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Abstract: It is demonstrated that self-diffusion in dense liquids can be considered a random walk
process; its characteristic length and time scales are identified. This represents an alternative to the
often assumed hopping mechanism of diffusion in the liquid state. The approach is illustrated using
the one-component plasma model.
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1. Introduction

About 40 years ago, Robert Zwanzig published an influential paper on the relation
between self-diffusion and viscosity of liquids (Stokes–Einstein relation) [1]. The purpose
of the present paper is to demonstrate that the dynamical picture behind Zwanzig’s result
is equivalent to a random walk process, with well defined length and time scales. It is
also demonstrated that a theoretical prediction for the numerical factor relating the self-
diffusion and viscosity coefficients, in the form of the Stokes–Einstein relation, is quite
sensitive to concrete assumptions about the liquid collective mode spectrum. The results
provide a consistent picture of the diffusion mechanism in dense liquids with soft isotropic
pairwise interactions.

2. Results
2.1. Diffusion as Random Walk

Self-diffusion usually describes the displacement of a test particle immersed in a
medium with no external gradients. A canonical example is the Brownian motion, repre-
senting a random motion of macroscopic particles suspended in a liquid or a gas. Here,
we are interested in atomic scales and, hence, consider displacements of a labeled atom
in a fluid of unlabeled, but otherwise identical, atoms. If this motion can be considered
a random walk process, then the diffusion coefficient in three spatial dimensions can be
defined as [2]

D =
1
6
〈r2〉

τ
, (1)

where r is an actual (variable) length of the random walk, τ is the time scale, and we focus
on sufficiently long times (t� τ). Consider first an ideal gas as an appropriate example.
The atoms move freely between pairwise collisions. If the distribution of free paths between
collisions follows the e−r/λ/λ scaling, then 〈r〉 = λ and 〈r2〉 = 2λ2, where λ is the mean
free path [2]. Combining this with the relation for the average atom velocity 〈v〉 = λ/τ,
we recover the elementary kinetic formula for the diffusion coefficient of an ideal gas

D =
1
3
〈v〉λ. (2)

The dynamical picture is very different in liquids and this simple consideration clearly
does not apply. The very concept of random walk, however, remains relevant, although
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characteristic length and time scales associated with a random walk process in liquids are
very different from those in gases.

Below, the model proposed by Zwanzig [1] to describe relations between the self-
diffusion and shear viscosity coefficients of liquids, is discussed in some detail. In doing so,
we naturally repeat some arguments and formulas from Zwanzig’s original work and later
publications (for instance, from a recent paper by the present author [3]). The emphasis
is, however, not on the Stokes–Einstein relation per se, but rather on the possibility of
presenting self-diffusion as a random walk process, and on defining the associated length
and time scales. The emerging picture represents an alternative to the often assumed
hopping mechanism of diffusion in the liquid state.

Zwanzig’s approach is based on the assumption that atoms in liquids exhibit solid-like
oscillations about temporary equilibrium positions corresponding to a local minimum on
the system’s potential energy surface [2,4]. These positions do not form a regular lattice
like in crystalline solids. They are also not fixed, and change (or drift) with time (this is
why liquids can flow), but on much longer time scales. Local configurations of atoms are
preserved for some time until a fluctuation in the kinetic energy allows rearranging the
positions of some of the atoms towards a new local minimum in the multidimensional
potential energy surface. The waiting time distribution of the rearrangements scales
as exp(−t/τ)/τ, where τ is a lifetime. Atomic motions after the rearrangements are
uncorrelated with motions before rearrangements [1].

Within this ansatz, a simplest reasonable approximation for the velocity autocorrela-
tion function of an atom j is

Zj(t) '
(

T
m

)
cos(ωjt)e−t/τ , (3)

corresponding to a time dependence of a damped harmonic oscillator. Here, T is the
temperature in energy units, m is the atomic mass, and ωj is an effective vibrational
frequency. The self-diffusion coefficient D is given by the Green–Kubo formula

D =
1
N

∫ ∞

0
∑

j
Zj(t)dt. (4)

Zwanzig then assumed that vibrational frequencies ωj are related to the collective
mode spectrum and performs averaging over collective modes. After the evaluation of the
time integral, this yields

D =
T

3mN ∑
k

τ

1 + ω2
kτ2

, (5)

where the summation runs over 3N normal mode frequencies. The dynamical picture
used by Zwanzig makes sense only if the waiting time τ is much longer than the in-
verse characteristic frequency of the solid-like oscillations. In this case, we can rewrite
Equation (5) as

D =
T

mτ

〈
1

ω2

〉
, (6)

where the conventional definition of averaging, 〈ω−2〉 = (1/3N)∑k ω−2
k has been used.

Equation (6) allows for a simple physical interpretation. It represents a diffusion
coefficient for a random walk process, Equation (1). The length scale of this process is
identified as

〈r2〉 = 6T
m

〈
1

ω2

〉
, (7)

which is twice the mean-square displacement of an atom from its local equilibrium position
due to solid-like vibrations [5]. The coefficient of two appears, because the initial atom
position is not at the local equilibrium, but randomly distributed with the same properties
as the final one (after the waiting time τ). The characteristic time scale of the random walk
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process is just the waiting time τ. Moreover, this waiting time should be associated with
the Maxwellian shear relaxation time [2,6]

τM =
η

G∞
=

η

mnc2
t

, (8)

where η is the shear viscosity coefficient, G∞ is the infinite frequency (instantaneous) shear
modulus, n is the density, and ct is the transverse sound velocity.

Thus, self-diffusion in the liquid state can be viewed as a random walk due to atomic
vibrations around temporary equilibrium positions over time scales associated with re-
arrangements of these equilibrium positions. In this paradigm, consecutive changes of
temporary equilibrium positions (jumps of liquid configurations between two neighboring
local minima of the multidimensional potential energy surface in Zwanzig’s terminology)
are relatively small, much smaller than the vibrational amplitude. Hopping events with
displacement amplitudes of the order of interatomic separation may be present, but they
are relatively rare and do not contribute to the diffusion process. This picture is very differ-
ent from the widely accepted hopping mechanism of self-diffusion in liquids. Previously,
the concept of random walk was suggested in the context of molecular and atomic motion
in water and liquid argon [7]. Here, we provide a more quantitative basis for this treatment.

Substituting Equation (8) into Equation (6), we obtain a relation between the self-
diffusion and viscosity coefficients in the form of the Stokes–Einstein (SE) relation,

Dη

(
∆
T

)
=

c2
t

∆2

〈
1

ω2

〉
= αSE, (9)

where ∆ = n−1/3 is the mean interatomic separation and αSE is the SE coefficient.
Formula (9) particularly emphasizes the relation between the liquid transport and

collective mode properties. Since the exact distribution of frequencies is generally not avail-
able, Zwanzig originally used a Debye approximation, characterized by one longitudinal
and two transverse modes with acoustic dispersion. The sum over frequencies can be
converted to an integral over k using the standard procedure ∑k → V

∫
dk/(2π)3, where

V is the volume. This yields〈
1

ω2

〉
=

1
6π2n

∫ kmax

0
k2dk

(
1

ω2
l
+

2
ω2

t

)
, (10)

where the cutoff kmax = (6π2n)1/3 is chosen to provide n modes in each branch of the
spectrum. This ensures that the averaging procedure applied to a quantity that does
not depend on k does not change its value. Substituting ωl = clk and ωt = ctk into
Equation (10) we arrive at

αSE =
2

(6π2)2/3

(
1 +

c2
t

2c2
l

)
' 0.13

(
1 +

c2
t

2c2
l

)
. (11)

This essentially coincides with Zwanzig’s original result, except he expressed the SE
coefficient in terms of the longitudinal and shear viscosity αSE ' 0.13(1 + η/2ηl). The
equivalence was pointed out in Reference [6]. Note that since the sound velocity ratio
ct/cl is confined in the range from 0 to

√
3/2, the coefficient αSE can vary only between

'0.13 and '0.18 [1,6]. Possible relations between the viscosity and thermal conductivity
coefficients of dense fluids that can complement the SE relations of Equations (9) and (11)
have been discussed recently [8].

An important time scale of a liquid state is a structure relaxation time. This can be
defined as an average time it takes an atom to move the average interatomic distance ∆
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(sometimes it is referred to as the Frenkel relaxation time [9–11]). Taking into account diffu-
sive atomic motions, we can write τR = ∆2/6D. From Equation (1), we immediately get

τR =
∆2

〈r2〉τM. (12)

This implies that τR/τM � 1. The time scale ratio τR/τM has a maximum at melting
conditions, where, according to the Lindemann melting criterion ∆2/〈r2〉 ∼ 100 [5,12].
This picture is consistent with the results from numerical simulations (see, e.g., Figure 3
from Reference [11]). Thus, there is a huge separation between the structure relaxation and
individual atom dynamical relaxation time scales.

2.2. Relation to Collective Modes Properties

Despite the simplifications involved, the predictive power of Zwanzig’s model is
quite impressive. Although the model does not allow making independent theoretical
predictions of viscosity and self-diffusion coefficients, its prediction of the product, in
the form of Equation (9), is highly accurate in some vicinity of the liquid–solid phase
transition of many simple liquids [6,13,14]. Moreover, the coefficient αSE can be correlated
with the potential softness (via the ratio of the sound velocities), as the model predicts [6].
Some of the assumptions, such as the effect of the waiting time distribution, were critically
examined in Reference [15]. In particular, it was demonstrated that the SE relation of
the form (9) is not obeyed if the distribution of waiting times is not exponential. In this
section, we address another interesting question: how sensitive is the value of αSE to the
assumptions about liquid collective mode properties?

To be specific, we consider a model one-component plasma (OCP) system. The
OCP fluid is chosen for the following three main reasons: (i) vibrational (caging) motion
is most pronounced due to extremely soft and long-ranged character of the interaction
potential [16,17]; (ii) Zwanzig’s original derivation is not directly applicable to the OCP
case, because the longitudinal mode is not acoustic (but plasmon) and, thus, it is a good
opportunity to examine how the model should be modified in this case; (iii) collective
modes in the OCP system are well studied and understood (for example, simple analytical
expressions for the long-wavelength dispersion relations are available, see Appendix A).

The OCP model is an idealized system of mobile point charges immersed in a neu-
tralizing fixed background of opposite charge (e.g., ions in the immobile background of
electrons or vice versa) [18–24]. From the fundamental point of view, OCP is characterized
by a very soft and long-ranged Coulomb interaction potential, φ(r) = q2/r, where q is the
electric charge. The particle–particle correlations and thermodynamic properties of the
OCP are characterized by a single dimensionless coupling parameter Γ = q2/aT, where
a = (4πn/3)−1/3 is the Wigner–Seitz radius. At Γ & 1, the OCP is strongly coupled,
and this is where it exhibits properties characteristic of a fluid phase (a body centered
cubic phase becomes thermodynamically stable at Γ & 174, as the comparison of fluid
and solid Helmholtz free energies predicts [22,25,26]). Dynamical scales of the OCP are
usually expressed by the plasma frequency ωp =

√
4πq2n/m. For example, the Einstein

frequency is Ω2
E ≡ 〈ω2〉 = ω2

p/3. The transverse sound velocity at strong coupling is
c2

t = (3/100π)(4π/3)1/3ω2
p∆2 ' 0.015ω2

p∆2 [27].
From extensive molecular dynamics simulations, it is known that the SE relation is

satisfied to a very high accuracy in a strongly coupled OCP fluid with αSE ' 0.14± 0.01
at Γ & 50 [14,28,29]. Figure 1 demonstrates that αSE approaches the strongly coupled
asymptote already at Γ ' 10. Note that the OCP value of the SE coefficient is not truly
universal, but rather representative for soft long-ranged pairwise interactions, in which
case the transverse-to-longitudinal sound velocity ratio is small [see Equation (11)]. For
example, the same value ('0.14) is reached in weakly screened Coulomb (Yukawa) fluids,
while for Lennard-Jones fluids it increases to αSE ' 0.15 and further to αSE ' 0.17 in
hard-sphere fluids [14].
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Figure 1. (Color online) Stokes–Einstein parameter αSE as a function of the coupling parameter Γ for
a OCP fluid. The symbols correspond to MD simulation results from Refs. [28,29]. The dashed line
shows a strong coupling asymptote αSE ' 0.14.

Now, we examine the sensitivity of the theoretical value of the SE coefficient αSE to
concrete assumptions about the collective excitation spectrum. We start with the simplest
approximation that all atoms are oscillating with the same Einstein frequency ΩE (known
as the Einstein model in the solid state physics). This approximation results in αSE ' 0.046,
which is too low compared to the actual value from MD simulations (see Figure 1).

As a next level of approximation a Debye-like vibrational density of states (VDOS),
g(ω) ∝ ω2 is assumed (averaging is performed using a standard definition 〈ω`〉 =∫

ω`g(ω)dω/(
∫

g(ω)dω)). Using the cutoff Debye frequency ωD and requesting that
〈ω2〉 = Ω2

E we arrive at 〈ω−2〉 = 9/5Ω2
E. This yields αSE ' 0.083, which is somewhat

better, but still considerably smaller than the actual result.
The most accurate theoretical estimate would be obtained if the exact VDOS were

known. However, this is not the case. Nevertheless, accurate knowledge of the real
dispersion relations for the longitudinal and transverse modes can be already quite use-
ful. We make use of simple expressions based on the quasi-localized charge approxima-
tion (QLCA) [30] combined with the excluded cavity model for the radial distribution
function [27]. The corresponding expressions for ωl(k) and ωt(k) are provided in the
Appendix A. Substituting these in Equation (10), we have obtained 〈ω2

p/ω2〉 ' 9.76 and
αSE ' 0.150. This is very close to the exact result from MD simulations, as expected. Note
that the exact result 〈ω2/ω2

p〉 = 1/3 is reproduced by construction.
The last demonstration uses a heuristic VDOS of the form

g(ω) = Aω2 exp(−Bω2), (13)

which reproduces the Debye model at low frequencies and implements the Gaussian
cutoff at high ω. This form was inspired by the observation that the functional form
g(ω) = 2αωe−αω2

can fit the numerically obtained VDOS of Lennard-Jones liquids reason-
ably well [31]. We just substituted the linear scaling at low frequencies with the quadratic
one to make the integral converging. This is clearly not a valid physical argument, but we
use it here merely for illustrative purposes. The two normalization conditions yield

A =
4√
π

(
3

2Ω2
E

)3/2

, B =
3

2Ω2
E

. (14)
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Application of this VDOS results in αSE ' 0.139, which almost coincides with the
exact MD result. Thus, implementation of the Gaussian cutoff to the Debye-like VDOS
improves the situation considerably.

It should be noted that very long wavelengths and low frequency parts of the spectra
are not relevant for the present consideration, because dynamics on time scales shorter
than the relaxation time τM is considered. However, since ωτM � 1 needs to be satisfied,
this corresponds to only a small part of the entire spectrum, and we therefore included low
frequencies for simplicity, similar to what Zwanzig did originally [1]. This also allows us to
disregard the effects associated with the k-gap in the dispersion relation of the transverse
mode, an important property of liquid dynamics [32–37].

3. Discussion and Conclusions

While transport phenomena in gaseous and solid phases can be well described at the
quantitative level, transport in liquids is still much less understood, even at the qualitative
level. Here, we have demonstrated that self-diffusion in dense liquids can be described as a
random walk process with well defined time and length scales. The length scale is related
to the amplitude of solid-like vibrations around local temporary equilibrium positions. The
time scale is set by the Maxwellian shear relaxation time. This dynamical picture results in
the Stokes–Einstein relation between the coefficients of self-diffusion and viscosity, which
is satisfied in many simple liquids. Importantly, the hoping mechanism of atomic diffusion
in liquids is irrelevant in this picture of microscopic atomic dynamics.

The dynamical picture involved requires that the atomic motion be dominated by
fast solid-like oscillations around the local equilibrium positions. This limits the model
applicability to regions on the phase diagram located not too far from the liquid–solid phase
transition (high densities and low temperatures). Additionally, it applies to sufficiently soft
interaction potentials with pronounced oscillation dynamics. In the hard sphere interaction
limit, this model is clearly inadequate (although SE relation is still satisfied even in this
limit [14]).

Finally, we have demonstrated that a theoretically obtained numerical factor in the SE
relation is sensitive to concrete assumptions about the liquid collective modes properties.
This highlights the necessity of accurate knowledge of the vibrational density of states and
dispersion relations in liquids.
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Appendix A. Dispersion Relations of a Strongly Coupled OCP Fluid

Table A1. Averaged frequencies of a strongly coupled OCP fluid obtained with the help of dispersion
relations (A1) and (A2).

〈ω2/ω2
p〉 〈ω/ωp〉 〈ln ω/ωp〉 〈ωp/ω〉 〈ω2

p/ω2〉
1
3 0.514 −0.8023 2.5856 9.7623

Combining the QLCA model with a simple excluded cavity approximation for the
radial distribution function, the following analytical expressions for the longitudinal and
transverse dispersion relations in OCP fluids have been derived [27]

ω2
l = ω2

p

(
1
3
− 2 cos Rq

R2q2 +
2 sin Rq

R3q3

)
(A1)

and

ω2
t = ω2

p

(
1
3
+

cos Rq
R2q2 −

sin Rq
R3q3

)
, (A2)

where q = ka is the reduced wave-number and R is the reduced excluded cavity radius.
In the strongly coupled OCP regime, we have R =

√
6/5 ' 1.09545. Expressions (A1)

and (A2) are rather accurate in the long-wavelength regime [38–40], except the existence of
k-gap in the transverse mode is not accounted for [36]. Expressions (A1) and (A2) can be
used to perform averaging over collective mode frequencies. We performed averaging of
several frequency-related quantities and provide them in Table A1 for completeness.

The result for 〈ω2/ω2
p〉 ≡ 1/3 is exact by virtue of Equations (A1) and (A2). The

quantity 〈ω2
p/ω2〉 is used here to estimate the SE coefficient. The quantity 〈ω/ωp〉 emerges

in the vibrational model of thermal conductivity of simple fluids [3,41]. The quantity
〈ln ω/ωp〉 emerges in a variant of the cell theory of liquid entropy [42].
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