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Abstract: In this study, keratins were extracted from pig nail waste through the reduction method
using L-cysteine as a reductant. Curcumin was successively incorporated in a mixed solution includ-
ing keratin, gelatin, and glycerin to prepare different kinds of keratin/gelatin/glycerin/curcumin
composite films. The morphology of the keratin/ gelatin/glycerin/curcumin composite films were
examined using scanning electron microscopy. The structures and the molecular interactions between
curcumin, keratin, and pectin were examined using Fourier transform infrared spectroscopy and
X-ray diffraction, and the thermal properties were determined through thermogravimetric analysis.
The tensile strengths of keratin/gelatin/glycerin/curcumin and keratin/gelatin/curcumin composite
films are 13.73 and 12.45 MPa, respectively, and their respective elongations at break are 56.7% and
4.6%. In addition, compared with the control group (no film wrapped on the surface of tomato),
the ratio of weight loss of the keratin (7.0%)/gelatin (10%)/glycerin (2.0%)/curcumin (1.0%) exper-
imental groups is 8.76 ± 0.2%, and the hardness value of the tomatoes wrapped with composite
films is 11.2 ± 0.39 kg/cm3. Finally, the composite films have a superior antibacterial effect against
Staphylococcus aureus and Escherichia coli because of the addition of curcumin. As the concentration
of curcumin reaches 1.0%, the antibacterial activity effect of the film is significantly improved. The
diameter of the inhibition zone of E. coli is (12.16 ± 0.53) mm, and that of S. aureus is (14.532 ± 0.97)
mm. The multifunctional keratin/gelatin/glycerin/curcumin bioactive films have great potential
application in the food packaging industry.

Keywords: pig nail keratin; keratin/gelatin/glycerin/curcumin film; preservation; cherry tomatoes

1. Introduction

Cherry tomatoes are a source of nutrients and other healthy minerals, including
lycopene, phenolic compounds, and vitamin C, that benefit the human body [1]. However,
similar to other fruits and vegetables, tomatoes are also sensitive to storage environment,
and rot easily during transportation and the market process [2,3]. The weight, firmness,
and color of cherry tomatoes are essential quality indicators; these quality indicators
determine consumer acceptance and market success [4]. Food packaging plays a vital role in
maintaining food quality and senescence properties. Additionally, food packaging ensures
food safety and extends food shelf life [5]. The packaging industry uses a large amount of
non-degradable petroleum-based synthetic plastics annually to mechanically, chemically,
and microbiologically protect food products [6]. The increasing production and usage of
these non-degradable plastic packaging can cause environmental problems [7]. Thus, food
packaging researchers have focused on biodegradable alternatives, such as biopolymers:
carbohydrates, proteins, and lipids [8]. Film packaging with edible, biodegradable, and
antioxidant properties is an innovative packaging technology and a development trend.

Keratin is abundant in nature and a biopolymer material widely used in various fields;
it is preferred over other natural polymers owing to its biocompatibility and biodegradabil-
ity [9–11]. In addition, keratin is a structural fibrous protein, which is the main component
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of wool, feathers, nails, horns, and other epithelial coverings [12]. Studies show that the
performance of keratin films can be improved by combining keratin with natural [13] and
synthetic polymers [14]. Pig nails are rich in protein and amino acids. However, about
a dozen tons of pig nail waste are currently generated and abandoned annually due to
their limited application, resulting in a severe waste of resources. Thus, the reasonable
conversion of waste pig nails into useful biopolymer material can expand its application,
and meet the development trend of green environmental protection.

Gelatin can be obtained from the partial hydrolysis of collagen, and it is widely used
in the food industry for coating fudge, jelly, and other edible items, owing to its good
biocompatibility, biodegradability, and film-forming properties [15,16]. Several studies
show that cracks may appear on thin films synthesized via the sol–gel method, which can
adversely affect the response of any device; thus, cracks in thin films are undesirable [17].
Glycerin can be used during the preparation of the precursor solution to prevent crack
formation [18]. However, the modification of gelatin film with natural active substances can
effectively improve its antioxidant activity. Curcumin (Cur) is one of the major bioactive
compounds of curcuma rhizome, and it is used in medical or pharmacological applications
due to its antioxidant, antibacterial, fall hematic fat, antitumor, anti-inflammatory, chola-
gogic, anticancer, and wound-healing effects [19–22]. Curcumin is often used as a coloring
agent for food packages. Generally, the bioactivities of curcumin make it ideal for food and
medical applications.

Therefore, this study attempted to produce a modified biodegradable packaging film
through a combination of gelatin, keratin, glycerol, and curcumin for the first time, and
their effects on film were investigated. In addition, the effects of curcumin loading on the
physicochemical properties of cherry tomatoes and the growth of S. aureus (staphylococcus
aureus) and E. coli (Escherichia coli) were also evaluated.

2. Results and Discussion
2.1. SEM of Pig Nail Powders and Pig Nail Keratin

To intuitively understand the morphological changes in pig nail powders and pig
nail keratin, they were analyzed via SEM. The result show that the external structure of
the undissolved pig nail powder is neatly arranged (Figure 1a,b). During the process of
dissolution, the overall morphological structure of pig nail powder changes with shedding,
due to the destruction of the intermolecular force and chemical bonds (Figure 1c,d).
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2.2. XRD Analysis of Pig Nail Powders and Pig Nail Keratin

The diffraction peaks of 2θ = 9◦ and 21◦ are related to the structure of α-helix and
β-sheet for keratin, respectively. If there is no, or weak, pretreatment for pig nail powder, it
has its own crystal region, as shown in Figure 2. However, the characteristic peak of pig nail
keratin at 9◦ is significantly weaker than that of pig nail powders, indicating the destruction
of the α-helical structure of pig nail powders because of the dissolution procedure. In
addition, the characteristic peak of pig nail keratin is stronger than that of pig nail powders
at 21◦, indicating an increase in the content of β-sheet structure [23].
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2.3. SEM of the Composite Films

SEM images provide detailed information on the surface and cross-section of the com-
posite films. SEM results show that the surface of 10% pure gelatin film is flat and smooth
(Figure 3a). When the concentration of keratin is 4%, little granules are observed on the
surface of the composite film (Figure 3b). However, with the increasing keratin content in
the sample, the surface of the keratin/gelatin film becomes rough. When the concentration
of keratin is 7%, some granules are observed on the surfaces of the composite (Figure 3c).
Nevertheless, the surface of the 10% keratin composite film is uneven and extremely rough
(Figure 3d). This phenomenon could be attributed to the fact that keratin has a crystal
structure and gelatin has no crystal structure, thus, leading to the phase separation when
mixed with a high concentration of keratin. When the content of keratin is 7%, the surface of
the keratin/gelatin/glycerol film is smooth and tight, with superior uniformity. Hence, the
keratin (7%)/gelatin (10%)/glycerin (2.0%)/curcumin (1.0%) composite film was selected
for follow-up study. Additionally, as shown in Figure 3e,f, few pores are observed in the
cross-section of the composite surface. The cross-section of the composite surface is also
fully cured and possesses a compact structure.
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Figure 3. SEM images of surfaces for (a) pure gelatin film, (b) keratin (4%)/gelatin (10%)/glyc-
erin (2.0%)/curcumin (1.0%) composite film, (c) keratin (7%)/gelatin (10%)/glycerin (2.0%)/cur-
cumin (1.0%) composite film, and (d) keratin (10%)/gelatin (10%)/glycerin (2.0%)/curcumin (1.0%)
composite film. The SEM images of the cross-section of (e,f) keratin (7%)/gelatin (10%)/glycerin
(2.0%)/curcumin (1.0%) composite film.

2.4. Mechanical Property of the Composite Films

Mechanical properties are an important factor used to determine the durability of
edible packaging films [24]. There is no significant difference in tensile strength between ker-
atin (7%)/gelatin (10%)/curcumin (1.0%) (12.45 Mpa) and keratin (7%)/gelatin (10%)/glyc-
erin (2.0%)/curcumin (1.0%) composite films (13.73 Mpa). In addition, the elongation at
break of the keratin (7%)/gelatin (10%)/glycerin (2.0%)/curcumin (1.0%) composite film
is 56.7%, which is higher than that of the keratin (7%)/gelatin (10%)/curcumin (1.0%)
composite films (Figure 4). These phenomena can be explained as follows: when glycerol
is introduced to keratin and gelatin, the hydrogen bond interaction between the keratin,
gelatin, and glycerol hinders the movement and rotation of the molecular chain, resulting
in a highly rigid molecular chain [25].
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Figure 4. Tensile strength and elongation at break properties of keratin (7%)/gelatin (10%)/curcumin
(1.0%) and keratin (7%)/gelatin (10%)/glycerin (2.0%)/curcumin (1.0%) composite films.

2.5. Characterization of Different Kinds of Composite Films

The FTIR spectra of keratin/gelatin/glycerin/curcumin, keratin/gelatin/curcumin,
and keratin are shown in Figure 5A. A special absorption peak of peptide bonds (–CONH–)
is observed, attributed to the characteristics of protein in pig nail keratin and gelatin. The
amide I bands are observed at 1647 cm−1, representing C=O stretching vibration. The
amide II bands observed at 1548 cm−1 represent N-H bending vibrations. Moreover, with
the addition of gelatin, the absorption peak of –CONH– is considerably enhanced. Except
in Figure 5Aa, no considerable absorption peaks of O–H and C–H are observed. However,
Figure 5Ab–Ad show broadband at 3286 and 2921 cm−1, representing the stretching vi-
brations of O–H and C–H of methylene in the methyl group of the gelatin and glycerin.
The peak strength of O–H and C–H increases with the addition of glycerin. The above
results indicate that the combination of keratin, gelatin, glycerin, and curcumin does not
produce new chemical bonds, but completely exists in keratin/gelatin/glycerin/curcumin
composite films.
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The XRD pattern obtained for pure pig nail keratin exhibits broad diffraction peaks
at 2θ = 9◦ and 20◦, which are typical fingerprints of partially crystalline materials. After
the addition of gelatin to the sample, no diffraction peak is observed at 2θ = 9◦, indicating
that the overall crystallinity of the blend films is slightly lower than the crystallinity of the
gelatin, due to the addition of keratin, which contains a small crystalline structure and a
large amorphous region. As shown in Figure 5B, the appearance of a serial of 2θ diffraction
angles at 14◦ confirms the crystalline structure of curcumin [26].
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The thermal properties of the films are shown in Figure 5C. Just for the keratin/gel/gly/
cur film, the keratin films show a three-step thermal degradation pattern, as observed from
the TGA curve. The initial degradation step associated with water loss occurs between
25 ◦C and 130 ◦C, and the second degradation step is observed in the temperature range
of 130–400 ◦C, with a maximum degradation rate obtained at 365 ◦C, which is due to the
degradation of keratin chain backbone. The third step of degradation occurs between 400
and 800 ◦C due to the intramolecular hydrogen bond in the keratin chain structure. As
shown in Figure 5C, the weight loss of the keratin/gel/gly/cur film is higher than that of
pig nail keratin, ranging from 146–310 ◦C. Moreover, the keratin/gel/gly/cur film shows
higher thermal stabilities than the pure pig nail keratin, which is in the range of 310–800 ◦C.
The results show that the addition of gelatin and glycerin could provide effective reinforce-
ment against the thermal degradation of the pig nail keratin matrix, increasing the thermal
stability of the matrix.

2.6. The Application to Preserve Cherry Tomatoes

In this study, the fruits were stored at room temperature without a packing box.
Figure 6A shows the appearance changes in tomatoes packaged with the keratin/gel/gly/cur
composite films with different concentrations of curcumin after 10 days of storage. For
the control group, which is not film packaged, the skins of the tomatoes are considerably
wrinkled. Soft sarcocarp without shape is observed in the cross-section of the tomatoes.
Moreover, the skin color of the tomatoes is dim. However, the tomatoes packaged with the
keratin/gel/gly/cur composite films after 10 days of storage are less wrinkled, and also
have a bright red color and smooth appearance. Moreover, among all the experimental
groups, the tomatoes packaged with the keratin/gel/gly/cur (1.0%) composite film have
better preservation. These results are similar to those reported in the literature [27].

As shown in Figure 6B, the ratio of weight loss the control group (tomatoes without
films) and experiment group shows an increasing trend. However, the ratio of weight loss
for cherry tomatoes wrapped up with the keratin/gel/gly/cur composite films is lower
than that of the control groups. Moreover, the ratio of weight loss (11.98 ± 0.43%) of cherry
tomatoes packaged with the keratin/gel/gly/cur (1.0%) composite film group is lower
than that of other composite films. Cherry tomatoes packaged with composite films are
protected from water and oxygen permeabilities, reducing respiration, transpiration, water
loss, and organic matter consumption [28].

Hardness can be used to determine the texture changes in fruits and vegetables during
storage [29]. As shown in Figure 6C, the hardness of the control and experiment groups
display a decreasing trend during the storage at room temperature, irrespective of the
treatment of composite films. However, the hardness value of cherry tomatoes packaged
with the keratin/gel/gly/cur (1.0%) composite film is 3.25 ± 0.43 kg/cm3, higher than
that of other composite films. In addition, the thickness is important to evaluate the
mechanical properties. The thickness of the keratin/gel/gly/cur (1.0%) composite film is
about 0.10 ± 0.03 mm.

Changes in color coordinates of cherry tomatoes during storage are summarized in
Table 1. The values of luminosity (L*), chroma (C*ab), and hue (H*ab) decrease after
10 days. The results indicate that the color of tomatoes becomes redder and less vivid due
to tissue softening and skin browning. Compared with the control group, the decreases
in values of luminosity (L*), chroma (C*ab), and hue (H*ab) are not very pronounced in
tomatoes packaged with films (Table 1). The reason for this decreased value is that the
process of browning caused by enzymatic and non-enzymatic reactions is delayed through
the application of packaging [30].
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Table 1. Effects of different concentration of curcumin on color attributes of cherry tomatoes stored at
room temperature for 10 days.

Days Control 1 2 3 4 5

Luminosity
(L*)

0 30.25 (0.41) a,u 30.07 (0.61) a,u 30.27 (0.29) a,u 30.92 (0.34) a,u 30.03 (0.31) a,u 30.62 (0.97) a,u

2 28.93 (0.36) b,u 29.27 (0.19) b,u 29.28 (0.89) a,b,u 29.81 (0.14) b,u 29.54 (0.13) a,b,u 30.16 (0.53) a,b,u

4 28.26 (0.18) b,w 28.38 (0.20) b,c,v,w 28.67 (0.16)
b,c,u,v,w 28.85 (0.15) c,u,v 28.63 (0.31) b,c,v,w 29.20 (0.29) b,c,u

6 27.53 (0.17) c,v 27.62 (0.25) c,u,v 28.03 (0.55) c,d,u,v 28.26 (0.26) d,u,v 28.02 (0.48) c,d,u,v 28.61 (0.53) b,c,d,u

8 26.82 (0.46) d,v 27.06 (0.13) d,u,v 27.26 (0.13) d,e,u,v 27.68 (0.13) d,e,u,v 27.60 (0.85) c,d,u,v 28.19 (0.33) c,d,u

10 26.03 (0.18) e,w 26.36 (0.28) d,v 26.80 (0.12) e,v 27.15 (0.34) e,u,v 27.24 (0.49) d,u,v 27.62 (0.19) d,u
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Table 1. Cont.

Days Control 1 2 3 4 5

Chroma
(C*ab)

0 28.94 (0.92) a,u,v,w 28.98 (1.46) a,u,v,w 26.92 (0.47) a,w 27.20 (0.94) a,v,w 29.71 (1.25) a,u,v 31.05 (1.26) a,u

2 27.19 (0.52) a,v,w 28.58 (0.94) a,b,u,v 25.97 (0.24) a,b,w 26.07 (0.77) a,b,w 28.77 (0.64) a,b,u,v 30.11 (0.83) a,u

4 26.98 (1.47) a,u,v 26.88 (0.96) a,b,c,u,v 25.72 (0.30) a,b,v 25.34 (0.71) b,c,v 27.33 (0.32) b,c,u,v 29.04 (1.35) a,u

6 26.40 (1.46) a,u,v,w 26.53 (0.28) b,c,u,v,w 25.68 (1.21) a,b,v,w 24.43 (0.43) b,c,w 27.44 (0.50) b,c,u,v 28.61 (0.50) a,u

8 22.75 (1.20) b,x 25.84 (0.41) c,u,v,w 24.40 (1.45)
b,c,v,w,x 23.96 (0.60) c,w,x 27.26 (0.28) b,c,u,v 28.28 (2.39) a,u

10 22.39 (0.50) b,x 25.13 (1.26) c,v,w 23.35 (1.10) c,w,x 23.82 (0.71) c,v,w,x 26.50 (0.90) c,u,v 28.16 (1.83) a,u

Hue angle
(H*ab)

0 30.40 (1.66) a,u 29.06 (1.36) a,u,v 29.11 (0.81) a,u,v 27.51 (0.72) a,v 27.18 (0.26) a,v 28.94 (0.27) a,u,v

2 30.30 (1.06) a,u 28.67 (1.04) a,u 28.95 (0.68) a,u 26.01 (0.72) a,w 26.59 (0.49) a,v,w 28.36 (0.75) a,b,u,v

4 27.06 (2.44) ab,u 27.00 (1.02) a,u 27.17 (0.38) a,b,u 25.96 (2.30) a,u 26.09 (0.38) a,u 27.90 (0.30) a,b,u

6 25.84 (1.59) b,u 25.4 (0.86) a,b,u 26.23 (1.58) b,u 25.58 (0.74) a,u 25.34 (0.92) a,u 27.73 (0.91) a,b,u

8 22.43 (1.04) c,w 20.94 (2.36) b,c,v,w 25.32 (0.65) b,u 24.09 (0.26) a,b,u,v 24.86 (0.89) a,b,u 26.68 (1.36) a,b,u

10 19.43 (0.80) c,v 18.57 (3.71) c,v 21.83 (1.61) c,u,v 20.89 (3.35) b,u,v 22.29 (2.40) b,u,v 26.08 (1.60) b,u

Mean values and standard deviation (in brackets); Different superscripts (a–e) within a column indicate significant
differences during the storage ANOVA test (p < 0.05); Different superscripts (u–x) within a row indicate significant
differences among packaging treatments according to the ANOVA test (p < 0.05); Different order number (1–5)
indicate different keratin/gelatin/glycerin/curcumin composite films with different concentration of curcumin
(0.4, 0.6, 0.8, 1.0, and 1.2%).

2.7. The Antibacterial Activity of Keratin/gel/gly/cur Composite Films

Escherichia coli and Staphylococcus aureus were taken as the representative strain and
the diameter of the inhibition zone was treated as the evaluation indicator to determine
the influence of different concentrations of curcumin on the antibacterial activity of the
keratin/gel/gly/cur composite films. As shown in Figure 6D, with the increased curcumin
concentration, the diameter of the inhibition zone of composite films gradually expands.
When the concentration of curcumin reaches 1.0%, the antibacterial activity effect of the film
is significantly improved. The diameter of the inhibition zone of E. coli is (12.16 ± 0.53) mm,
and that of S. aureus is (14.532 ± 0.97) mm.

3. Materials and Methods
3.1. Materials and Reagents

Analytical grade chemicals and reagents were used. Urea (CH4N2O), L-cysteine
(C3H7NO2S, molecular mass: 121.16 Dalton), sodium hydroxide (NaOH), hexafluoroiso-
propanol (C3H2F6O), gelatin (gel, gel strength ~250 Bloom), and glycerol (gly, molecular
mass: 92.09) were purchased from Shanghai Macklin Biochemical company (Shanghai,
China, www. macklin.cn.qianyan.biz (accessed date on 8 September 2021)). Hydrochlo-
ric acid (HCl), barium chloride (BaCl2), oxalic acid (H2C2O4), curcumin (cur, molecular
mass: 368.39), and phenolphthalein (C20H14O4) were purchased from Sinopharm Chemical
Reagent Co., Ltd. (Shanghai, China, www.reagen.com.cn (accessed date on 10 September
2021)). Plate count agar (PCA) and nutrient broth (NB) were purchased from Shanghai
Bio-way Technology Co., Ltd. (Shanghai, China, www.bw-bio.com (accessed date on
15 September 2021)).

3.2. Extraction of Keratin from Pig Nails

The pig nail keratin was extracted from clean pig nails following the procedure
reported in the previous study [31], with appropriate adjustments. As shown in Figure 7,
3.0 g of pig nails were initially incubated in 4 mol/L urea, and 0.45 g of L-cysteine was
added to the mixture. Then, the aqueous solution was stirred at 70 ◦C and 150 rpm for
16 h. After the supernatant was collected, the solution was centrifuged at 10,000 rpm for
15 min. The pH of the supernatant solution was adjusted to 4.0 using 0.2 mol/L of HCl.
Then, the keratin was precipitated and washed with deionized water and freeze-dried with
a vacuum freeze dryer to obtain pig nail keratin powders.

www.reagen.com.cn
www.bw-bio.com
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3.3. Preparation of Keratin/Gelatin/Glycerol/Curcumin Films

The obtained pig nail keratin powders were dissolved in hexafluoroisopropanol at room
temperature with the concentration of 4%, 7.0%, 10% (w/v) to form keratin solution. Then,
1.0 g of gelatin was weighed and added to the keratin solution, and the mixed solution was
stirred at 50 ◦C until the gelatin was completely dissolved; a light yellow and transparent
solution was formed. After the obtained solution was cooled to room temperature, 0.2 g
of glycerol was added and stirred evenly at room temperature. Then, curcumin powders
were added to the mixed solution, so that the concentrations of curcumin were 0.4%, 0.6%,
0.8%, 1.0%, 1.2% (w/v), and stirred ultrasonically for 5 min. Then, the mixed solution was
removed, about 5.0 mL poured into a circular mold with a diameter of 8 cm, and placed in a
drying oven (35 ◦C, 24 h) to obtain the keratin/gel/gly/cur composite films.

3.4. Characterization

The surface morphology of the composite films was investigated using a scanning
electron microscope (SEM, Supra55, Zeiss, German) at 20 kV. The functional groups of the
nanofiber membrane were confirmed via ATR-IR spectroscopy (FTIR, NicoletiS10, Thermo
Fisher, USA), performed in a range of 4000–1000 cm−1. The X-ray diffraction analysis was
performed using an X-ray diffractometer (XRD, XD-3X, Persee general, China), and the
XRD spectra were recorded in the 2θ range of 5◦–60◦ at a step of 0.02◦. Thermal stability
was observed using a thermogravimetric analyzer (TGA, TG 209 F3, NETZSCH, Germany)
under the continuous nitrogen flow (20 mL/min) at a temperature range of 25–800 ◦C and
a 15 ◦C/min rate.

3.5. Mechanical Properties

The tensile strength and elongation at break of the different composite films were
tested using a tensile testing machine (WDT-10, FuSide Instruments and Equipment Co.,
Ltd., Wuxi, China) under the natural condition with initial grips separation at 50 mm and
probe speed of 30 mm/min. The tensile strength was the maximum tensile stress when
the membrane broke and the data were read directly from the device. The equation of
calculating elongation at break followed:

The elongation at break = (L0 − L)/L × 100%,

where L represents the initial length of fixture and L0 represents the length of fixture after
the film breaks.

3.6. Application of Composite Films to Store Cherry Tomatoes

The cherry tomatoes were purchased from a local supermarket and washed in the
laboratory with tap water. After the cherry tomatoes were dried under natural conditions,
they were wrapped up with the prepared composite films in random groups. Then, the
fruits of control group (no film wrapped on the tomato surface), and experiment group
(keratin/gelatin/glycerin/curcumin composite films with the different concentrations of
curcumin wrapped on the tomato surface) were placed at room temperature. The quality
indicators of tomatoes from control group and experiment group, including the ratio of
weight loss, hardness, and surface color, were determined every two days.
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3.7. Antibacterial Property of Composite Films

The different composite films at different concentrations of curcumin were cut into
circular sheets of 5 mm diameter and irradiated under ultraviolet lamp for 30 min. Es-
cherichia coli and Staphylococcus aureus strains were inoculated into a 20 mL NB medium,
then cultivated at 38 ◦C for 24 h on a constant temperature shaker. Afterward, 60 µL of two
kinds of bacterial fluid dilution were coated on the PCA plates, the composite films were
placed on plates, and the E. coli plate and S. aureus plate were cultured in an incubator at
38 ◦C constant temperature for 24 h.

3.8. The Ratio of Weight Loss

The weight loss of cherry tomatoes could be attributed to the respiration and moisture
evaporation during storage. The ratio of weight loss for cherry tomatoes packaged and
unpackaged with the composite films before and after the storage was calculated using the
equation below.

The ratio of weight loss = (M1 − M2/M1) × 100%,

where M1 represents the initial weight of the cherry tomatoes before storage, and M2
represents the weight of the cherry tomatoes at different storage times.

3.9. Hardness

Hardness is the pressure (N) of the force-measuring spring per unit area (S) of one
cherry tomato. When the hardness unit was kg/cm3, the depth of depression was stochas-
tic. In this study, the TA41 cylindrical probe was selected and installed, and the distance
between the probe and the base platform was corrected. In addition, the compression
speed and the degree of compression were 1.0 mm/s and 50%, respectively. The hard-
ness was measured using a hardness tester (CT3-TextureAnalyzer, Brookfield Co., Ltd.,
Middleborough, MA, USA). The probe selection is applicable to fruit and vegetables.

3.10. Thickness

Thickness was measured with vernier caliper (Shanghai Shen Gong Measuring Tool
Co., Ltd., China). The film was folded in half three times, measured with vernier caliper
(0.02mm), and then calculated using the equation below.

The thickness = L/8,

where L represents the thickness of film with 8 layers.

3.11. Surface Color

The surface color of cherry tomatoes was treated as one of the quality parameters and
determined using a colorimeter (NR110, 3nh Global, Shenzhen, China). The samples packaged
with different composite films of different curcumin concentrations were stored at room tem-
perature, and the values of lightness (L*), redness (a*), and yellowness (b*) were periodically
evaluated. Each sample was measured in parallel three times for statistical analysis.

3.12. Statistical Analysis

The experimental errors were solved by recording triplicate values and the results
were presented with a mean ± standard deviation. Significant differences among the
samples were analyzed by ANOVA with SPSS statistics 26. A significant level was set at
p < 0.05.

4. Conclusions

In this study, different kinds of keratin/gelatin/glycerin/curcumin composite films
are prepared, and the novel keratin (7.0%)/ gelatin (10%)/glycerin (2.0%)/curcumin (1.0%)
composite film has the best effect on the preservation of the tomatoes. Uniform distribution
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of curcumin added to keratin/gel/gly is observed using SEM, and their interactions are
confirmed though FTIR, XRD, and TGA spectra. In addition, the composite films have
a superior antibacterial effect against Staphylococcus aureus and Escherichia coli because of
the addition of curcumin. Moreover, the ratio of weight loss for cherry tomatoes wrapped
up with the keratin/gel/gly/cur composite films is lower than that of the control groups
(tomatoes without films), the hardness value of cherry tomatoes wrapped up with ker-
atin/gel/gly/cur (1.0%) composite film is 3.25 ± 0.43 kg/cm3 and higher than that of the
other composite films, at least compared with the control group, while the decreases in
the values of luminosity (L*), chroma (C*ab), and hue (H*ab) are not very pronounced in
tomatoes with films. Therefore, multifunctional keratin/gel/gly/cur films possess great
potential use in active fruit and vegetable packaging.
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