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Abstract: Colorectal cancer (CRC) is the second most common cause of death worldwide, affecting
approximately 1.9 million individuals in 2020. Therapeutics of the disease are not yet available and
discovering a novel anticancer drug candidate against the disease is an urgent need. Thymidylate
synthase (TS) is an important enzyme and prime precursor for DNA biosynthesis that catalyzes the
methylation of deoxyuridine monophosphate (dUMP) to deoxythymidine monophosphate (dTMP)
that has emerged as a novel drug target against the disease. Elevated expression of TS in proliferating
cells promotes oncogenesis as well as CRC. Therefore, this study aimed to identify potential natural
anticancer agents that can inhibit the activity of the TS protein, subsequently blocking the progression
of colorectal cancer. Initially, molecular docking was implied on 63 natural compounds identified
from Catharanthus roseus and Avicennia marina to evaluate their binding affinity to the desired protein.
Subsequently, molecular dynamics (MD) simulation, ADME (Absorption, Distribution, Metabolism,
and Excretion), toxicity, and quantum chemical-based DFT (density-functional theory) approaches
were applied to evaluate the efficacy of the selected compounds. Molecular docking analysis initially
identified four compounds (PubChem CID: 5281349, CID: 102004710, CID: 11969465, CID: 198912) that
have better binding affinity to the target protein. The ADME and toxicity properties indicated good
pharmacokinetics (PK) and toxicity ability of the selected compounds. Additionally, the quantum
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chemical calculation of the selected molecules found low chemical reactivity indicating the bioactivity
of the drug candidate. The global descriptor and HOMO-LUMO energy gap values indicated a
satisfactory and remarkable profile of the selected molecules. Furthermore, MD simulations of the
compounds identified better binding stability of the compounds to the desired protein. To sum up,
the phytoconstituents from two plants showed better anticancer activity against TS protein that can
be further developed as an anti-CRC drug.

Keywords: thymidylate synthase; colorectal cancer; molecular docking; ADME; DFT; molecular
dynamics simulation; HOMO-LUMO; drug design

1. Introduction

Colorectal cancer (CRC) is the second deadliest malignancy that has induces an
estimated 1.9 million cases and 0.9 million deaths worldwide in 2020. [1]. The developed
world accounts for over 63% of all cases related to CRC. However, the rates of CRC have
been reported close to 20% in developing countries [2]. Survival of the disease is highly
dependent upon the stage of disease diagnosis. It has been revealed that CRC might
have a 90% survival rate if diagnosed early stage of the disease, while the rate seldomly
touches 10% during stage four [3]. To date, no specific drug treatments of the disease are
available. The advancements made in understanding the pathophysiology of the disease
have led to increased treatment options including surgery, chemotherapy, and adjuvant
radiotherapy to cure the disease [4]. However, the most significant drawback of the
treatment is chemotherapeutical resistance. For instance, 5-fluorouracil (5-FU) which
is a potent inhibitor of TS enzyme manifests 50% resistance in CRC patients. Although
5-FU-based therapy has been used since the 1950s, the compounds developed resistance
against the disease due to overexpression of RAC3 (receptor-associated-activator 3) [5].
The prevalence of CRC has been dramatically growing at an alarming rate globally
in recent years [6]. Therefore, the identification of novel therapeutic candidates is an
urgent matter.

TS provides the sole de novo source of thymidylate for DNA synthesis that helps cell
proliferation [7]. During the one-carbon folate metabolic pathway, TS utilizes the dUMP as
a de novo source to synthesize the dTMP [8]. The pathway driving TS also catalyzes the
transfer of the methyl group as one carbon moiety to dTMP. Additionally, thymidine kinase
initiates dTTP (Deoxythymidine triphosphate) formation which is an essential integrated
nucleotide in DNA molecules [9]. The enzyme acts as a bottleneck enzyme to induce DNA
replication [10], and patients with lower TS expression have a better survival rate in case
of CRC-related disease [11]. Hence, inhibition of the enzymes can be utilized as a better
treatment option against the disease.

Natural products originate as secondary metabolites from different sources includ-
ing bacteria, fungi, and plants. They are chemically diverse molecules that act as a
remarkable class of therapeutics to heal various diseases including cancers [9]. The
plant products that possess therapeutic properties or exert a beneficial pharmacological
effect on the human or animal body are termed medicinal plants [12]. C. roseus (drug-
Vinblastine) is a type of medicinal plant in which phytoconstituents showed effective
activity against different cancers and microbial diseases [13]. However, the effectiveness
of the plant and derived compounds against CRC is remains unknown [14]. Other medic-
inal plants, namely A. marina, have also shown potential anticancer activity as well as
effectiveness against other viral diseases [15]. The mangrove species, which originated
in South Africa and the coastal area of the Persian Gulf [16], has been reported as a folk
medicine for skin diseases, rheumatism, and ulcers. A previous study also revealed that
A. marina-derived flavonoid and phenol contents exhibit significant anticancer activity
in hepatocellular carcinoma and breast cancer [17]. Similarly, C. roseus (Apocynaceae
family) [18], has been reported to have medicinal properties against diabetes, cancer,
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hypertension, fever, hemostasis, etc. In addition, more than 100 monoterpenoid indole
alkaloids have been identified to have derivatives, vinblastine and vincristine, that have
shown anticancer effects [19]. Hence, our study focused on the chemical profiles of these
two species to analyze the inhibitory potentiality against the desired protein as well as
CRC-related disease.

In silico drug designing has been popularized beyond the approach of the conven-
tional drug discovery process [20]. Natural compound extraction and characterization
for anticancer drug development usually encompass some unavoidable barriers and are
time-consuming [21]. In contrast, computer-aided drug design (CADD) overcomes this
limitation and makes the process easy to screen, identify, and characterize new drug
candidates within a short time [22]. For example, the CADD-mediated drug develop-
ment against lung and prostate cancer has been previously reported [23]. CADD study
includes molecular docking and molecular dynamics (MD) simulation approaches that
identifies effective treatments of different diseases [24]. Molecular docking analysis
helps to initially screen drug candidates to the desired target with the favorable bind-
ing ability to draggable ligands [25]. Similarly, MD simulations help us understand
the stability of protein-ligand interactions in an artificial environment similar to the
human body [26]. Therefore, this study utilized computational drug design approaches
to sort out the potential drug candidates from the selected plants as a treatment option
against CRC.

2. Results
2.1. Phytochemical Retrieval and Preparation

The Indian Medicinal Plants, Phytochemistry, And Therapeutics (IMPPAT) compound
library was used to find the available compounds of the preferred plant [3], and the
PubChem database was used to retrieve the phytochemicals compounds. A total of 63 com-
pounds were identified from C. roseus (46) and A. marina (17) through the abovementioned
databases listed in Table S1. The phytochemicals of the two plants have been searched
in PubChem through the smile identity and saved in a 2D (SDF) file format. The com-
pounds were prepared and optimized, then converted into pdbqt file format and saved for
further examination.

2.2. Active Site Identification and Receptor Grid Generation

An active site (AS) is a position of an enzyme or protein that allows macromolecules
to bind with a specific molecular substrate. The AS of a protein is formed by different
amino acid (AA) residues known as the binding site of the protein. The binding sites of the
protein help make a temporary bond with the substrate. The binding site of a protein or
nucleic acid can recognize a ligand and make a good binding interaction with the protein,
enabling a chemical substrate to undergo a catalyzed reaction as well as helping to stabilize
the reaction intermediates. Therefore, the study initially identified the active site position
as well as the residues of the binding site for further experiments.

Analysis of the TS protein identified four AS (AS1, AS2, AS3, AS4) pockets with
different binding site residues shown in Figure 1. A total of 27 AS residues corresponding
to the four active site pockets was found in this study. The first active site AS1 pocket
of the protein was formed with the help of 11 AA residues including PHE80, GLU87,
ILE108, TRP109, ASP218, LEU221, GLY222, PHE225, TYR258, MET311, and ALA312. The
AS2 pocket that was represented in ball shape in green was also composed of 11 AA
residues (ARG50, LEU192, CYS195, HIS196, GLN214, ARG215, SER216, ASP218, ASN226,
HIS2156, TYR258) as binding sites of the TS enzyme. The AS3 in blue displayed binding site
residue of the TS enzyme with only two residues (ARG175, ARG176), where five residues
(ARG163, VAL164, THR167, ARG176, ILE178) formed at the AS4 represented in ball shape
with yellow.
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The receptor grid generation is required to specify the active site of the target protein
and identify favorable molecules binding to the catalytic sites. Without the receptor
grid generation PyRx, it is not able to conduct ligand-based molecular docking with the
targeted protein. At the very beginning of the protein preparation process, receptor grid
generation requires a ‘prepared’ protein with sufficient bond orders and formal charges
that were performed in this study. Grid box generation provides increasingly accurate
scoring of ligand poses. Therefore, a receptor grid to the target enzyme was generated
based on the previously obtained binding site residues of the protein to achieve more
precise scoring of our ligand poses. The grid box with the dimensions X = 57.0465,
Y = 45.5471, and Z = 55.7095 in angstrom (Å) was discovered and used for molecular
docking simulation.

Figure 1. Active site and correspondence binding site of thymidylate synthase. Ball shape with red,
green, blue, and yellow representing AS1, AS2, AS3, and AS4, respectively, with their binding site
position of the thymidylate synthase.

2.3. Molecular Docking Analysis

Molecular docking is a simulation method for determining how a macromolecule
and a drug-like small molecular candidate interact with each other. Primarily, molec-
ular docking analysis was conducted to determine the best intermolecular interaction
between the target protein and phytochemical compounds by filtering out those that do
not fit into the binding site of the receptor. PyRx tool AutoDock Vina wizard was used
to perform the molecular docking of the 63 phytochemical compounds and the protein
of interest. The binding affinities found after molecular docking of the phytochemicals
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compound varied from −8.8 to −3.5 kcal/mole as displayed in Figure 2 and listed in
Supplementary Table S1.

Figure 2. Frequency distribution of 63 phytochemicals over the range of docking score.

Based on the binding affinity and toxicity, the top five percentage (%) of 63 phytochem-
ical (total 4) compounds were selected, which had a better binding affinity compared to the
control compound, nolatrexed. In our study, nolatrexed, which showed a binding affinity
of −7.7 kcal/mol, was used as a control ligand [27]. Table 1 shows the top four compounds
with the highest binding affinity, as well as the binding affinity of nolatrexed.

2.4. PK Properties

Pharmacokinetics (PK) is derived from the Greek words pharmakon (drug) and kinetikos
(movement). It is a branch of pharmacology that focuses mainly on the dynamic move-
ments of a small molecular candidate into the body and observes the ADME (absorption,
distribution, metabolism, and excretion) properties of a drug-like compound [28]. PK is a
type of xenobiotic control process that is required during preclinical studies and the drug
development process. It employs a variety of mathematical calculations to provide a model
to observe the ADME properties of foreign chemicals (xenobiotics) in the body over time.
Analysis of PK properties helps to consider and anticipate biological effective drug-like
candidates. The drug-like properties of the four selected compounds were analyzed ac-
cording to the ‘Lipinski rule of Five’ to develop a lead compound for anticancer activity.
The Swiss ADME server was used to analyze the PK properties of the selected compounds,
and the ADME properties such as lipophilicity, plasma protein binding, water solubility,
and drug-likeness of the compounds were evaluated and listed in Tables 2 and S2. The PK
properties of all the selected compounds were found to be efficient in this study.
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Table 1. List of compound identity, chemical name, and two-dimensional (2D) structure of selected
best four ligands and nolatrexed (control).

No Compound ID Chemical Formula 2D Structure Score
(Kcal/mol)

1 CID:102004710 18-Beta-hydroxy-3-epi-alpha-yohimbine −8.8

2 CID:198912 1-(3-Methylphenyl)-2,3,4,9-tetrahydro-1H-β-carboline −8.7

3 CID:11969465 Marinobufagenin −8.7

4 CID:5281349 Apparicine −8.6

5 PubChem
CID:135400184 Nolatrexed −7.4

Table 2. List of pharmacokinetics properties includes physicochemical properties, lipophilicity,
plasma protein binding, water-solubility, drug-likeness, and medicinal chemistry of the four selected
compounds: medi. chemistry = medicinal chemistry; TPSA = topological polar surface area.

Properties CID:102004710 CID:198912 CID:11969465 CID:5281349

Physicochemical properties

MW (g/mol) < 500 370.44 262.35 400.51 264.36

Heavy atoms 27 20 29 20

Arom. heavy atoms 9 15 26 9

Rotatable bonds 2 1 1 0

H-bond acceptors < 10 5 1 5 1

H-bond donors < 5 3 2 2 1

TPSA ≤ 140 (A2) 85.79 27.82 83.2 19.03

Lipophilicity Log Po/w ≤ 5 1.71 3.40 3.14 3.30

Plasma protein binding 100% 100% 100% 100% 100%

Water solubility Log S (ESOL) −3.49 −4.19 −3.99 −3.54

Pharmacokinetics GI absorption High High High High

Drug-likeness Lipinski Yes Yes Yes Yes

Medi. Chemistry Synth. accessibility Easy Easy Easy Easy
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2.5. Toxicity Prediction

Toxicity prediction is an essential step in the modern drug development process that
aids in determining the negative effects of a compound on humans, livestock, plants,
and the environment. In silico toxicology is a form of toxicity evaluation that employs
numerical methods to study, model, visualize, and forecast chemical toxicity [29]. Tra-
ditional drug development methods rely on a variety of animal experiments to assess a
compound’s toxicity, which is time-consuming, expensive, and needs ethical considera-
tions [30]. Computer-aided toxicity testing compared to traditional approaches provides a
fast and inexpensive method to screen highly toxic chemical compounds that reduces the
number of biological experimental tests. Therefore, in a silico toxicity test was conducted
using the admetSAR 2.0, proTox-II, and pkCSM web server to determine the negative
effects of the four compounds listed in Table 3.

Table 3. Drug-induced AMES toxicity, hERG (I) inhibition, carcinogens, rat acute toxicity (LD50 in
mol/kg), tetrahymena pyriformis (TP) toxicity, and skin sensitization activity of the four selected
compounds. (NC indicates non-carcinogenic).

Parameters
Compounds

CID: 102004710 CID: 198912 CID: 11969465 CID: 5281349

Ames toxicity No Yes No Yes
hERG I inhibition No No No No

Carcinogens NC NC NC NC
Rat acute toxicity 2.853 2.82 2.665 2.973

TP toxicity 0.316 0.433 0.352 0.888
HB toxicity No Yes Yes No
Fish toxicity No No Yes Yes

Skin sensitization No No No Yes

2.6. Interpretations of Protein–Ligands Interaction

The interaction between the selected ligands with the desired protein was observed
using the BIOVIA Discovery Studio Visualizer tool. Three Pi-Sigma bonds were found
at the positions of ILE108 (3.69 Å), ILE108 (3.65 Å), and LEU221 (3.84 Å), as well as two
Pi-Pi T-Shaped bonds at the positions of PHE225 (4.98 Å) and PHE225 (5.29 Å) for the
compound CID: 102004710. One conventional hydrogen bond and one carbon-hydrogen
bond at PHE80 (2.86 Å) and ILE307 (3.39 Å) position, respectively, were also found to form
the compound CID: 102004710 shown in Figure 3 and listed in Table 2.

For the compound CID: 198912, several Pi-Alkyl bonds were formed with the desired
TS enzyme. Five Pi-Alkyl bonds were formed at the positions of PHE225 (4.20 Å), LEU221
(5.15 Å), VAL79 (4.91 Å), ILE108 (5.00 Å), and LEU221 (5.23 Å). One Alkyl bond at ILE108
(4.38 Å) and two Pi-Donor hydrogen bonds were noted at the positions of LYS77 (4.17 Å)
and PHE80 (4.04 Å). In addition, at the position of LYS77 another Pi-Cation bond was
found, and one conventional hydrogen bond was found at the position LEU221 (2.77 Å) as
shown in Figure 4 and Table 2.

The interaction study of the compound CID: 11969465 found one conventional hydro-
gen bond at the position of ILE108 (2.35 Å) and one Pi-Sigma bond at the PHE225 (3.56 Å)
residual position. It also formed one Pi-Pi Stacked and one Amide-Pi Stacked bond at the
positions of PHE80 (5.48 Å) and VAL79 (5.71 Å), respectively, where an Alkyl bond formed
at ILE108 (5.28 Å) and a Pi-Alkyl interaction formed at PHE225 (4.93 Å) position depicted
in Figure 5 and Table 4.
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Figure 3. Interaction between the compound CID: 102004710 and thymidylate synthase. The left side
represents 3D and the right side represents 2D complex interaction.

Figure 4. Interaction between the compound CID: 198912 and thymidylate synthase. The left side
represents 3D, and the right side represents 2D complex interaction.

In the case of compound CID: 5281349, the Pi-Donor hydrogen bond was observed
only at the ASN226 (4.09 Å) position, where one Pi-Sulfur also has found with CYS195
(4.93 Å). At the position of TRP109, two Pi-Pi T-Shaped bonds were observed with different
distances at 5.32 Å and 4.76 Å. It also formed two Alkyl bonds with ILE108 and LEU221,
where the distance for the Alkyl bond was 4.73 Å and 5.12 Å, respectively, shown in Figure 6
and Table 4.
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Figure 5. Interaction between the compound CID: 11969465 and thymidylate synthase. The left side
represents 3D and the right side represents 2D complex interaction.

Figure 6. Interaction between the compound CID: 5281349 and thymidylate synthase. The left side
represents 3D, and the right side represents 2D complex interaction.

Table 4. List of binding interactions between four selected phytochemicals with thymidylate synthase.

ID Residues Distance (Å) Bond Category Bond Type

CID:102004710

PHE80 2.86 Hydrogen Bond Conventional Hydrogen Bond

ILE307 3.39 Hydrogen Bond Carbon Hydrogen Bond

ILE108 3.69 Hydrophobic Pi-Sigma

ILE108 3.65 Hydrophobic Pi-Sigma

LEU221 3.84 Hydrophobic Pi-Sigma

PHE225 4.98 Hydrophobic Pi-Pi T-shaped

PHE225 5.29 Hydrophobic Pi-Pi T-shaped
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Table 4. Cont.

ID Residues Distance (Å) Bond Category Bond Type

CID:198912

LEU221 2.77 Hydrogen Bond Conventional Hydrogen Bond

LYS77 4.17 Hydrogen Bond Pi-Cation

PHE80 4.04 Hydrogen Bond Pi-Donor Hydrogen Bond

ILE108 4.38 Hydrophobic Alkyl

PHE225 4.20 Hydrophobic Pi-Alkyl

LEU221 5.15 Hydrophobic Pi-Alkyl

VAL79 4.91 Hydrophobic Pi-Alkyl

ILE108 5.00 Hydrophobic Pi-Alkyl

LEU221 5.23 Hydrophobic Pi-Alkyl

CID:11969465

ILE108 2.35 Hydrogen Bond Conventional Hydrogen Bond

PHE225 3.56 Hydrophobic Pi-Sigma

PHE80 5.48 Hydrophobic Pi-Pi Stacked

VAL79, PHE80 5.71 Hydrophobic Amide-Pi Stacked

ILE108 5.28 Hydrophobic Alkyl

PHE225 4.94 Hydrophobic Pi-Alkyl

CID:5281349

ASN226 4.09 Hydrogen Bond Pi-Donor Hydrogen Bond

CYS195 4.93 Other Pi-Sulfur

TRP109 5.32 Hydrophobic Pi-Pi T-shaped

TRP109 4.76 Hydrophobic Pi-Pi T-shaped

ILE108 4.73 Hydrophobic Alkyl

LEU221 5.18 Hydrophobic Alkyl

2.7. Geometry Optimization and Theoretical Quantum Chemical Calculation

Geometry optimization is a quantum chemical technique used by most chemists to
find stable compounds. The methods take rough geometric approximations of a chemical
structure and make them as exact as possible. Energy minimization is essential to deter-
mining the proper molecular arrangement in space since the retrieved chemical structures
are not always energetically favorable. The optimized structure with the lowest energy is
the most stable because molecules with the lowest energy state spontaneously decrease
their emitted energy. Therefore, the selected compounds were optimized using DFT with
Becke’s three-parameter exchange function (B3) with a mixture of HF with DFT exchange
terms associated with the gradient corrected correlation function of Lee, Yang, and Parr
(LYP) and 6-311G(d, p) basis set [31]. The energy of the selected optimized compounds
CID: 102004710, CID: 198912, CID: 11969465, and CID: 5281349 was 1225.948320 a.u,
−806.070280 a.u, −1309.527491 a.u, and −807.213195 a.u, respectively, represented in
Figure 7 and listed in Table 5. Additionally, the bond angles, bond lengths (bohr,
angstroms), and torsional angles optimized during the process are provided in the
Supplementary Materials text file format (renamed as Geometry). The dipole moment
(µ) measured in Debye, is the electronic parameter resulting from the uneven distribution
of charges on different atoms in a molecule. An increase in dipole moment also increases
the deformability energy, which will help make the adsorption of the inhibitor easier
on the metal surface. Therefore, the dipole moment of the compounds CID: 102004710,
CID: 198912, CID: 11969465, and CID: 5281349 was also calculated, which were 3.878234,
2.516531, 9.732138, and 2.127067 Debye (Table 5), respectively, indicating the selected
compound should be easier to adsorb on the surface of the metal.
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Figure 7. Optimized compounds of (a) PubChem CID: 102004710; (b) PubChem CID: 198912; (c) Pub-
Chem CID: 11969465; (d) PubChem CID: 5281349, calculated by the B3LYP/6-31G (d, p) density
functional theory.

Table 5. Molecular structure energies and dipole moments of optimized molecules obtained through
DFT calculations.

PubChem CID Energy (a.u) Dipole Moment (Debye)

102004710 −1225.94832 3.878234
198912 −806.07028 2.516531

11969465 −1309.527491 9.732138
5281349 −807.213195 2.127067

2.8. Frontier Molecular Orbital HOMO/LUMO Calculation

In the field of organic chemistry, frontier molecular orbital (FMO) theory is widely
used to illustrate the reactivity and electronic properties of molecules in the transition
state to HOMO/LUMO interaction. HOMO stands for highest occupied molecular orbital
and determines the capacity of electron-donating to nearest orbitals, whereas the lowest
unoccupied molecular orbital (LUMO) indicates the ability of atoms to accept an electron.
As a high HOMO-LUMO orbital gap indicates lower chemical reactivity and high kinetic
stability, hence we evaluated the HOMO LUMO gap of the selected compounds. The
HOMO, LUMO, and HOMO-LUMO, gap energy was calculated by using Gaussian 09 tools
and is represented in Figure 8.
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Figure 8. Energy differences and HOMO-LUMO bandgap: (a) CID: 102004710; (b) CID: 198912;
(c) CID: 11969465; (d) CID: 5281349 obtained by the DFT/B3LYP/6-31G level of theory.
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B3LYP/6-31G (d, p) density functional theory was also used in this study to examine
the electronic properties of the donor-bridge-acceptor molecular system and determine the
quantum chemical properties, including ionization potential (IP), electronic affinity (EA),
global hardness (η), global softness (S), chemical potential (µ), electronegativity (χ), and
the electrophilicity index (ω) of the four optimized selected molecular structures (Table 6).
With the help of the theoretical methods, the ionization potentials (IPs) that help determine
the amount of energy required to remove an electron from an isolated atom or molecules
such as CID:102004710, CID: 198912, CID: 11969465, and CID: 5281349 were calculated as
5.296 eV, 5.126 eV, 6.202 eV, and 5.095 eV, respectively (Table 6).

The global hardness and softness and the associated hard/soft acid/base (HSAB)
principle were used in this study to observe the reactivity patterns of the molecules and are
listed in Table 6. Additionally, the electrophilicity index (ω) was calculated to determine the
energy required for the system to get saturated and was a range from 1.4 to 3.04 (Table 6),
indicating all the selected compounds have high attractive electron power.

Table 6. Estimated ionization potential (IP), electronic affinity (EA), global hardness (η), global
softness (S), chemical potential (µ), electronegativity (χ), and the electrophilicity index (ω) energy of
the four optimized selected molecular structures.

PubChem CID IP (eV) EA (eV) η S µ χ ω

102004710 5.296 0.868 2.214 0.452 −3.082 3.082 2.145
198912 5.126 0.157 2.485 0.402 −2.642 2.642 1.404

11969465 6.202 1.659 2.272 0.44 −3.931 3.931 3.401
5281349 5.095 0.796 2.149 0.465 −2.946 2.946 2.019

2.9. MD Simulations Analysis

MD simulations help determine the stability of protein-ligand complexes in a real-life-
like artificial environment. Therefore, to investigate the stability of the phytoconstituents in
a complex with the desired protein, a 50 ns MD simulation was performed. To demonstrate
the stability of the chosen protein–ligands complex, simulations were run with the complex
docking structure and compared with the reference antagonist that binds with TS. The
RMSD (root-mean-square deviation), RMSF (root-mean-square-fluctuation), intramolecular
hydrogen bonds (Intra HB), and protein-ligand contact analysis (P–L contact) were used to
characterize the MD simulation findings.

2.9.1. RMSD Analysis

The RMSD helps characterize and determine the local conformational change of a
protein in a complex with the molecules. The RMSD of complex structures is completely
acceptable when the average change of the structure remains between 0.1–0.3 nm from a
specific time frame to a given time frame. However, a range order that crosses the limit
indicates that a large conformational change occurred within the protein structure. The
equilibration of the given system relies on the order of the fluctuation rate. An RMSD of
the complex system can be calculated by using the Equation (1).

2.9.2. RMSD of Protein

The RMSD of the compounds in complex with TS enzymes was calculated from
Cα atoms. An average fluctuation of RMSD in a range between 0.1 nm and 0.3 nm
within the reference protein should be considered as stable. However, a much larger
fluctuation implies major conformational changes and indicates the system is not stable.
The compounds CID: 198912 (gray), CID: 102004710 (yellow), and apo-protein (green)
showed stability during the MD simulation with an acceptable RMSD value of less than
0.3 nm (Figure 9). On the other hand, the compound CID: 11969465 showed peak variation
from 0.6 nm to 1nm (between 35 ns and 50 ns), indicating that this compound has some
rearrangement in the active site compared to the docked conformation.
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Figure 9. Line graph showing RMSD values of the complex structure extracted from Cα atoms, viz:
PubChem CID: 5281349 (dark red); PubChem CID: 198912 (gray); PubChem CID: 135400184 (blue);
PubChem CID: 1196465 (orange); PubChem CID: 102004710 (yellow), and 1HVY protein backbone
(green) to 50 ns simulation time.

2.9.3. RMSD of Ligand

The RMSD of the ligand was calculated from the lig-fit-protein atoms of the complex
structure. Analysis of our four compounds RMSD data obtained from the protein fit ligands
atom exhibited the lowest fluctuation <1 nm except for CID: 5281349 compounds >1.8 nm
(Figure 10). However, two natural compounds (CID: 198912 and CID: 102004710) found
stable RMSD at a different position within 0 to 50 ns than the control compound (CID:
135400184). Therefore, it is important to keep in mind that, the molecules can move freely
from their original binding site.

Figure 10. Line graph showing RMSD values of the complex structure extracted from ligand atoms viz:
PubChem CID: 135400184 (blue); PubChem CID: 198912 (dark red); PubChem CID: 5281349 (green);
PubChem CID: 102004710 (orange); and PubChem CID: 11969465 (yellow) to 50 ns simulation time.
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2.9.4. RMSF Analysis

The RMSF is important to observe the local changes of a protein that help mea-
sure the displacement of a specific atom compared to the reference structure by cal-
culating the average change observed over the number of atoms [32]. The RMSF
was calculated by the index of the residue Cα from the complex with TS protein for
the selected natural compounds CID: 198912, CID: 5281349, CID: 102004710, CID:
11969465, and the control compound CID: 135400184 as shown in Figure 11. Analy-
sis of the RMSF graph revealed extreme fluctuations were reached between 16 and
26 residues for CID: 5281349 with a maximum range of 0.7 nm, indicating less sta-
bility of the compounds. However, the compounds CID: 198912 and CID: 102004710
showed low fluctuations compared to the control compounds, suggesting stability of
the system.

2.9.5. Solvent Accessible Surface Area Analysis

The SASA calculations were carried out for the TS protein and the TS–Ligand docked
complexes and are represented in Figures 12 and S2.

The SASA values of the TS protein for the AA residues which were involved in bond
formation (LYS77, VAL79, PHE80, ILE108, TRP109, CYS195, LEU221, PHE225, ILE307) and
spatially nearby residues in the binding site decreased after docking when compared with
that before docking. The decrease in SASA values confirmed that these AA residues were
involved in the bond formation with the ligand molecules.

Figure 11. Line graph showing RMSF values of the complex structure extracted from protein residues
Cα atoms, viz: PubChem CID: 135400184 (blue); PubChem CID: 198912 (gray); PubChem CID:
5281349 (dark red); PubChem CID: 102004710 (green); and PubChem CID: 11969465 (yellow) to 50 ns
simulation time.
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Figure 12. Line graph detailing the solvent-accessible surface area of TS and four compound com-
plexes. The solvent accessible surface area (SASA) of the selected compound is represented by the
Y-axis and the time frames are represented by the X-axis.

2.9.6. Protein-Ligand Contact Analysis

The Hydrogen bond, hydrophobic and water bridges bond of protein-ligand interac-
tion play an important role influencing drug specificity, metabolization, and adsorption.
Therefore, the intermolecular interaction of the protein-ligand complex was identified
via the ‘Simulation Interaction Diagram (SID)’ during the 50 ns simulation. The protein
and ligands, including CID: 135400184, CID: 102004710, CID: 198912, CID: 11969465,
and CID: 5281349, interaction fraction value was calculated and depicted Figure 13.
The compounds CID: 102004710, CID: 198912, and CID: 11969465 showed the highest
interaction fraction value of 1.25, 1.0, and 0.5 at LYS 77, LEU 221, and ASP 218 AA
residues, respectively formed by multiple bonds. The maximum water bridges and
hydrogen bonds found in compounds CID:102004710 and CID: 11969465 indicate more
stability of the compounds. In addition, compound CID: 11969465 was found to form
multiple ionic, hydrogen, hydrophobic, and water bridge bonding interactions at LYS 77,
PHE 80, ILE 108, and ASP 218 AA residues. The number of hydrogen bonds in a system
enhances a drug candidate’s metabolic, and adsorption properties. Therefore, the num-
ber of hydrogen bonds was observed through a 50 ns simulation during protein-ligand
complex interaction as shown in Figures S1 and S2. Interestingly, all the selected natural
bioactive compounds showed tremendous hydrogen bonds with protein residues. On
the other hand, the torsion properties of the selected compounds were determined and
represented in Figure S3.



Molecules 2022, 27, 2089 17 of 25

Figure 13. Bar graphs presenting ligand-protein interaction of the: (A) PubChem CID: 135400184;
(B) PubChem CID: 102004710; (C) PubChem CID: 198912; (D) PubChem CID: 11969465; and (E) Pub-
Chem CID: 5281349 compounds to 50 ns MD simulation.
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3. Discussion

CRC with high metastasis rates is a major cause of death worldwide [33]. However,
no proper medications are available to treat the disease. Lack of the specificity, insufficient
concentrations of traditional chemotherapeutics and resistance of chemotherapeutics at the
tumor site and their severe adverse effects necessitate developing new treatment strategies
such as designing natural drug candidates to improve pharmacological profiles and reduce
adverse effects. Toward this end, this study identified natural anticancer drug candidates
by targeting the TS enzyme.

Over the past few decades, CADD has emerged as an important tool for devel-
oping new drug molecules in a more cost-efficient way [34]. CADD is also a special-
ized discipline that uses statistical techniques to model drug-receptor interactions to
decide if a given molecule can bind to a target and, if so, with what affinity [35]. Un-
derstanding how ligands bind, interact, and suppress a particular protein will lead
to the discovery of drug candidates for a specific disease. CADD techniques have
made it easier to understand the action and binding mode of a ligand with a partic-
ular target molecule and whether the most common binding modes between a lig-
and and a protein can be predicted using a molecular docking method. However,
small molecules can re-rank as drug candidates against a particular disease because
MD simulation can identify the mechanism of complex protein-ligand interactions.
In addition, the bioactivity of molecules can be assessed through a theoretical quan-
tum chemical calculation such as HOMO-LUMO band energy calculation as well as
geometry optimization.

This study investigated 63 natural phytochemicals by targeting the TS enzyme to
fight against human CRC. Initially, the molecular docking approach was performed
to screen the phytochemical, and the best four compounds were chosen according
to their highest binding affinity. The docking process initially found the four best
compounds CID: 102004710, CID: 198912, CID: 11969465, CID: 5281349 with binding
scores of −8.8, −8.7, −8.7, and −8.6 kcal/mol, respectively. The binding interaction
found good hydrogen and hydrophobic bonding between the protein and the ligands.
PK properties of the compounds were monitored to identify the metabolite kinetics of
small molecular candidates in the human body. A transient and time-course assessment
of drug components in the entire blood, tissue, and target organs can also be accessed
based on PK properties. A drug’s efficacy is largely dependent on ADME, which is linked
to PK properties. The PK parameters must be optimized during the drug design phase
so that they can undergo regular clinical trials and be expressed as a promising drug
candidate. Under ADME properties that impair a drug molecule’s permeability through
the biological membrane, molecular weight, and polar surface topological region (TPSA)
were included. The permeability of a drug candidate can be reduced as the molecular
weight increases, while the TPSA relative to permeability is increased as the molecular
weight decreases. The logarithm of the target molecule’s inorganic and aqueous phase
partition coefficient is referred to as LogP in the sense of lipophilicity. The absorption
of a drug molecule is influenced by its lipophilicity. Higher LogP is associated with
lower absorption and vice versa. The candidate molecule’s solubility is affected by the
LogS rating, which is usually selected to be the lowest [36]. This study evaluated the
abovementioned PK properties of the selected compounds that found the optimum value
of ADME properties of the selected four compounds.

Toxicity is defined as a condition in which a substance shows adverse effect and
can harm an organism. Toxicity is reportedly responsible for 20% of late-stage drug
discovery failures. Animal trials are used for toxicity testing, which is a complicated,
expensive, and time-consuming process. In silico toxicity analysis, which does not
require animal trials and is quick and inexpensive, can be used to justify preclinical drug
production [37]. Therefore, the toxicity profile of the selected top four phytochemicals
was assessed using in silico methods. The noncarcinogenic properties of the compounds
were calculated using data from in silico toxicity test servers. Ames experiments were
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also used to assess the compounds’ possible genotoxicity by assessing the capacity of
reverse mutations. The LD50 primarily offers knowledge on the immediate or acute
toxicity of compounds shown to be the most effective in the analysis. This study ana-
lyzed most of the toxic parameters of the selected compounds that found good toxicity
properties of the compound.

To investigate and optimize the geometry of the compounds, a computational
DFT-based QM simulation was performed. The FMO-based HOMO-LUMO energy
gap was also calculated to evaluate the chemical reactivity of the compounds. The
HOMO-LUMO gap energy found for all the compounds was high >4.20 eV, which
confirms the low reactivity correspondence to the bioactivity of the compounds. Ad-
ditionally, the protein-ligands complex structural stability was validated through a
50 ns MD simulation. The binding position in the active points of the four selected
compounds was similar, with the RMSD value average less than 1 nm. According to
our findings, the four selected screened compounds with the highest energy interacted
with a catalytic residue, which is required to inhibit the TS enzyme. The previous study
also reported all the potential candidates contain chemo-preventive and chemothera-
peutic activity against cancer [38]. We can suggest that the four lead compounds can
interfere with the TS enzyme according to the combinatorial docking and molecular
dynamics approach; however, these phytochemicals extracted from plants need to be
studied further in the lab to determine their effectiveness and inhibitory potential in an
in vitro environment.

4. Materials and Methods
4.1. Target Preparation

The three-dimensional (3D) experimental tertiary structure of the TS was retrieved
from the RCSB protein data bank (PDB) (https://www.rcsb.org/, accessed on 1 Septem-
ber 2021). The targeted protein structure (PDB ID: 1HVY) having a resolution value of
1.9 Å containing 288 AA with 135.83 kDa molecular weight [39], served as a receptor in
the docking process. From the beginning to the end, the target was prepared in BIOVIA
Discovery Studio Visualizer 2020 software and all the metal ions, cofactors, and water
molecules were removed during the structure preparation. AutoDock Tools were em-
ployed for the calculation of gasteiger charges and the addition of hydrogen atoms to
the protein.

4.2. Compound’s Retrieval and Preparation

In this study, the compound’s information was obtained through a comprehensive
online database search of various phytochemical composites containing medicinal plants
derived from a natural source that is employed for drug design and discovery pro-
cesses. A manually curated Indian Medicinal Plants, Phytochemistry, And Therapeutics
(IMPPAT) database covering >9500 phytochemicals along with >1742 Indian medici-
nal plants provided cheminformatic techniques to speed up drug discovery of natural
bioactive compounds [40]. From the IMPPAT database, a total of 63 phytochemicals of
C. roseus [38] and A. marina [41] which possess anticancer properties respectively were
identified and retrieved for virtual screening (Table S1). To conduct further screening
procedures, Simplified Molecular Input Line Entry System (SMILES) formats [42] were
retrieved from the PubChem database. Several screening processes were applied to
the compounds to select the potential candidates [43]. Initially, all compounds were
prepared for docking by assigned correct AutoDock 4 atom types, the ‘torsion tree’ was
set, nonpolar hydrogens were merged, and aromatic carbons were detected. Nolatrexed
(PubChem CID: 135400184), developed as an antifolate anticancer drug was used as a
control in this study [44].

https://www.rcsb.org/
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4.3. Identification of Binding Site and Receptor Grid Generation

The active sites are located on the surface of an enzyme that interact with other
molecules resulting in a chemical reaction of the enzyme [45]. AS helps chemical com-
pounds form enough contact points to generate good binding with desired enzymes, ensur-
ing optimal and favorable catalytic microenvironments. Therefore, the BIOVIA Discovery
Studio Visualizer v19.1.0.18287 (BIOVIA) was used to evaluate the AS and corresponding
binding site of the protein to achieve the highest binding affinity of the selected com-
pounds [46]. The PyRx virtual screening tool AutoDock Vina was used for receptor grid
generation based on the binding site that was discovered from the protein’s complex AS
analysis process [47].

4.4. Docking Analysis

A molecular docking technique is specially used because it accurately predicts the
binding mode of a small molecule to a targeted macromolecule in CADD [48]. The molecu-
lar docking analysis was carried out in this study by using the PyRx tools AutoDock Vina
with virtual screening to identify the binding mode of the desired protein with selected phy-
tochemicals. PyRx is an open-source virtual screening platform that can screen libraries of
compounds against a specific drug target, which is mainly used in CADD approaches. For
docking purposes, the default configuration parameters of the PyRx virtual screening tools
were used, and the highest binding energy (kcal/mol) with the negative sign was selected
for further assessment. Finally, using the BIOVIA Discovery Studio Visualizer v19.1.0.18287
(BIOVIA), the binding relationship of the protein–ligands complex was observed.

4.5. PK Properties Prediction

PK properties in CADD are a crucial part of drug discovery, helping to decide on
whether the drug candidate should be applied to the biological system or not [49]. PK
properties help and describe the integrity and efficacy of compounds in the early stages of
drug design. Therefore, the SwissADME server was used in the study to analyze the PK
properties of the natural compounds [36].

4.6. Toxicity Prediction

During drug development, it is important to assess the adverse effects of chemical
compounds before undergoing a clinical trial. Therefore, toxicity evaluation is an essential
part of the drug design process. In this study, the toxicity of the compounds was predicted
using the admetSAR, ProTox-II, and the pkCSM web server [50].

4.7. DFT Method Based Geometry Optimization

The Gaussian 09 program (revision D.01) and gauss view 5.0.8 molecular visualization
software were used to perform the theoretical quantum chemical calculations with a
computer configuration of 2.20 GHz (224 GB RAM, 4 processors) with Windows 10 pro
version. Compound optimization was performed by the implementation of conventional
functionals Becke’s (B) [51] three parameters with Lee-Yang-Parr (LYP) [52] functionals
(B3LYP) with DFT/6-31G (d,p) method. Moreover, the optimized structure was retrieved for
further calculation of EHOMO, ELUMO, HOMO-LUMO band gap, electrostatic potential,
electrophilicity index, global reactivity (global hardness and global softness), optimized
energy and dipole moment parameter of the compounds. The compound’s reactivity,
chemical hardness, and softness calculation play an important role in determining the
characteristics and polarizability of the electron’s configuration [53]. More distance between
the electrons and the nucleus indicates more reactive molecules and a high polarizable
candidate, defined as soft ions. In contrast, hard ions candidates have less distance between
electrons and the nucleus, less reactivity, and less polarizable species. Therefore, reactivity
descriptors such as chemical potential (µ), hardness (η) softness (S), electronegativity (χ),
and electrophilicity index (ω) were calculated in this study using Koopmans’ theorem [54].
Chemical reactivity determinators of global hardness (η) and global softness (S) can be
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defined by the relation η = (IA − EA)/2, and S = 1/η, chemical potential (µ) defined as
µ = −χ, the electronegativity (χ) termed as χ = (IA + EA)/2, and the electrophilicity (ω)
can be described by the following equation: ω = µ2/2η [55–57].

4.8. Frontier Molecular Orbital HOMO/LUMO Calculation

In the 1950s the frontier molecular orbital theory was developed by Kenichi Fukui
to demonstrate the energy difference between two orbitals, HOMO and LUMO. HOMO
represents the highest occupied molecular orbitals and has an electron-donating tendency
(nucleophilic), and LUMO represents the lowest unoccupied molecular orbitals and has
a tendency to accept an electron (electrophilic) [58]. Frontier molecular orbitals (FMOs)
are the only way to determine the molecular interaction with different species, molecular
reactivity, softness and hardness of compounds, and kinetic stability. Electrons from the
HOMO jump to the LUMO during the electrophilic-nucleophilic reaction, resulting in an
energy differential between two molecular orbitals, known as the HOMO-LUMO gap.
The HOMO-LUMO band gap is crucial in defining the chemical reactivity of the com-
pounds. The following Equation was used to calculate the energy difference between two
molecular orbitals.

∆E = ELUMO − EHOMO

where ∆E is the HOMO-LUMO gaps, ELUMO is the energy of the lowest unoccupied
molecular orbital, and EHOMO indicates the highest occupied molecular orbital energy.

4.9. MD Simulations and Trajectory Analysis

Molecular dynamics (MD) simulation was performed to understand the binding
stability, fluctuation, conformational changes, and kinetic behavior of desired compounds
to the targeted protein. ‘Desmond v3.6 Program’ of Schrodinger (academic version in Linux
environment) was utilized to analyze the MD simulation of the target-ligand complex
structure by using the OPLS-2005 force field. The system was solvated by using the
TIP3P water model. The boundary condition selected in this study was orthorhombic
(box shape), and a buffer box was chosen as a calculation method with a box distance of
10 Å. Charges were electrically neutralized by adding suitable ions such as Na+ and Cl−

with the concentration of salt 0.15 M. The MD simulations were performed at 300 K and
one atmospheric pressure (1.01325 bar) with a 10 ps time interval. The SID module in the
Schrodinger package was implied to analyze the quality of the MD simulation and the
simulation event. From the simulation trajectories, the root-mean-square deviation (RMSD),
root-mean-square fluctuation (RMSF), hydrogen bonding interaction, solvent accessible
surface area (SASA), and protein-ligand interaction were evaluated.

4.9.1. RSMD Analysis

RMSD is a standard numerical measurement of average conformational changes
between the backbone of a protein structure (target) and the ligand (reference) over a
certain time frame compared to a reference time [59]. During the MD simulation, the
protein frames and the reference frame backbone were first aligned, and then the system’s
RMSD was determined based on the atom selection. RMSD can be calculated from the
following Equation (1) with the time frame x to the MD simulation during 50 ns.

RMSDX =

√
1
N

N

∑
i=1

(
r
′
i(tx)

)
− ri

(
(tre f )

)2
. (1)

Here, the selected number of atoms is termed as N; the reference time is defined by
tref. After superimposing the frame x on the reference frame, r′ defines the location of the
picked atoms within it; and recording intervals are defined by tx.
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4.9.2. RMSF Analysis

RMSF is presumably like RMSD, but it calculates individual residue flexibility, or
how much a given residue flexes during a simulation, rather than reflecting positional
differences across complete structures over time. Knowing the number of AA residues
i for a protein during the MD simulation, the RMSF can be calculated by the following
Equation (2) through 50 ns simulation time.

RMSFi =

√
1
T

T

∑
i=1

<
(

r
′
i(t)
)
− ri

(
(tre f )

)2
> (2)

Here, the trajectory time is expressed as T; the given or reference time is defined as
tref , and r′ represents the position of the selected atoms in the frame i after superimposing
the reference frame, and (< >) represents the average of the square distance taken over
residue b.

4.9.3. Solvent Accessible Surface Area Analysis

In a protein, solvent accessibility of AAs has an important implication. A protein’s
surface area that is in touch with the solvent is known as its solvent accessible surface area.
It is based on the three-dimensional structure of the protein molecule and is estimated for
the natural form. Protein interactions are frequently followed by major conformational
changes. We looked at the links between protein structures and the changes in their
conformation that go through when they bind.

5. Conclusions

Over the recent decades, many advancements in the treatment of colorectal cancer have
been made. However, there is still space for development and improvement in the treatment
of CRC. This research study nourishes the applicability of anticancer drug compounds that
would be able to trigger pharmacists and medicinal chemists to synthesize new potent
and selective drug candidates soon. Recently, TS inhibitors have emerged as a possible
therapeutic target to CRC. However, much attention is required to develop more powerful
inhibitors of the TS protein. In this study a computational drug design approach was applied
to identify inhibitors of the TS protein to hinder the activity of CRC. The study utilized
a CADD approach, including molecular docking, ADMET analysis, MD simulation, and
QM methods that found four compounds namely 18-Beta-hydroxy-3-epi-alpha-yohimbine,
1-(3-Methylphenyl)-2,3,4,9-tetrahydro-1H-β-carboline, Marinobufagenin, and Apparicine as
potential anti-CRC candidates. Although the study is based on computational techniques,
further evaluation through different lab-based experiment techniques can help determine
the activity of the compound that will provide alternatives for CRC therapy.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/molecules27072089/s1, Figure S1: Contact mapping of the protein-
ligands interactions for the selected four compounds found during the 50 ns simulation run; Figure S2:
RMSD (Å), rGyr (Å), intra-HB, MolSA (Å2), SASA (Å2), and PSA (Å2) of the selected four compounds
in complex with TS protein; Figure S3: Torsion properties of the selected three compounds; Table
S1: List of 63 compounds binding affinity (kcal/mol) with desire protein. Table S2: ADME and PK
properties of four selected compounds.
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