-COOH 2.6 −
-NH2 2.6 +

√
(DMP)

+: positive cocrystallization; −: negative cocrystallization;
√

: single crystal.

2.7. Substituted Pyrazine Derivatives

Pyrazine could not form cocrystal with PRO. Similar to pyridine derivatives, the
cocrystallization could not proceed between PRO and piperazinecarboxylic acid. The
reaction could take place between PRO and piperazine with amide or amino-substituted
(Table 7). The results of PRO-PZA were similar to PRO-PA, cocrystallization took place,
but the single crystal was difficult to obtain. Cocrystallization of PRO and piperazine with
methyl-substituted was negative because there was no active hydrogen in the molecule.

Table 7. Cocrystallization between PRO and substituted pyrazine.

Substituted Pyrazine Reaction

-COOH −
-CONH2 + (PZA)
-NH2 +

√
(APZ)

-CH3 −
-CH3, -CH3, -CH3 −
-CH3, -CH3, -CH3, -CH3 −

+: positive cocrystallization; −: negative cocrystallization;
√

: single crystal.

3. Discussion

The crystal formation of PRO cocrystals included two processes: nucleation and
growth. In the nucleation stage, the clusters generated by weak interactions between API
and CCF generally retained the essential structural characteristics of cocrystals. The cocrys-
tal molecules were in an ordered arrangement with the assistance of electron-donating
groups to precipitate crystals with suitable sizes for single-crystal testing. However, the
electron-withdrawing group was unable to arrange the cocrystal molecules in order, or
the intermolecular force between cocrystal molecules was too weak to form appropriate
unit cells, resulting in the precipitation of thin/small/hardened cocrystal particles, which
were unsuitable for SXRD. The reason for not obtaining a single crystal was explained by
calculation. The initial structure was constructed according to the electrostatic potential and
synthetic subrules for cocrystal formation of PRO and PA. MTD-GC (metadynamics-genetic
crossing) was used to search and optimize various cluster structures, followed by sorting
their stability with the GFN0-xTB method [19]. The solvent effect of ethyl acetate was
calculated by the GBSA model. The above work was performed in the CREST [20] and xTB
software [21].

In general, dimers (1API/1CCF) were stable for the cocrystal, which could obtain
single-crystal data. The calculation results showed that the tetramers (2PRO/2PA) were
stable, with a stable hexagonal cyclic hydrogen bond formed between the amide groups of
two adjacent PA. Two molecules of PRO were stabilized with adjacent PA through the Van
der Waals force (Figure 5). The thin lines reflected the various cluster structure and the thick
lines were the most stable. Figure 6 shows the tetramer structure in ethyl acetate as the
solvent crystallized experimentally. The structural fluctuations of the cluster in ethyl acetate
solvent were increased and led to a deficiency in order structure, which might be one of the
reasons why the PRO-PA crystal was difficult to grow in ethyl acetate. Dissimilarly, the CIF
file of PRO-INA showed that one molecule of PRO was hydrogen-bonded to two molecules
of INA, and there was no interaction between adjacent PRO molecules (Figure 7).
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4. Materials and Methods
4.1. Materials

PRO (purity 99.4%) was obtained from Zhejiang Xianju Pharmaceutical Co., Ltd.
(Xianju, China, Lot number: Y011-200507). CCFs were purchased from Shanghai Bide
Pharmatech Co., Ltd. (Shanghai, China). All reagents and chemicals were commercially
available and used directly.

4.2. Preparation of the Cocrystals and Single Crystals

All PRO cocrystals were prepared by ethyl acetate-assisted grinding in a ball mill
(QM3SP2L, Nanjing Chishun Science & Technology Co., Ltd., Nanjing, China). The grinding
experiments were performed by the addition of an equimolar of PRO (943.4 mg, 3 mmol),
corresponding CCFs (3 mmol) and 0.1 mL ethyl acetate to a 250 mL agate grinding jar. The
mixture was then ground at a frequency of 28 Hz for 40 min [22].

An appropriate amount of the PRO cocrystals was dissolved in ethyl acetate. The
solvent was slowly volatilized, and the obtained crystals were analyzed by single-crystal
X-ray diffraction.

4.3. General Methods

Powder X-ray diffraction (PXRD) patterns were recorded with a BRUKER D8 advance
diffractometer system with CuKα1 radiation (λ = 1.5406 Å, 40 kV, 40 mA) over the interval
3–60◦/2θ. Thermo gravimetric analysis-differential scanning calorimetry (TG-DSC) was
conducted on TGA/DSC3+ equipment under a flow of nitrogen (20 mL/min) at a scan
rate of 10 ◦C/min from 40 to 400 ◦C. Fourier transform infrared spectroscopy (FT-IR) was
performed with a Bruker EQUINOX 55 FT-IR spectrometer (Billerica, MA, USA). A total of
64 scans were collected over a range of 4000–400 cm−1 with a resolution of 0.2 cm−1 for
each sample. A Jeol JSM-6100 scanning electron microscope (SEM, Akishima, Japan) was
used to obtain photomicrographs. Samples were mounted on a metal stub with adhesive
tape and coated under a vacuum with platinum. Nuclear magnetic resonance (1H-NMR)
was recorded using a Bruker 400 MHz instrument using DMSO-d6 as a solvent and TMS
as an internal standard. Single crystal X-ray diffraction (SXRD) data were collected by
Rigaku AFC-10/Saturn 724-CCD diffractometer (Tokyo, Japan) equipped with a graphite-
monochromatized MoKa radiation (0.71073 Å) up to a 2 h limit of 50.0◦ at room temperature
(25 ◦C).

4.4. Stability Study

For the stability study, the powder samples of 100–200 mg cocrystals in 5 mL uncapped
glass vials were placed in a stability chamber (Bluepard Yiheng, Shanghai, China) at
60 ± 2 ◦C, 90 ± 5% RH and light exposure of 4500 ± 500 lx for 10 days, respectively. Then,
the samples were analyzed by PXRD for 5 and 10 days.

4.5. In Vitro Dissolution Tests

The in vitro dissolution tests was carried out according to the guideline and procedure
specified in Chinese Pharmacopeia. The dissolution of the experiment was performed on
the dissolution apparatus (RC806D, Tiandatianfa, Tianjin, China) at 37 ◦C with the rotation
speed set at 100 rpm, and the samples were taken at 5, 15, 30, 60, 120, 240, 300 and 360 min.
The samples were filtered through 0.45 µm membrane filters and measured on HPLC (LC-
20A, Japanese Shimadzu Corporation, Kyoto, Japan) coupled with a diode array detector.
The wavelength was 254 nm, and the chromatographic column was Inertsil ODS-3 C18
(5 µm × 4.6 mm × 150 mm). The mobile phase was methanol/water (65:35, v:v). The flow
rate of the mobile phase was 1 mL/min, and the injection volume was 20 µL.

5. Conclusions and Outlook

In the present work, six PRO cocrystals were prepared and evaluated in stability and
solubility, of which four cocrystals had single crystal data. All cocrystals were prepared by
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grinding in a ball mill without solvent. They were more soluble than PRO. The exploration
of more CCFs is still underway.

Based on the cases studied in this paper, the empirical rules of PRO-CCFs were
summarized according to the electronic effects of the aromatic substituent. Such rules could
be used to rationalize the possibility of a combination of PRO with various CCFs, but there
was no guarantee of working in other cases. The specific CCF of formed or failed cocrystals
is a very complex process driven by many factors. At present, choosing CCFs relies largely
on experience. Meanwhile, several strategies and methods have been developed to aid in
predicting the possibility of CCF cocrystal formation.

Among these approaches, data-driven machine learning (ML) methods can provide
robust mathematical models to predict the CCFs selection, improved by good quality and
amount of data from statistical perspectives. In this work, a reliable cocrystal dataset for
PRO-CCFs was obtained by collecting successful and failed samples. The failed cases were
particularly useful, which was not readily available to be found in published papers.

Benefiting from our rich data and experimental practices, we are building ML-based
classifiers to predict PRO-CCFs cocrystal formation. Selected molecular descriptors can
be acted as “input” while a successful cocrystal or not as “output”. The former involves
molecular size, flexibility, Hansen solubility parameters, hydrogen bond tendency, etc. The
predicted models will be trained by random forest (RF), support vector machine (SVM)
and artificial neural network (ANN) algorithms. We expect such models to become useful
tools for the design of cocrystal.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/molecules28104242/s1, Figure S1: Scanning electron microscope (SEM)
of PRO and 6 cocrystals (10µm); Figure S2: Fourier transform infrared spectroscopy (FT-IR) of PRO
and 6 cocrystals; Figure S3: 1H nuclear magnetic resonance spectra (1H-NMR) of PRO and 6 cocrystals;
Figure S4: Thermal analysis of PRO and 6 cocrystals; Figure S5: The stability experiment of PRO and
6 cocrystals under different conditions.
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