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4-Pyrone Derivatives
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Abstract: A straightforward approach for the construction of the new class of conjugated pyrans based on
enamination of 2-methyl-4-pyrones with DMF-DMA was developed. 2-(2-(Dimethylamino)vinyl)-4-pyrones
are highly reactive substrates that undergo 1,6-conjugate addition/elimination or 1,3-dipolar cycload-
dition/elimination followed by substitution of the dimethylamino group without ring opening. This
strategy includes selective transformations leading to conjugated and isoxazolyl-substituted 4-pyrone
structures. The photophysical properties of the prepared 4-pyrones were determined in view of
further design of novel merocyanine fluorophores. A solvatochromism was found for enamino-
substituted 4-pyrones accompanied by a strong increase in fluorescence intensity in alcohols. The
prepared conjugated structures demonstrated valuable photophysical properties, such as a large
Stokes shift (up to 204 nm) and a good quantum yield (up to 28%).

Keywords: 4-pyrone; DMF-DMA; enamination; cycloaddition; merocyanine; 1,6-conjugate addition;
solvatochromism; fluorophore

1. Introduction

4-Pyrones are an important class of compounds that are widely distributed in nature,
exhibiting various beneficial biological activities (e.g., phenoxan (Figure 1), which is active
against HIV) [1,2] and are also used as multifunctional building blocks for organic syn-
thesis [3–8]. On the other hand, the presence of conjugated double bonds in the pyrone
structure makes it possible to consider these heterocycles in terms of attractive photophysi-
cal properties. Hispidin, as an important styryl pyrone, is responsible for bioluminescence
in basidiomycete fungi in the result of oxidation [9,10], and Cyercene A is a photoactive
protective agent in marine mollusks [11,12]. It has also been shown that styryl-substituted
4-pyrones find applications as fluorophores [13–19], exhibiting mechanochromism and
solvatochromism based on the aggregation-induced emission enhancement (AIEE) phe-
nomenon [16–18] and can act as molecular switches [19].

The introduction of an additional electron-withdrawing substituent into the C-4 po-
sition of the pyrone ring by means of the Knoevenagel reaction leads to one of the most
popular merocyanines, DCM (Figure 1), and other 4-methylene-4H-pyrans, which have
found wide application due to their important photophysical properties [20–24].

The major methods for the preparation of 2-vinyl-substituted 4-pyrones are based
on the functionalization of the active methyl group based on the aldol condensation
with aromatic aldehydes (Scheme 1) [13–19]. In addition, approaches are known that
include the decarboxylative rearrangement of dehydroacetic acid derivatives [15] or the
Horner-Wadsworth–Emmons reaction, which finds particular use in the synthesis of
naturally occurring pyrans [1,12]. To the best of our knowledge, the transformation of
2,6-dimethyl-4-pyrone with DMF-DMA resulted in the monoenamination product with

Molecules 2022, 27, 8996. https://doi.org/10.3390/molecules27248996 https://www.mdpi.com/journal/molecules

https://doi.org/10.3390/molecules27248996
https://doi.org/10.3390/molecules27248996
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/molecules
https://www.mdpi.com
https://orcid.org/0000-0002-6659-9832
https://orcid.org/0000-0002-4650-8446
https://orcid.org/0000-0002-2925-7104
https://orcid.org/0000-0001-8374-3587
https://orcid.org/0000-0002-8956-0973
https://doi.org/10.3390/molecules27248996
https://www.mdpi.com/journal/molecules
https://www.mdpi.com/article/10.3390/molecules27248996?type=check_update&version=2


Molecules 2022, 27, 8996 2 of 21

poor yield (5%) [24], whereas β-dimethylaminoacrolein aminal acetals led to 6-bis(4-
dimethylaminoalka-l,3-dienyl)-4H-pyran-4-ones [13].
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It is important to note that the methods for functionalizing 4-pyrones using nucle-
ophilic reagents to create strong push-pull systems are scarcely studied. Typically, such
reactions proceeded via ring opening transformation to form new cyclic systems [25–27].
The introduction of the enamino moiety [28–34] into 4-pyrone molecules leads to new
highly reactive substrates, which can be used for the creation of valuable dyes via modifica-
tion of 4-pyrone moiety or enamino group. Despite their attractiveness, 4-pyrone-based
fluorophores are severely limited and have been described in just a few papers [13–19] due
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to the modest photophysical properties of the heterocycles and being overshadowed by
derived dyes, 4-methylene-4H-pyrans.

In this paper, we describe a general strategy to 4-pyrone-bearing merocyanines
based on an enamination with DMF-DMA and subsequent transformation of the dimethy-
laminovinyl group via a nucleophilic 1,6-addition or cycloaddition reaction. This approach
opens straightforward access to a wide range of new promising pyran fluorophores.

2. Results and Discussion
2.1. Synthesis of 2-Enamino-substituted 4-Pyrones and Their Chemical Properties

The functionalization of the pyrone ring was carried out via an enamination reaction
at the active methyl group using DMF-DMA as a reagent and a solvent (Scheme 2) [35].
N-Methylimidazole (NMI) was selected as a convenient base for the promotion of the
transformation [36]. Enamination of 2-(tert-butyl)-6-methyl-4H-pyran-4-one (1a) with DMF-
DMA (3 equiv.) and NMI (3 equiv.) at 100 ◦C in an autoclave afforded enamino-substituted
4-pyrone 2a in only 15% yield (Table 1, entry 1). We decided to increase the reaction
temperature to 120 ◦C and study the influence of the base amount on both the reaction
outcome and time (TLC monitoring). When one equivalent of NMI was used, the reaction
was completed in 15 h and the product was prepared in 40% yield (entry 2). We found that
a further decrease in the amount of NMI (0.25–0.5 equivalent) allowed the improvement of
the enamination reaction outcome until 67–72%, but it required longer heating (20–25 h)
(TLC monitoring) (entries 3,4). The best yield (72%) of pyrone 2a was achieved using 0.25
equivalents of N-methylimidazole though it took 25 h (entry 4). The isolation of the pyrone
included simple recrystallization from n-heptane. Interestingly, the reaction also occurred
without promotion of the base and gave the product in a lower yield (57%) under heating
at 120 ◦C for 25 h (entry 5). Increasing temperature to 130 ◦C led to pyrone 2a in 54% yield
(entry 6). The enamination with the use of pyridine as a solvent and DMF-DMA (1.2 equiv.)
at 100 ◦C or 120 ◦C did not produce the desired product.
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Scheme 2. Reaction of pyrone 1a with DMF-DMA.

Table 1. Reaction condition optimization for the enamination of 1a.

Entry NMI, equiv. Time, h Temp., ◦C Yield of 2a, %

1 3 8 100 15
2 1 15 120 40
3 0.5 20 120 67
4 0.25 25 120 72
5 – 25 120 57
6 0.25 10 130 54

The enamination reaction conditions were extended for various 2-methyl-4-pyrones
(Scheme 3, Table 2), but this transformation turned out to be very sensitive to the nature of
substituents at the pyrone ring. The enamination of 2-methyl-6-phenyl-4-pyrone (1b) with
DMF-DMA proceeded for 12 h under the optimized conditions; as a result, pyrone 2b was
obtained in 53% yield. However, the reaction of 2-methyl-6-trifluoromethyl-4-pyrone (1c)
was completed in 5 h at 120 ◦C, leading to the desired product in only low yield (12%). This
result can be explained by side processes due to the presence of the trifluoromethyl group
and high CH-acidity). Lowering the temperature to 100 ◦C made it possible to increase the
yield up to 43%.
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Table 2. The scope of enamino-substituted 4-pyrones 2.

Entry R Product Temp., ◦C Equiv. of NMI Time, h Yield, %

1 t-Bu 2a 120 0.25 15 72
2 Ph 2b 120 0.25 12 53
3 CF3 2c 100 0.25 5 43, 12 a

4 CO2Me 2d 120 4 6 27 b, 8 c

5 PhCH = CH 2e 100 0.25 4 22
6 4-Me2NC6H4CH = CH 2f 120 3 3 72
7 4-MeOC6H4CH = CH 2g 120 3 3 51

a The reaction was carried out with 1.2 mmol of 1c at 120 ◦C for 5 h in the presence of NMI (24.6 mg, 0.3 mmol)
and DMF-DMA (429.0 mg, 3.6 mmol). b From ethyl 6-methylcomanate (1d’). c The reaction was carried out with
methyl 6-methylcomanate (1d) at 120 ◦C for 4 h in the presence of NMI (24.6 mg, 0.3 mmol) and DMF-DMA
(429.0 mg, 3.6 mmol).

It was found that the enamination of ethyl 6-methylcomanate (1d’) with DMF-DMA
and an excess of NMI (3 equiv.) at 120 ◦C was accompanied by the transesterification
reaction to produce product 2d in 27% yield (Scheme 3 Table 2). It is interesting to note
that direct enamination of methyl 6-methylcomanate (1d) at 100 ◦C in the presence of NMI
(0.25 equiv.) led to the desired product 2d in only 8% yield.

We tried to extend the enamination on 2-methyl-6-styryl-4-pyrones 1e–g for the synthesis of
unsymmetrical 2,6-divinyl-4-pyrones 2e–g (Table 2). The reaction of 2-methyl-6-styryl-4-pyrone
(1e) at 120 ◦C with a threefold excess of DMF-DMA and different amounts of N-methylimidazole
did not lead to the desired product. Lowering the temperature to 100 ◦C made it possible to ob-
tain product 2e in 22% yield for 4 h (TLC monitoring). For starting 2-methyl-6-styryl-4-pyrones
1f,g, the use of the optimized conditions did not give the desired products because of low
solubility of the starting materials. The enamination of pyrones 1f,g with threefold excess
of N-methylimidazole and heating at 120 ◦C for 3 h led to complete conversion of the
starting 4-pyrone, and products 2f,g were isolated by the treatment with diethyl ether in
72 and 51% yields, respectively. Such a difference in the behavior of styrylpyrones may
be connected with the presence of electron-donating substituents, which deactivated the
double bond of the styryl fragment and reduced the possibility of side reactions.

The reaction of 2,6-dimethyl-4-pyrone 3a with three equivalent DMF-DMA and
0.5 equiv. of NMI was carried out at 120 ◦C for 15 h, resulting in a mixture of prod-
ucts of enamination 4a and 5a (Scheme 4). Recrystallization from n-heptane easily allowed
the separation of pyrones 4a and 5a and isolation them in pure form in 17% and 23% yields,
respectively. All our attempts to carry out more selective monoenamination by lowering
the temperature, variation of reagent amounts, and increasing the reaction time were unsuc-
cessful and accompanied by incomplete conversion and the formation of the bis(enamino)
derivative, which did not allow the preparation of product 4a in pure form directly.

The use of an excess of DMF-DMA (5 equiv.) and heating at 130 ◦C for 15 h made
it possible to increase the yield of bisenamine 5a to 51%. At the same time, the forma-
tion of monoenamino derivative 4a was not observed. Carrying out the reaction without
using NMI or using one equivalent of NMI resulted in product 5a in 41 and 45% yields,
respectively. The transformation of 3-bromo-2,6-dimethyl-4-pyrone (3b) led to a double
enamination product 5b in 53% yield. This result can probably be explained by a higher
CH-acidity of the methyl groups. We also managed to carry out monoenamination se-
lectively at the methyl group located near the electron-withdrawing bromine atom, and
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pyrone 4b was prepared in high yield (80%) (Scheme 4). The structure of the product was
assigned on the basis of the chemical shift of the methyl group in comparison with the
starting 2,6-dimethyl-3-bromo-4-pyrone (3b) and product 4b.
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The 1H NMR spectra of the obtained dimethylamino-substituted pyrones 2,4,5 demon-
strate a characteristic set of two doublets of the enamino group with 3J coupling of
12.6–13.3 Hz, which indicates the E-configuration of the double bond and its partially
double order due to the strong push-pull nature [31,36].

To study the chemical properties of monoenamino-substituted 4-pyrones 2 with vari-
ous nucleophilic reagents, compound 2g was used as an example to obtain conjugated struc-
tures (Scheme 5). We found that heating in AcOH turned out to be convenient conditions
for carrying out the reactions. The transformation of pyrone 2g with aniline or dipheny-
lamine at 90 ◦C led to the substitution of the dimethylamino group and the formation of
products 6a,b in 82–86% yield. The reaction of substance 2g with p-phenylenediamine as a
binucleophile gave product 6c as the result of an attack on both amino groups. It was found
that pyrone 2g reacted with benzylamine under reflux in acetonitrile to form product 6d in
76% yield. The transformation of bis(enamino)pyrone 5a with aniline was found to proceed
at room temperature, leading to product 6e in 55% yield. Thus, it has been shown that the
side chain of γ-pyrone can easily be functionalized with aliphatic and aromatic amines.

Enamino-substituted pyrones 2g and 5a were able to react with 2-methylindole as a
C-nucleophile to form indolyl-substituted 4-pyrones 7a,b in 52–62% yields under reflux in
AcOH for 7–10 h (Scheme 5). The transformation of bisenamine 5a with 2-methylindole
included the substitution at two enamino fragments and led to bis(indolylvinyl)-4-pyrone
7b in 52% yield.

Next, we investigated the cycloaddition of enamino-substituted 4-pyrones with 1,3-dipoles
(Scheme 6). It was observed that organic azides and diphenylnitrilimine did not give
the desired products, which is probably due to the electron-withdrawing properties of
the pyrone ring. The reaction with benzonitrile oxide, which was generated in situ from
N-hydroxybenzimidoyl chloride [25], in dioxane without the use of a base led to the
formation of isoxazolyl-substituted 4-pyrones in 39–80% yields. Although compounds 2f,g
bear two double bonds of different nature, the transformation proceeded chemoselectively
at the enamino fragment. In the case of bis(enamino) derivative 5a, the cycloaddition
occurred at both enamino moieties to give 2,6-bis(isoxazolyl)-4-pyrone 9 in 39% yield.
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2.2. Photophysical Properties of Products

For the series of enamino-substituted 4-pyrones, the photophysical properties were
studied to assess the prospects for their use as fluorophores. We started with the study of
the influence of the nature of the solvent on the absorption and emission spectra of (E)-2-(2-
(dimethylamino)vinyl)-6-methyl-4H-pyran-4-one (4a) and 2,6-bis((E)-2-(dimethylamino)vinyl)-
4H-pyran-4-one (5a).

For the monoenamino-substituted compound 4a, the absorption spectrum includes
one-band at 334–363 nm with an extinction coefficient of 29,200–35,900 M−1cm−1 (Figure 2,
Table 3). In aprotic solvents, the absorption maximum is observed at 334–350 nm. For alco-
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hol solutions of pyrone 4a, the absorption maximum shifts slightly to the long-wavelength
region and appears at 356 (i-PrOH), 361 (EtOH), 363 nm (MeOH) in accordance with the
solvent polarity. The emission spectrum demonstrates a single maximum and depends
strongly on the nature of the solvent. In alcohols as protic solvents, the fluorescence inten-
sity increases many times over in comparison with aprotic polar solvents, such as DMSO.
The highest values of quantum yields are achieved in MeOH (3.6%) and EtOH (1.4%),
where the substance exhibits blue fluorescence. The largest Stokes shifts (67–71 nm) are
also observed in MeOH and EtOH, while it is equal to 26–59 nm in the other solvents.
The peculiarity of fluorescence in protic solvents can be related to the specific solvation
of carbonyl oxygen in the excited state due to intramolecular charge transfer (ICT). The
solvatochromism of 4-pyrones was previously unknown and distinguishes the studied
conjugated 4-pyrones from 4-methylene-4H-pyrans, popular merocyanine dyes whose
fluorescence is related to the solvent polarity and is most pronounced in DMSO.
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In the case of bis(enamino) derivative 5a, two maxima are observed in the absorp-
tion spectra. The most intense and structured band is in the short wavelength region at
300–304 nm (ε = 41,400–54,400 M−1 cm−1), and at 378–408 nm there is a second maximum
with an extinction coefficient of 17,400–22,300 M−1 cm −1(Figure 3, Table 4). The nature
of the solvent most strongly affects the second maximum, which can be associated with
intramolecular electron transfer. The strongest redshift of the second band is observed in
alcohols (395–408 nm) compared to aprotic solvents (378–381 nm). As in the case of mo-
noenamino derivative 4a, the fluorescence spectra turned out to be highly sensitive to the
nature of the solvent and has one emission maximum located in the range of 455–490 nm.
The fluorescence intensity in polar aprotic solvents is observed to be low (QY = 2.3–4.1%).
The substance exhibits green fluorescence, and the highest quantum yield is found in
methanol (QY = 28%), ethanol (QY = 21%), and isopropanol (QY = 11%). Also, in these
solvents, the largest Stokes shifts are observed, which are equal to 83 nm, 82 nm, and
80 nm, respectively.
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Figure 2. Absorption (a) and emission (b) spectra of compound 4a in various solvents (C = 1.0 × 10−5 
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CH2Cl2 345 399 35,500 54 <0.1
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DMSO 350 408 29,200 58 0.2
i-PrOH 356 415 35,900 59 0.3
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MeOH 363 434 35,500 71 3.6

a Absorption maximum wavelength. b Excitation wavelength corresponds to λabs. c The relative fluorescence
quantum yield (QY) was estimated using the solution of rhodamine 6G in ethanol as a standard (QYstd = 94%,
λex = 480 nm) according to the described method [35]. d The relative fluorescence quantum yield (QY) was
estimated using a 0.1 M H2SO4 solution of quinine sulfate solution (QYstd = 54%, λex = 360 nm) according to the
described method [37].
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CH2Cl2
300 54,400
378 447 22,300 69 3.0

DMF
300 43,600
378 450 17,400 72 4.1

DMSO
304 41,400
381 455 17,500 74 2.3

i-PrOH
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395 475 19,000 80 11
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a Absorption maximum wavelengths. b Excitation wavelength corresponds to λabs. c The relative fluorescence
quantum yield (QY) was estimated using the solution of rhodamine 6G in ethanol as a standard (QYstd = 94%,
λex = 480 nm) according to the described method [37].
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For the design of new fluorophores, we studied a number of functionalized enamino-substituted
4-pyrones (Figure 4, Table 5). The introduction of the tert-butyl group, compared to the
methyl group, has practically no effect on the photophysical properties. The absorption and
emission spectra of (tert-butyl)-6-(2-(dimethylamino)vinyl)-4H-pyran-4-one (2a) are very
similar for monoenamine derivative 4a. The introduction of the phenyl group complicates
the absorption spectrum, as a result, several maxima are observed. In this case, the major
absorption maximum appears at 380 nm with an extinction coefficient of 19,700 M−1cm−1.
An important feature of fluorescence is the large Stokes shift, which amounts to 147 nm
(QY = 3.4%). For dimethylenamino derivative 2f bearing the p-dimethylaminostyryl moiety,
the absorption spectra show several maxima with approximately the same value of the
extinction coefficient. The fluorescence spectrum exhibits one-band emission at 572 nm
(λex = 368 nm), which is characterized by higher quantum yield (18%) and a significant
Stokes shift (204 nm). Similarly, the p-MeO-styryl-substituted compound 2g has several
bands with low intensity in absorption spectra and very weak fluorescence emission.
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Table 5. Absorption and fluorescence spectral data of compounds 2a,b,f; 6b; and 7b in MeOH
(C = 1.0 × 10−5 M).

Compd. Structure λabs,
nm a

λem,
nm b ε, M−1 cm−1 Stokes Shift,

nm QY, % c

2a
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a Absorption maximum wavelengths. b Excitation wavelength corresponds to λabs. c The relative fluorescence
quantum yield (QY) was estimated using the solution of rhodamine 6G in ethanol as a standard (QYstd = 94%,
λex = 480 nm) according to the described method [37].

Introduction of the diphenylamino substituent allows the improvement of photophys-
ical properties. Thus, for p-MeO-styryl derivative 6b, two intense maxima are found in
the absorption spectrum at 404 nm and 350 nm. This substance shows one maximum in
the emission spectrum at 546 nm (λex = 368 nm) and a quantum yield of 3.4%. Next, the
bis(indolyl) derivative 7b was investigated as a symmetrical compound with an extended
conjugation system. Its absorption spectrum (MeOH) contains a major maximum at 433 nm,
a plateau in the range of 375–348 nm, and a minor maximum at 286 nm. The emission
spectrum contains one band at 571 nm, while the quantum yield reaches 15%.

2.3. Theoretical Calculations of the Absorption and Emission

We performed a DFT/TD-DFT quantum chemical calculations of absorption/emission
maxima for representative compounds 4a and 5a in vacuo and in solvated phase (DMSO,
EtOH, and MeOH) using the conductor-like polar continuum model (C-PCM). In the series
of the ground state (GS), the first singlet excited state (S1) optimizations were made and the
energies of the first seven Franck-Condon singlet states were computed. All calculations
were carried out at the (TD-)DFT (CAM-)B3LYP/6-31++G** level of theory for the most
stable s-trans conformations [13]. Results of this calculations are provided in Table 6; the
optimized geometries of GS and S1 are listed in Supplementary Materials.

The optimizations of the ground state (GS) geometry revealed that both molecules
have a planar structure of D-π-A conjugation chains. Calculated Stokes shift values in a
solvated phase were 27–30 nm for 2-(2-(dimethylamino)vinyl)-6-methyl-4-pyrone (4a) and
92–103 nm for 2,6-bis(2-(dimethylamino)vinyl)-4-pyrone (5a), which are in agreement with
the experimental Stokes shifts. Also, in all solvents the dipole moment values increased
under excitation to S1. On the base of Franck-Condon (FC) excitations and S1 optimized
geometries energies and their oscillator strengths, we plotted theoretical absorption and
emission spectra (See Supplementary Materials Figures S1–S6, absorption/emission max-
ima are also provided in Table S6). Because the DFT usually overestimates long-wavelength
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polymethine transitions, all calculated maxima are notably blue-shifted compared to the
experimental ones [38]. According to TD-DFT calculations of S1

FC–S7
FC states in all sol-

vents, the most intense absorption corresponds to π→ π* transition and S0 → S1 from the
highest occupied molecular orbital (HOMO) to the lowest unoccupied molecular orbital
(LUMO) for compound 4a, whereas S0 → S2 (HOMO–1→ LUMO) transition prevails for
compound 5a (Table 6). In the case of compound 5a, the S0 → S1 transition is less intense
(fGS = 0.527 for MeOH) and redshifted (λabs = 376 nm for MeOH), which agrees well with
the experimental absorption spectrum demonstrating double bands.

Table 6. Calculated absorption and emission properties of 4a and 5a in vacuo, DMSO, EtOH,
and MeOH a.

Entry Compd. Solvent λabs, nm fGS λem, nm fS1 µGS, D µS1, D µ(GS->S1), D

1

4a

Vacuum 286 0.718 293 b 0.744 b 8.808 4.246 −4.562
2 DMSO 331 1.070 361 1.092 0.097 3.114 3.017
3 EtOH 340 1.072 367 1.082 1.102 4.372 3.270
4 MeOH 342 1.076 369 1.086 1.246 4.407 3.161

5

5a

Vacuum 252 0.631 315 0.363 10.772 13.084 2.312
6 DMSO 302 1.891 394 0.507 0.190 2.386 2.196
7 EtOH 307 1.903 408 0.529 1.407 3.882 2.475
8 MeOH 308 1.921 411 0.537 1.556 4.033 2.477

a λabs—absorption maximum, fGS—oscillator strength for the absorption maximum, λem—emission maximum,
fS1—oscillator strength for the emission maximum, µGS, µS1—dipole moments of GS and S1 optimized geometries,
µ(GS->S1)—the difference in dipole moments of GS and S1. b Data provided for S2, since S1 (339 nm, 3.662 eV) has
oscillator strength very close to zero.

To explain the strong influence of alcohols on fluorescence, the charges on the carbonyl
oxygen of pyrones 4a and 5a in the ground and excited states were compared. An increase
in the electron density on oxygen can cause its specific solvation due to the formation of
hydrogen bonds, leading to the improvement of the fluorescence properties. The charge
of pyrone 5a bearing two electron-donating substituents is in all cases higher than that of
pyrone 4a in the corresponding solvent, which can be explained by the stronger push-pull
nature of the former. In addition, the maximum negative charge was found in EtOH and
MeOH, both in the ground (−0.731 and −0.746 for 4a; −0.758 and −0.776 for 5a) and
excited (−0.823 and−0.839 for 4a; −0.905 and−0.925 for 5a) states (Table 7). For all excited
states, an increase in the negative charge on carbonyl oxygen is observed (except for 4a in
vacuum), which is in good agreement with the change in dipole moments. The strongest
charge changes during the GS→S1 transition were found in MeOH (0.093 for 4a, 0.149 for
5a). This result is related to the ICT effect in this solvent, which is more pronounced for
pyrone 5a and determines the stabilization of the excited states via the hydrogen bonding
interaction between the carbonyl group and alcohol molecules [39]. Besides, the ICT
phenomena for the pyrones were confirmed with the use of electron density difference
(EDD) maps (See Supplementary Materials Figures S7–S10).

Table 7. Mulliken charges at the carbonyl oxygen atom of pyrones 4a and 5a.

Entry Compd. Charge Vacuum DMSO EtOH MeOH

1
4a

GS −0.537 −0.640 −0.731 −0.746
2 S1 −0.303 −0.711 −0.823 −0.839
3 delta(GS-S1) −0.234 0.071 0.092 0.093

4
5a

GS −0.549 −0.660 −0.758 −0.776
5 S1 −0.634 −0.779 −0.905 −0.925
6 delta(GS-S1) 0.085 0.119 0.147 0.149

The analysis of the frontier MOs for the ground states in the solvents (DMSO, MeOH,
EtOH) and the gas phase showed that both HOMO and LUMO frontier orbitals are localized
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chiefly on the polymethine chain atoms, which is known to be typical for merocyanine
dyes [22] (Table 8, See Supplementary Materials Tables S1–S8). Opposite to mono(enamino)
derivative 4a, bis(enamino) derivative 5a exhibited a complete absence of the electron
density at the carbonyl moiety of the conjugation chain for the HOMO, whereas the LUMO
localization involves the whole π-conjugation, indicating the ICT effect under excitation.
This feature can be connected with a large Stokes shift of bis(enamino) derivative 5a and
the red-shifted emission compared to 4a.

Table 8. Ground state frontier orbitals of compounds 4a and 5a in MeOH a.

Entry Compound HOMO LUMO

1 4a
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Thus, a convenient method of 4-pyrone functionalization is developed via enamina-
tion of 2-methyl-4-pyrones with DMF-DMA. Enamino-substituted 4-pyrones were able
to react with nucleophiles and 1,3-dipoles with the substitution of the dimethylamino
group and the formation of conjugated push-pull and isoxazolyl-substituted 4-pyrones,
respectively. The transformations occured with high chemoselectivity without 4-pyrone
ring opening and provided a convenient platform for the synthesis and design of 4-pyrone-
based fluorophores. For the first time, the solvatochromism of 4-pyrones in protic solvents
due to specific solvation was discovered, leading to a strong increase in the fluorescence
intensity compared to aprotic solvents. 4-Pyrones bearing two enamino fragments show
a higher quantum yield and significant Stokes shift, which can be explained by their
stronger push-pull character. The prepared pyrone merocyanines are of interest due to
attractive photophysical properties and easy modification of the conjugated chain, which
can contribute to the development of the synthesis of new organic fluorophores.

3. Materials and Methods

NMR spectra were recorded on Bruker DRX-400 (Bruker BioSpin GmbH, Ettlingen,
Germany, work frequencies: 1H, 400 MHz; 13C, 101 MHz; 19F, 376 Hz), Bruker Avance-400
(Bruker BioSpin GmbH, Rheinstetten, Germany, work frequencies: 1H, 400 MHz; 13C,
101 MHz), Bruker Avance III-500 (Bruker BioSpin GmbH, Rheinstetten, Germany, work
frequencies: 1H, 500 MHz; 13C, 126 MHz), and Bruker Avance NEO (Bruker BioSpin GmbH,
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work frequencies: 1H, 600 MHz; 13C, 151 MHz) spectrometers in DMSO-d6 or CDCl3. The
chemical shifts (δ) are reported in ppm relative to the internal standard TMS (1H NMR),
C6F6 (19F NMR), and residual signals of the solvents (13C NMR). IR spectra were recorded
on a Shimadzu IRSpirit-T (Shimadzu Corp., Kyoto, Japan) spectrometer using an attenuated
total reflectance (ATR) unit (FTIR mode, diamond prism); the absorbance maxima (ν) are
reported in cm−1. Electron absorption spectra were obtained with a Shimadzu UV-1900
(Shimadzu Corp.) spectrophotometer; fluorescence spectra were obtained with a Shimadzu
RF-6000 (Shimadzu Corp.) fluorescence spectrophotometer.

Mass spectra (ESI-MS) were measured with a Waters Xevo QTof instrument (Waters
Corp., Milford, MA, USA). Elemental analyses were performed on an automatic analyzer
PerkinElmer PE 2400 (Perkin Elmer Instruments, Waltham, MA, USA). Melting points
were determined using a Stuart SMP40 melting point apparatus (Bibby Scientific Ltd.,
Stone, Staffordshire, UK). Column chromatography was performed on silica gel (Merck
60, 70–230 mesh). All solvents used were dried and distilled by standard procedures.
2-Methyl-6-styryl-4-pyrones [15], esters of 6-methyl-4-pyrone-2-carboxylic acid [40,41],
2-tert-butyl-6-methyl-4-pyrone [42], and 2-methyl-6-phenyl-4-pyrone [42] were prepared
according to the literature procedure.

3.1. Quantum Mechanical Calculations

The ground state molecular geometry of the compounds under investigation was fully
optimized at density functional theory (DFT) level, both in vacuo and in the solvated phase
(DMSO, EtOH, MeOH). For all geometry optimizations, the B3LYP hybrid functional [43]
coupled with the 6-31G(d,p)++ basis set was chosen. Solvent effects were taken into account
via the implicit conductor-like polarizable continuum model (C-PCM). For the evaluation
of energetics, Solvation Model Density (SMD) parametrization was employed [44]. The
vibrational frequencies and thermochemicals were computed in harmonic approximation
at T = 298.15 K and p = 1 atm, and no imaginary frequencies were found.

The UV-vis absorption spectra for the equilibrium geometries were calculated at time-
dependent density functional theory (TD-DFT) level, accounting for S0→ Sn (n = 1 to 7).
The nature of the vertical excited electronic state was analyzed both in vacuo and in the
solvated phase.

The first singlet excited state (S1) geometry was optimized using analytical gradients
and the first transitions S1→S0 of the emission. Properties of the excited states were
calculated using the long-range corrected functional CAM-B3LYP [45,46] coupled with
the 6-31G(d,p)++ basis set. The non-equilibrium solvation regime was set for vertical
excited states calculations in the solvent phase, whereas the equilibrium solvation was
used for adiabatic ones. All calculated UV-vis spectra were plotted as Gaussian curves with
wavelengths of absorption/emission maxima as an expected value and σ = 0.4 eV.

The integration grid for the calculations was set to 96 radial shells and 302 angu-
lar points.

The RMS gradient convergence tolerance was set to 10−7 Hartree/Bohr for GS opti-
mizations and to 10−5 Hartree/Bohr for S1 optimizations. The density matrix convergence
threshold for the self-consistent field was set to 10−5 a.u. for all DFT and to 10−6 a.u. for all
TD-DFT optimizations.

All calculations were performed using the US GAMESS (ver. 30 September 2021, R2
Patch 1) software package for Linux x64 [47]. Frontier MOs were plotted with MacMolPlt
software (ver. 7.7) [48]. Electron density difference maps were calculated with the use of
Multiwfn v3.8 [49].

3.2. Synthesis of Compounds 2

Corresponding 4-pyrone 1 (1.2 mmol) was heated with DMF-DMA (429.0 mg, 3.6 mmol),
N-methylimidazole (0.3 mmol for 2a–c,e; 4.8 mmol for 2d; 3.6 mmol for 2f,g) in an autoclave
at 100 ◦C (for 2c,e) or 120 ◦C (for 2a,b,d,f,g) for the needed time. For pyrones 2a–c, the
reaction mixture was treated by boiling n-heptane (40 mL). The solvent was decanted and
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evaporated to 2 mL, and the solid was filtered. For products 2d,f,g, the reaction mixture
was treated with Et2O and the solid that formed was filtered. Pyrone 2e was isolated by
flash-chromatography with the use of CHCl3 as an eluent.

(E)-2-(Tert-butyl)-6-(2-(dimethylamino)vinyl)-4H-pyran-4-one (2a). The reaction was car-
ried out for 15 h. Yield 191.2 mg (72%), yellow powder, mp 128–130 ◦C. IR (ATR) ν 2962,
2907, 2870, 1639, 1564, 1386, 1364, 1104. 1H NMR (500 MHz, DMSO-d6) δ 1.23 (9H, s, t-Bu),
2.90 (6H, br.s, NMe2), 4.82 (1H, d, J = 13.2 Hz, =CH(α)), 5.62 (1H, d, J = 2.1 Hz, CH), 5.77
(1H, d, J = 2.1 Hz, CH), 7.26 (1H, d, J = 13.2 Hz, =CH (β)). 13C NMR (126 MHz, CDCl3) δ
28.1, 35.8, 40.8 (br.s. NMe2), 88.0, 104.8, 108.9, 144.8, 165.8, 172.8, 180.5. Anal. Calculated for
C13H19NO2: C 70.56; H 8.65; N 6.33. Found: C 70.58; H 8.76; N 6.33.

(E)-2-(2-(Dimethylamino)vinyl)-6-phenyl-4H-pyran-4-one (2b). The reaction was carried
out for 12 h. Yield 153.5 mg (53%), yellow powder, mp 200 ◦C (destr.). IR (ATR) ν 3056,
2910, 1627, 1539, 1381, 1349, 1101. 1H NMR (400 MHz, DMSO-d6) δ 2.95 (6H, s, NMe2),
4.92 (1H, d, J = 13.3, =CH(α)), 5.78 (1H, d, J = 2.2 Hz, H-3), 6.61 (1H, d, J = 2.2 Hz, H-5),
7.47 (1H, d, J = 13.3 Hz, =CH(β)), 7.52 (3H, m, Ph), 7.94 (2H, m, H-2, H-6 Ph). 13C NMR
(101 MHz, DMSO-d6) δ 86.9, 104.3, 110.1, 126.1, 129.4, 131.1, 132.0, 146.7, 160.4, 166.3, 178.3
(NMe2 was not observed). HRMS (ESI) m/z [M + H]+. Calculated for C15H16NO2: 242.1189.
Found: 242.1103.

(E)-2-(2-(Dimethylamino)vinyl)-6-(trifluoromethyl)-4H-pyran-4-one (2c). The reaction was
carried out for 5 h. Yield 120.3 mg (43%), grey powder, mp 71–72 ◦C. IR (ATR) ν 3071, 2909,
1669, 1557, 1341, 1267, 1078, 959. 1H NMR (400 MHz, CDCl3) δ 2.99 (6H, s, NMe2), 4.75
(1H, d, J = 12.6 Hz, =CH(α)), 5.84 (1H, s), 6.84 (1H, s), 7.18 (1H, d, J = 12.6 Hz, =CH(β)).
19F NMR (376 MHz, CDCl3) δ 90.2 (s, CF3). 13C NMR (126 MHz, DMSO-d6) δ 36.8 (br.s),
44.0 (br.s), 84.9, 103.5, 113.6 (q, J = 2.2 Hz, C-3), 118.7 (q, J = 273.2 Hz, CF3), 147.6, 148.6 (q,
J = 38.1 Hz, C-2), 166.9, 175.3. HRMS (ESI) m/z [M + H]+. Calculated for C10H11F3NO2:
234.0742. Found: 234.0735.

Methyl (E)-6-(2-(dimethylamino)vinyl)-4-oxo-4H-pyran-2-carboxylate (2d). The reaction
was carried out for 6 h. Yield 72.3 mg (27%), yellow powder, mp 130–132 ◦C. IR (ATR)
ν 3064, 2909, 1745, 1632, 1550, 1351, 1098, 959. 1H NMR (500 MHz, CDCl3) δ 2.97 (6H, s,
NMe2), 4.76 (1H, d, J = 13.0 Hz, =CH(α)), 5.89 (1H, d, J = 2.3 Hz, H-5), 6.88 (1H, d, J = 2.3
Hz, H-3), 7.32 (1H, d, J = 13.0 Hz, =CH(β)). 13C NMR (126 MHz, CDCl3) δ 40.1 (br.s, NMe2),
53.1, 86.9, 106.9, 118.7, 146.9, 150.0, 161.1, 166.8, 178.7. Anal. Calculated for C11H13NO4:
C 59.41; H 5.72; N 5.91. Found: C 59.19; H 5.87; N 6.27.

2-((E)-2-(Dimethylamino)vinyl)-6-((E)-styryl)-4H-pyran-4-one (2e). The reaction was
carried out for 4 h. Yield 70.6 mg (22%), yellow powder, mp 75–77 ◦C. IR (ATR) ν 3055,
1642, 1610, 1524, 1397, 1157, 1103, 749. 1H NMR (500 MHz, CDCl3) δ 2.98 (6H, s, NMe2),
4.79 (1H, d, J = 13.1 Hz, -CH=C-N), 5.84 (1H, d, J = 1.4 Hz, CH), 6.12 (1H, d, J = 1.4 Hz, CH),
6.66 (1H, d, J = 16.1 Hz, -CH=C-Ar), 7.24 (1H, d, J = 13.1 Hz, =CH-N), 7.27 (1H, d, J = 16.1
Hz, =CH-Ar), 7.39 (2H, t, J = 7.3 Hz, H-3, H-5 Ph), 7.51 (2H, d, J = 7.3 Hz, H-2, H-6 Ph).
13C NMR (126 MHz, CDCl3) δ 40.8, 87.9, 105.6, 113.4, 120.6, 127.3, 128.9, 129.3, 134.1, 135.3,
145.5, 159.5, 165.7, 179.9. HRMS (ESI) m/z [M + H]+. Calculated for C17H18NO2: 268.1338.
Found: 268.1342.

2-((E)-4-(Dimethylamino)styryl)-6-((E)-2-(dimethylamino)vinyl)-4H-pyran-4-one (2f). The
reaction was carried out for 3 h. Yield 268.2 mg (72%), brown crystals, mp 205–206 ◦C. IR
(ATR) ν 2802, 1596, 1520, 1386, 1357, 1154, 1100. 1H NMR (400 MHz, DMSO-d6) δ 2.97 (12H,
s, 2NMe2), 4.87 (1H, d, J = 13.2 Hz, -CH=C-N), 5.65 (1H, d, J = 2.1 Hz, CH), 5.93 (1H, d,
J = 2.1 Hz, CH), 6.69 (1H, d, J = 16.2 Hz, -CH=C–Ar), 6.73 (2H, d, J = 8.8 Hz, H-3, H-5 Ar),
7.36 (1H, d, J = 16.2 Hz, =CH–Ar), 7.48 (1H, d, J = 13.2 Hz, =CH–N), 7.53 (2H, d, J = 8.8 Hz,
H-2, H-6 Ar). 13C NMR (101 MHz, DMSO-d6) δ 39.7, 86.6, 103.8, 111.1, 111.9, 115.0, 122.9,
128.9, 134.2, 146.1, 150.9, 160.1, 165.2, 177.9 (NMe2 was not observed). Anal. Calculated for
C19H22N2O2: C 73.52; H 7.14; N 9.03. Found: C 73.47; H 7.27; N 9.10.

2-((E)-2-(Dimethylamino)vinyl)-6-((E)-4-methoxystyryl)-4H-pyran-4-one (2g). The reaction
was carried out for 3 h. Yield 185.5 mg (51%), brown crystals, mp 155–157 ◦C. IR (ATR) ν
3070, 2967, 1637, 1612, 1549, 1383, 1346, 1096, 1020, 937. 1H NMR (400 MHz, DMSO-d6)
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δ 2.96 (6H, s, 2NMe2), 3.80 (3H, s, OMe), 4.88 (1H, d, J = 13.2 Hz, -CH=C-N), 5.67 (1H, d,
J = 2.1 Hz, CH), 6.00 (1H, d, J = 2.1 Hz, CH), 6.85 (1H, d, J = 16.2 Hz, -CH=C–Ar), 6.99 (2H,
d, J = 8.8 Hz, H-3, H-5, Ar), 7.43 (1H, d, J = 16.2 Hz, =CH–Ar), 7.51 (1H, d, J = 13.2 Hz,
=CH–N), 7.65 (2H, d, J = 8.8 Hz, H-2, H-6, Ar). 13C NMR (101 MHz, DMSO-d6) δ 55.2,
86.5, 103.9, 112.2, 114.3, 118.2, 128.1, 129.0, 133.4, 146.3, 159.5, 160.1, 165.4, 177.9 (the NMe2
group was not observed). HRMS (ESI) m/z [M + H]+. Calculated for C18H20NO3: 298.1443.
Found: 298.1450.

3.3. Synthesis of Compounds 4

(E)-2-(2-(Dimethylamino)vinyl)-6-methyl-4H-pyran-4-one (4a). 2,6-Dimethyl-4-pyrone
(3a) (0.202 g, 1.63 mmol), DMF-DMA (0.583 g, 4.89 mmol) and N-methylimidazole (66.9 mg,
0.815 mmol) were heated at 120 ◦C in an autoclave for 15 h. The reaction mixture was
treated with boiling n-heptane (40 mL) to extract product 4a. The residue was diluted with
Et2O to give 0.0876 g (23%) of brown needles of pyrone 5a (mp 203–204 ◦C). The solution
of n-heptane was evaporated to 2 mL, and the precipitate was filtered. Yield 0.0479 g (17%),
yellow powder, mp 109–111 ◦C. IR (ATR) ν 3058, 2912, 1652. 1557, 1394, 1376, 1098. 913.
1H NMR (400 MHz, CDCl3) δ 2.21 (3H, s, Me), 2.91 (6H, s, NMe2), 4.71 (1H, d, J = 13.2 Hz,
=CH(α)), 5.75 (1H, d, J = 2.2 Hz, CH), 5.91 (1H, d, J = 2.2 Hz, CH), 7.12 (1H, d, J = 13.2 Hz,
=CH(β)). 13C NMR (151 MHz, CDCl3) δ 19.5, 86.8, 103.5, 112.5, 146.3, 163.2, 166.4, 178.5
(NMe2 was not observed). The NMR spectra are in accordance with the literature data [13].

(E)-3-Bromo-2-(2-(dimethylamino)vinyl)-6-methyl-4H-pyran-4-one (4b). 2,6-Dimethyl-
3-bromo-4-pyrone (3b) (100 mg, 0.493 mmol), DMF-DMA (70.6 mg, 0.592 mmol), and
N-methylimidazole (60.8 mg, 0.740 mmol) were heated in an autoclave for 8 h at 120 ◦C.
The reaction was monitored by TLC. After completion of the reaction (TLC monitoring),
the product was filtered and washed with Et2O (2 mL). The compound was further purified
by column chromatography (CHCl3:EtOH = 10:0.5). Yield 102 mg (80%), yellow powder,
mp 162–163 ◦C. IR (ATR) ν 3063, 2918, 1661, 1558, 1421, 1270, 1007, 945, 773. 1H NMR
(500 MHz, CDCl3) δ 2.23 (3H, s, Me), 3.01 (6H, s, NMe2), 5.27 (1H, d, J = 13.0 Hz, =CH(α)),
6.00 (1H, s, H-5), 7.24 (1H, d, J = 13.0 Hz, =CH(β)). 13C NMR (126 MHz, CDCl3) δ 19.3, 38.3,
44.0, 87.1, 103.1, 110.7, 147.2, 161.7, 162.8, 173.6. HRMS (ESI) m/z [M + H]+. Calculated for
C15H16NO2: 258.0085. Found: 258.0130.

3.4. General Method for the Synthesis of Bis(enamino)-substituted 4-Pyrones 5a,b

A mixture of 2,6-dimethyl-4-pyrone 3a or 3b (0.806 mmol), DMF-DMA (480 mg,
4.03 mmol), and N-methylimidazole (33.0 mg, 0.403 mmol) was heated in an autoclave for
15 h (for 5a) or 10 h (for 5b) at 130 ◦C. Then the reaction mixture was diluted with Et2O
(5 mL) and the product filtered.

2,6-Bis((E)-2-(dimethylamino)vinyl)-4H-pyran-4-one (5a). Yield 96.3 mg (51%), brown
crystals, mp 203–204 ◦C. IR (ATR) ν 2990, 2810, 1640, 1615, 1542, 1360, 1335, 1095, 947.
1H NMR (400 MHz, DMSO-d6) δ 2.89 (12H, s, 2NMe2), 4.75 (2H, d, J = 13.3 Hz, =CH(α)),
5.43 (2H, s, H-3, H-5), 7.29 (2H, d, J = 13.3 Hz, =CH(β)). 13C NMR (100 MHz, DMSO-d6) δ
40.0–41.0 (br.s), 87.2, 103.2, 144,9, 163.5, 177.9. HRMS (ESI) m/z [M + H]+. Calculated for
C13H19N2O2: 235.1447. Found: 235.1448.

3-Bromo-2,6-bis((E)-2-(dimethylamino)vinyl)-4H-pyran-4-one (5b). The product was addi-
tionally purified by column chromatography (CHCl3:EtOH = 10:0.5). Yield 134 mg (53%),
dark orange powder, mp 185–186 ◦C. IR (ATR) ν 3398, 3020, 2916, 1630, 1487, 1353, 1105,
947, 753. 1H NMR (500 MHz, CDCl3) δ 2.91 (6H, s, NMe2), 2.97 (6H, s, NMe2), 4.79 (1H,
d, J = 13.2 Hz, CH(α)), 5.24 (1H, d, J = 13.0 Hz, =CH(α)), 5.75 (1H, s, H-5), 7.01 (1H, d,
J = 13.2 Hz, CH(β)), 7.14 (1H, d, J = 13.0 Hz, =CH(β)). 13C NMR (126 MHz, CDCl3) δ 40.7
(br.s, NMe2), 87.6, 87.9, 102.1, 102.9, 144.7, 146.2, 160.5, 163.0, 173.6. HRMS (ESI) m/z
[M + H]+. Calculated for C15H16NO2: 313.0507. Found: 313.0550.
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3.5. General Method for the Preparation of
2-((E)-4-Methoxystyryl)-6-((E)-2-aminovinyl)-4H-pyran-4-one 6a–c

Enamino-substituted pyrone 2g (75.7 mg, 0.255 mmol) and N-nucleophile (0.31 mmol)
or p-phenylenediamine (13.7 mg, 0.127 mmol) were stirred at 90 ◦C for 3 h in AcOH (1 mL).
For 6a,c, the precipitate was filtered and washed with EtOH. For 6b, the reaction mixture
was diluted with H2O (5 mL). The solid that formed was recrystallized from EtOH–toluene.

2-((E)-4-Methoxystyryl)-6-((E)-2-(phenylamino)vinyl)-4H-pyran-4-one (6a). Yield 75.6 mg
(86%), yellow powder, mp 229–231 ◦C. IR (ATR) ν 3272, 3078, 2958, 1698, 2637, 1596, 1495,
1278, 1269. 1H NMR (400 MHz, DMSO-d6) δ 3.81 (3H, s, Me), 5.57 (1H, d, J = 13.3 Hz,
=CH(α)), 5.99 (1H, d, J = 1.9 Hz, CH), 6.14 (1H, d, J = 1.9 Hz, CH), 6.92 (1H, d, J = 16.3 Hz,
=CH(α)′), 6.93 (1H, t, J = 7.7 Hz, H-4 Ph), 7.01 (2H, d, J = 7.9 Hz, H-3, H-5 Ar), 7.16 (2H,
d, J = 7.9 Hz, H-2, H-6 Ph), 7.31 (2H, t, J = 7.8 Hz, H-3, H-5 Ph), 7.50 (1H, d, J = 16.3 Hz,
=CH(β)′), 7.66 (2H, d, J = 8.6 Hz, H-2, H-6 Ar), 7.92 (1H, t, J = 12.7 Hz, =CH(β)), 9.58 (1H,
d, J = 12.2 Hz, NH). 13C NMR (100 MHz, DMSO-d6) δ 55.7, 94.8, 107.0, 112.6, 114.9, 115.3,
118.5, 121.5, 128.5, 129.6, 129.9, 134.6, 136.3, 142.0, 160.8, 160.7, 164.4, 178.7. HRMS (ESI)
m/z [M + H]+. Calculated for C22H20NO3: 346.1456. Found: 346.3980.

2-((E)-2-(Diphenylamino)vinyl)-6-((E)-4-methoxystyryl)-4H-pyran-4-one (6b). Yield 88.1
mg (82%), yellow powder, mp 225–226 ◦C. IR (ATR) ν 3046, 3004, 2836, 1644, 1576, 1489,
1237, 1173. 1H NMR (500 MHz, DMSO-d6) δ 3.78 (3H, s, Me), 5.07 (1H, d, J = 13.5 Hz,
=CH(α)), 5.92 (1H, s, CH), 6.14 (1H, s, CH), 6.92 (1H, d, J = 16.0 Hz, =CH(α)′), 7.00 (2H, d,
J = 7.9 Hz, H-3, H-5 Ar), 7.20 (4H, d, J = 7.5 Hz, H-2, H-6 Ph), 7.29 (2H, t, J = 7.1 Hz, H-4
Ph), 7.43 (1H, d, J = 16.0 Hz, =CH(β)′), 7.48 (4H, t, J = 7.2 Hz, H-3, H-5 Ph), 7.60 (2H, d,
J = 8.6, H-2, H-6 Ar), 8.09 (1H, d, J = 13.5 Hz, =CH(β)). 13C NMR (125 MHz, DMSO-d6)
δ 55.3, 97.0, 107.7, 112.0, 114.3, 117.9, 123.8, 125.6, 127.9, 129.0, 129.9, 134.3, 139.5, 145.5,
160.2, 160.3, 163.2, 178.2. HRMS (ESI) m/z [M + H]+. Calculated for C28H24NO3: 422.1756.
Found: 422.1747.

6,6′-((1E,1′E)-(1,4-Phenylenebis(azanediyl))bis(ethene-2,1-diyl))bis(2-((E)-4-methoxystyryl)-
4H-pyran-4-one) (6c). Yield 63.5 mg (82%), burgundy powder, mp 204–205 ◦C. IR (ATR) ν
3040, 2934, 2839, 1637, 1504, 1396, 1253, 1152. 1H NMR (500 MHz, DMSO-d6) δ 3.78 (6H,
s, 2Me), 5.52 (2H, d, J = 13.1 Hz, =CH(α)), 5.95 (2H, d, J = 2.1 Hz, CH), 6.12 (2H, d, J = 2.1
Hz, CH), 6.92 (2H, d, J = 16.2 Hz, =CH(α)’), 6.97 (4H, d, J = 8.6 Hz, H-3, H-5 Ar), 7.15 (4H,
s, Ar), 7.49 (2H, d, J = 16.2 Hz, =CH(β)’), 7.66 (4H, d, J = 8.6 Hz, H-2, H-6 Ar), 7.87 (2H, t,
J = 12.0 Hz, =CH(β)), 9.52 (2H, d, J = 12.0 Hz, NH). 13C NMR (100 MHz, DMSO-d6) δ 55.7,
106.4, 112.6, 114.8, 116.9, 118.6, 128.5, 129.6, 136.3, 160.7, 164.7, 172.4, 178.6. HRMS (ESI)
m/z [M + H]+. Calculated for C38H33N2O6: 613.2339. Found: 613.6820.

2-((E)-2-(Benzylamino)vinyl)-6-((E)-4-methoxystyryl)-4H-pyran-4-one (6d). Enamino-substituted
pyrone 2g (75.7 mg, 0.255 mmol) and benzylamine (32.8 mg, 0.306 mmol) were refluxed
for 7 h in MeCN (1 mL). The reaction mixture was diluted with H2O (5 mL). The solid
that formed was filtered and recrystallized from hexane–toluene. Yield 69.7 mg (76%),
yellow powder, mp 144–145 ◦C. IR (ATR) ν 2900, 1651, 1520, 1394, 1250, 1169, 1027. 1H
NMR (400 MHz, DMSO-d6) δ 3.80 (3H, s, Me), 4.33 (2H, d, J = 5.3 Hz, CH2), 5.04 (1H, d,
J = 13.4 Hz, =CH(α)), 5.66 (1H, s, J = 2.2 Hz, CH), 6.00 (1H, s, J = 2.2 Hz, CH), 6.85 (2H, d,
J = 16.2 Hz, =CH(α)′), 6.99 (2H, d, J = 8.7 Hz, H-3, H-5 Ar), 7.25–7.31 (1H, m, Ph), 7.31–7.40
(6H, m), 7.43 (1H, br.s, NH), 7.61 (2H, d, J = 8.7 Hz, H-2, H-6 Ar). 13C NMR (101 MHz,
DMSO-d6) δ 31.1, 55.7, 87.5, 104.9, 112.7, 114.8, 118.8, 127.6, 127.8, 128.5, 128.9, 129.5, 133.7,
159.9, 160.6, 165.8, 178.5. HRMS (ESI) m/z [M + H]+. Calculated for C22H20NO3: 346.1456.
Found: 346.3980.

2,6-Bis((E)-2-(phenylamino)vinyl)-4H-pyran-4-one (6e). Pyrone 5a (100 mg, 0.427 mmol)
and aniline (99.4 g, 1.07 mmol) were stirred at room temperature for 24 h in AcOH (1.5
mL). The precipitate was filtered and washed with EtOH. Yield 77.5 mg (55%), orange
powder, mp 217–218 ◦C. IR (ATR) ν 3221, 3054, 1657, 1645, 1544, 1493, 1278, 1148, 945. 1H
NMR (500 MHz, DMSO-d6) δ 5.52 (2H, d, J = 13.3 Hz, =CH(α)), 5.77 (2H, s, CH), 6.92 (2H,
t, J = 7.3 Hz, H-2, H-6 Ph), 7.13 (4H, d, J = 7.9 Hz, H-3, H-5 Ph), 7.87 (2H, t, J = 12.8 Hz,
=CH(β)), 9.49 (2H, d, J = 12.3 Hz, NH). 13C NMR (126 MHz, DMSO-d6) δ 94.4, 106.0, 114.6,
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120.8, 129.4, 135.2, 141.9, 162.5, 178.2. Anal. Calculated for C21H18N2O2: C 76.34; H 5.49;
N 8.48. Found: C 76.42; H 5.56; N 8.43.

3.6. Synthesis of Compounds 7a,b

2-((E)-4-Methoxystyryl)-6-((E)-2-(2-methyl-1H-indol-3-yl)vinyl)-4H-pyran-4-one (7a). Styryl-4-
pyrone 2g (105 mg, 0.353 mmol) and 2-methylindole (55.6 mg, 0.424 mmol) were refluxed in
AcOH (1 mL) for 7 h. The precipitate formed was filtered and washed with EtOH. Yield
0.0835 g (62%), yellow powder, mp 284–285 ◦C. IR (ATR) ν 3131, 3035, 2958, 2928, 2834,
1604, 1556, 1394. 1H NMR (400 MHz, DMSO-d6) δ 2.63 (3H, s, Me), 3.82 (3H, s, OMe), 6.25
(1H, d, J = 2.2 Hz, CH), 6.37 (1H, d, J = 2.2 Hz, CH), 6.85 (1H, d, J = 16.2 Hz, =CH(α)), 7.00
(1H, d, J = 16.2 Hz, =CH(α)), 7.03 (2H, d, J = 8.9 Hz, H-3, H-5, Ar), 7.12–7.19 (2H, m, H-5,
H-6 Ind), 7.35–7.42 (1H, m, H-7 Ind), 7.58 (1H, d, J = 16.1 Hz, =CH(β)), 7.68 (2H, d, J = 8.7
Hz, H-2, H-6 Ar), 7.79 (1H, d, J = 16.2 Hz, =CH(β)), 7.98–8.04 (1H, m, H-4 Ind), 11.65 (1H,
s, NH). 13C NMR (151 MHz, DMSO-d6) δ 12.2, 55.8, 109.4, 111.0, 111.8, 113.1, 113.2, 115.0,
118.5, 120.1, 121.0, 122.2, 126.2, 128.4, 129.7, 135.2, 136.5, 141.4, 161.0, 161.3, 163.3, 179.3.
HRMS (ESI) m/z [M + H]+. Calculated for C17H18NO2: 268.1338. Found: 268.1342.

2,6-Bis((E)-2-(2-methyl-1H-indol-3-yl)vinyl)-4H-pyran-4-one (7b). Bis(enamino)-substituted
4-pyrone 5a (100 mg, 0.353 mmol) and 2-methylindole (55.6 mg, 0.424 mmol) was refluxed
in AcOH (1 mL) for 10 h. The precipitate formed was filtered and washed with EtOH. Yield
74.6 mg (52%), orange powder, mp >270 ◦C. IR (ATR) ν 3178, 3056, 1631, 1611, 1539, 1399,
1274, 1153, 936. 1H NMR (500 MHz, DMSO-d6) δ 2.64 (6H, s, 2Me), 6.28 (2H, s, H-3, H-5),
6.87 (2H, d, J = 16.1 Hz, =CH(α)), 7.13–7.19 (4H, m, H-5, H-6 Ind), 7.36–7.41 (2H, m, H-7
Ind), 7.82 (2H, d, J = 16.1 Hz, =CH(β)), 7.98–8.04 (2H, m, H-4 Ind), 11.7 (2H, s, NH). 13C
NMR (126 MHz, DMSO-d6) δ 11.6, 108.8, 110.7, 111.3, 112.8, 119.6, 120.5, 121.7, 125.6, 128.4,
136.0, 140.7, 162.1, 179.0. HRMS (ESI) m/z [M + H]+. Calculated for C25H22NO3: 384.1600.
Found: 384.1608.

3.7. Synthesis of 6-(3-Phenylisoxazol-4-yl)-4H-pyran-4-ones 8a,b

2-((Dimethylamino)vinyl)-6-styryl-4H-pyran-4-one 2f,g (0.32 mmol) and N-hydroxybenzimidoyl
chloride (60.7 mg, 0.390 mmol) were stirred for 4 days in dry 1,4-dioxane at room tempera-
ture. The precipitate that formed was filtered and washed with toluene.

(E)-2-(4-(Dimethylamino)styryl)-6-(3-phenylisoxazol-4-yl)-4H-pyran-4-one (8a). Yield 81.2 mg
(66%), brown crystals, mp 199–200 ◦C. IR (ATR) ν 3078, 2909, 1587, 1523, 1350, 1127, 940.
1H NMR (400 MHz, DMSO-d6) δ 2.97 (6H, s, NMe2), 6.20 (1H, s, CH), 6.33–6.48 (2H, m),
6.65 (1H, d, J = 16.5 Hz, =CH(β)), 6.70 (2H, d, J = 7.6 Hz, Ar), 7.24 (2H, d, J = 7.6, Ar),
7.47–7.71 (5H, m, Ph), 9.82 (1H, s, H-5 Isox). 13C NMR (100 MHz, DMSO-d6) δ 112.3,
113.4, 113.7, 114.0, 122.7, 128.2, 129.2, 129.4, 129.5, 130.8, 136.3, 151.7, 154.7, 159.9, 162.2,
162.9, 178.5 (NMe2 + 1C were not observed). HRMS (ESI) m/z [M + H]+. Calculated for
C24H21N2O3: 388.1522. Found: 388.1524.

((E)-2-(4-Methoxystyryl)-6-(3-phenylisoxazol-4-yl)-4H-pyran-4-one (8b). Yield 95.1 mg
(80%), light yellow crystals, mp 221–222 ◦C. IR (ATR) ν 3048, 2837, 1657, 1626, 1512, 1379,
823. 1H NMR (400 MHz, DMSO-d6) δ 3.80 (3H, s, OMe), 6.27 (1H, s, CH), 6.42 (1H, s, CH),
6.46 (1H, d, J = 15.3 Hz, =CH(α)), 6.83 (1H, d, J = 15.3 Hz, =CH(β)), 6.97 (2H, br.s, Ar), 7.37
(2H, br.s, Ar), 7.45–7.78 (5H, m, Ph), 9.82 (1H, s, H-5 Isox). 13C NMR (126 MHz, DMSO-d6)
δ 54.9, 112.5, 113.0, 113.3, 114.5, 127.3, 128.2, 128.5, 128.9, 129.7, 130.3, 154.8, 157.9, 169.1,
161.1, 166.4, 177.4 (2C were not observed). Anal. Calculated for C27H17NO4: C 74.38; H
4.61; N 3.77. Found: C 74.15; H 4.56; N 3.69.

3.8. Synthesis of compound 9

2,6-Bis(3-phenylisoxazol-4-yl)-4H-pyran-4-one (9). Bis(enamino)-substituted pyrone 5a
(100 mg, 0.427 mmol) and N-hydroxybenzimidoyl chloride (146 mg, 0.938 mmol) were
refluxed in dry dioxane (2 mL) for 4 h. The precipitate formed was filtered and washed with
EtOH. Yield 64.0 mg (39%), beige powder, mp 238–239 ◦C. IR (ATR) ν 3066, 2890, 1657, 1612,
1549, 1445, 1404, 1143, 913. 1H NMR (500 MHz, DMSO-d6) δ 6.19 (2H, s, H-3, H-5), 7.51–7.55
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(m, 8H, Ph); 7.55–7.60 (m, 2H, Ph), 9.13 (s, 2H, Isox). 13C NMR (126 MHz, DMSO-d6) δ 112.5,
113.1, 127.1, 128.6, 128.9, 130.3, 155.1, 159.1, 161.3, 177.0. Anal. Calculated for C23H14N2O4:
C 72.25; H 3.69; N 7.33. Found: C 72.13; H 3.84; N 7.45.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/xxx/s1; Table S1: ground state frontier orbitals for compounds 4a and 5a in
vacuo; Table S2: Ground state frontier orbitals for compounds 4a and 5a in DMSO; Table S3: ground
state frontier orbitals for compounds 4a and 5a in ethanol; Table S4: ground state frontier orbitals
for compounds 4a and 5a in methanol; Table S5: frontier orbitals of the first singlet excited state
for the relaxed geometry of compounds 4a and 5a in vacuo; Table S6: frontier orbitals of the first
singlet excited state for the relaxed geometry of compounds 4a and 5a in DMSO; Table S7: frontier
orbitals of the first singlet-excited state for the relaxed geometry of compounds 4a and 5a in ethanol;
Table S8: frontier orbitals of the first singlet-excited state for the relaxed geometry of compounds
4a and 5a in methanol; calculated normalized UV-vis spectra for compounds 4a and 5a in DMSO,
methanol, and ethanol; electron density difference maps for compounds 4a and 5a; the method
of preparation of 2-methyl-6-trifluoromethyl-4-pyrone; full 1H, 19F, and 13C NMR spectra of all
synthesized compounds; Figure S1: Normalized absorption and emission spectra of 4a in DMSO
at a CAM-B3LYP level; Figure S2: Normalized absorption and emission spectra of 4a in ethanol
at a CAM-B3LYP level; Figure S3: Normalized absorption and emission spectra of 4a in methanol
at a CAM-B3LYP level; Figure S4: Normalized absorption and emission spectra of 5a in DMSO
at a CAM-B3LYP level; Figure S5: Normalized absorption and emission spectra of 5a in ethanol
at a CAM-B3LYP level; Figure S6: Normalized absorption and emission spectra of 5a in methanol
at a CAM-B3LYP level; Figure S7: An electron density difference map for the S0→S1 transition of
compound 4a in vacuo; Figure S8: An electron density difference map for the S0→S1 transition of
compound 4a in methanol; Figure S9: An electron density difference map for the S0→S1 transition of
compound 5a in vacuo; Figure S10: An electron density difference map for the S0→S1 transition of
compound 5a in methanol.
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