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Abstract: In the last two decades, the naturally occurring polysaccharides, such as chitosan and
pectin, have gained great attention having potential applications in different sectors, from biomedical
to new generation packaging. Currently, the chitosan and pectic have been proposed as suitable
materials also for the formulation of films and coatings for cultural heritage protection, as well as
packaging films. Therefore, the formulation of biopolymer films, considering only naturally occurring
polymers and additives, is a current challenging trend. This work reports on the formulation of
chitosan (CS), pectin (PC), and chitosan:pectin (CS:PC) films, also containing natural crosslinking and
reinforcement agents, such as citric acid (CA) and halloysite nanotubes (HNT), through the solvent
casting technique. The produced films are characterized through water contact angle measurements,
infrared and UV–visible spectroscopy and tensile test, while the durability of the CS:PC films is
evaluated subjecting the film to accelerated UVB exposure and monitoring the photo-oxidation
degradation in time though infrared spectroscopy. All obtained results suggest that both crosslinking
and reinforcement agents have beneficial effects on the wettability, rigidity, and photo-oxidation
resistance of biopolymer films. Therefore, these biopolymer films, also containing naturally occurring
additives, have good properties and performance and they are suitable as coverage films for cultural
heritage protection.

Keywords: chitosan; pectin; citric acid; halloysite nanotubes; mechanical behaviors; optical proper-
ties; durability

1. Introduction

The circular economy, with a framework of policies that make sustainable products,
services, business models, and norms, is a well-delineated transition by the European Com-
mission and EU Governances. However, the shifting towards more sustainable materials
and production processes needs to be performed as soon as possible [1].

Therefore, the introduction of fully bio-based materials, although not fully biodegrad-
able, to produce goods and services, is widely requested by a large part of public because
of benefits for the environment and human health [2,3].

Naturally occurring polymers, such as polysaccharides, polyhydroxyalkanoates, poly-
lactic acids, starches, proteins, and lipids, have applications mainly in the biomedical and
pharmaceutical sectors, and food packaging sectors, and their properties and performance
depend on the chemical nature and molecular weight of the monomers, polymerization
degree, and production technologies. Among the biopolymers, the polysaccharides are
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the most important and popular class of polymers coming from natural sources, such as
animals, seafoods, and vegetables; this is also due to their biocompatibility, biodegrad-
ability, and non-toxicity [4,5]. Among the polysaccharides, chitosan and pectin have
attracted much attention because of their abundance in nature, relative low cost, and low
environmental impact [6].

Chitosan is a copolymer of glucosamine and N-acetylglucosamine units, and it is
derived by deacetylation in the presence of sodium hydroxide of chitin, which is the sec-
ond most abundant polysaccharide in the world after cellulose, and large present in the
exoskeleton of crustaceans, in fungal cell walls, and other biological materials [7]. The
chitosan grade of deacetylation, molecular mass [8,9], and presence of plasticizers [7,10,11]
are the determinants for its properties and performance, and obviously are determinant for
chitosan applications, such as protective films, edible coatings for foods, and transparent
films for cultural heritage protections because of its selective permeability to CO2 and
O2 [7,12]. Chitosan is a cationic polysaccharide, as known, its glucopyranose rings coordi-
nate positive charged groups, and it shows a tendency to interact with water molecules and
active ingredients [13]. The main chitosan drawback is related to its ability to adsorb water
molecules and to swell, and for this reason, usually, to improve the chitosan resistance to
water molecules, a crosslinking through treatment by acids is carried out [14]. Currently,
the use of citric acid as crosslinking agent for chitosan is proposed by Priyadarshi et al. [15],
and the crosslinking mechanism is explained through the formation of covalent intermolec-
ular di-ester linkage between carboxyl groups of citric acid and the chitosan hydroxyl
groups.

Pectin is a typical liner heteropolysaccharides, formed by D-galacturonic acid linked
by α-1,4 glycosidic bonds [16,17]. Pectin is widely considered as a good candidate for
coatings for fruits and foods because of its biodegradability, non-toxicity, and edibility.
As known, the pectin is an anionic polysaccharide, because of the presence of numerous
negatively charged carboxylic groups in its chemical structure, and for this reason, it shows
the tendency to interact with metal cations and active ingredients. According to literature,
pectin may form a three-dimensional network structure by adding bivalent cations such as
calcium ions, and the calcium ions may be packed in the interstices of the twisted pectin
chains, which may improve the film performance [18].

Our previously published paper [19] was focused on the preparation of bio-nanocom-
posite films based on a chitosan and pectin blend, the investigation of theoretical solubility
of pectin into chitosan, and the definition of the effective ratio between the two constituents.
Based on the theoretical calculation using Hoy’s method, pectin is very soluble into chitosan.
Interestingly, the effective ratio between the two constituents is 1:1 for the film formulation
through solvent casting, based on the z-potential measurements, considering the different
charges of both polysaccharides, and the resultant handling of the final film. Further,
to introduce naturally occurring stabilizers, aiming to improve the stability of the bio-
nanocomposite films, the halloysite clay were considered as carrier for vanillic acid and
quercetin molecules [19,20]. Therefore, by adding natural compounds, such as halloysite
clay and antioxidants, some performance and properties of polysaccharide films [21–23]
can be improved and makeable for numerous challenging applications [24–26]. HNT
is abundant in nature, relative low cost, and in the last few years it was proposed as
a biocompatible smart material that can replace carbon nanotubes [27–29]. In fact, the
interesting geometrical configuration of halloysite nanotubes, a rolled-up kaoline sheet
with a positive internal surface charge, and a negative external surface charge [30], make
HNTs suitable not only as a filler for biopolymer but also as a carrier in fields like drug
delivery, tissue engineering, oil recovery, and eco-compatible packaging [31,32].

In this work, the effects of halloysite clay and citric acid, as efficient reinforcement and
crosslinking agents, on the performance and durability of chitosan (CS), pectin (PC), and
chitosan/pectin (CS:PC) blend, are investigated. Based on our previous experience, the
CS:PC blend has been produced at 50/50 wt/wt%. The halloysite clay (HNT) and citric
acid (CA) are added at 20 wt% and at 3 wt%, respectively, to the single CS and PC and to
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the CS:PC blend, and the films are prepared by solvent casting technique. The biopolymer
films containing CA and HNT have improved wettability, rigidity, and photo-oxidation
durability. The HNT slightly decreased the biopolymer film transparency, while the CA
did not have any negative effect on the transparency, and both HNT and CA additives
could be considered suitable additives for the formulation of films for cultural heritage
protection.

2. Materials and Methods
2.1. Materials

The materials used in this work are: Chitosan (CS), low viscosity, deacetylation
degree = 75−85% and average molecular weight = 120 kg mol−1; Pectin (PC) from Citrus,
Poly-D-galacturonic acid methyl ester with degree of methyl esterification 24%,
Mw = 30−100 kg mol−1; Halloysite nanoclay (HNT), [Al2Si2O5(OH)4]x2H2O has Formula
Weight = 294.19 g mol−1; Pore Volume = 1.26–1.34 mL/gm; pH = 4.5–7.0;
Diameter = 30–70 nm; Length = 1–3 microns; Citric acid (CA), formula C6H8O7, white
crystals, molecular weight = 192.12 g mol−1; all used materials were purchased by Sigma-
Aldrich and used as received.

2.2. Preparation of Bio-Based Films

Aqueous solutions of each biopolymer at 2%wt were prepared following the procedure
detailed elsewhere and equilibrated overnight [33,34]. The CS:PC blends, without and with
HNT or CA, were prepared at 50/50 wt/wt%.

The HNT and CA were added to the single CS or PC or to the CS:PC blend solutions
at 20 wt% and 3 wt%, respectively, and were kept under stirring overnight. The well
dispersed aqueous mixture was poured into glass Petri dishes (15 g) under vacuum at room
temperature to evaporate water until the weight was constant and to obtain biopolymer
films with a thickness ranging from 80 to 100 µm.

2.3. Characterization
2.3.1. FT-IR Analysis

A Fourier Transform Infrared Spectrometer (Spectrum One, Perkin Elmer, Shelton,
CT, USA) was used to record IR spectra using 16 scans at a resolution of 1 cm−1. Measure-
ments were obtained from the average of triplicate samples with a calculated maximum
experimental error (relative standard deviation) of around 5%. The deconvolution of FTIR
peaks was performed using the scientific software OriginPro 8.5.

2.3.2. UV–visible Analysis

UV–visible Spectrometer, (Specord®250 Plus, Analytikjena, Torre Boldone, BG, Italy),
was used to record UV–vis spectra performing 8 scans between 200 and 1100 nm at a
resolution of 1 nm. The transparency of the films has been evaluated through calculation
of the values of linear attenuation coefficient using the formula:

K = A750nm/(2.3 × S) (1)

where A is the absorbance values at 750 nm and S is the sample thickness.

2.3.3. Contact Angle Measurements

The water contact angle was measured at room temperature by means of First Ten
Angstrom (USA) FTA1000C system (Data Physics Instruments, Filderstadt, Germany), with
demineralized water. The films were fixed on top of a plane solid support and kept flat
during water deposition and acquisition. The sessile drop method was used with a droplet
volume of 6 µL.
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2.3.4. Mechanical Characterization

Tensile tests were carried out using a Universal Testing Machine (Instron model 3365,
Bucks, UK), following ASTM D882 method, on rectangular samples cut by films prepared
by compression molding and solvent casting. The tests were performed using tensile speed
at 1 mm/min. Young’s modulus (E), tensile strength (TS), and elongation at break (EB)
were recorded, and the data reported represent the average values obtained by analyzing
the results of eight tests per sample; the variability of mechanical tests was typically of
order of ±5%.

2.3.5. Photo-Oxidation Exposure

Photo-oxidation of CS:PC films, about 80 µm thick, without and with HNT (at 20 wt%)
and CA (at 3 wt%), was carried out using a Q-UV-Solar Eye weatherometer (from Q-LAB,
Westlake, OH, USA) equipped with UVB lamps (340 nm). The weathering conditions were
a continuous light exposure at T = 55 ◦C.

3. Results and Discussions

To investigate the wettability of biopolymer films, also containing crosslinking and
reinforcement agents, the water contact angle (WCA) measurements were performed, and
in Figure 1 and Table 1, the frame of WCA after the drop deposition on the films surface and
WCA values are reported. It is worth noting that neat CS shows the highest contact angle
value in comparison to that of neat PC and CS:PC blend. The CS film shows the highest
hydrophobicity, while the PC film is particularly hydrophilic. As expected, the CS:PC blend
shows an average WCA value between the WCA values of neat CS and PC, suggesting that
the presence of PC has a clear negative effect on the film wettability. Interestingly, the CA
presence has a very positive effect on the PC wettability, improving the film hydrophobicity
of both PC, and even more, the CS:PC blend. The hydrophobicity of CS slightly decreases
due to the CA presence.
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The presence of reinforcement agent, as HNT, exerts similar effect on the wettability
of CS, PC, and CS:PC, to that induced by crosslinking agent, as CA, although the bene-
ficial effect of HNT is even more pronounced that the effect of CA. Finally, the WCA of
CS:PC/HNT and neat CS film are very similar, highlighting that the negative effect of
PC on the wettability of CS:PC blend is overcome by the additives presence, even more
by HNT.

Table 1. Water contact angle (WCA) values of all investigated samples.

Neat CA HNT

CS 85◦ 78◦ 81◦

PC 45◦ 49◦ 58◦

CS:PC 64◦ 79◦ 84◦

To investigate the mechanical behavior, all investigated films are subjected to tensile
test, and in Figure 2, obtained main mechanical properties, i.e., Youngs’ modulus (E), tensile
strength (TS), and elongation at break (EB), are reported. It is worth noting that both E and
TS values of the CS:PC blend are higher than the values of neat CS and PC, suggesting a
good synergism between the two polysaccharides constituents in formulation of the blend
film. Therefore, the EB value of the CS:PC blend is reduced two times in comparison to the
EB value of neat CS, but this result is expected considering that the PC is totally brittle, i.e.,
its EB value is ca. 4.5%, see Figure 2.
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It seems that the CA presence in both neat CS and PC leads to a slight increase
of E values, exerting a beneficial effect on the system rigidity, due to CA crosslinking
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action. The E values of both CS:PC and CS:PC/CA films are very similar even though
the CA presence slightly decreases the rigidity (ca. 5% lower), but this decrease is almost
imperceptible taking into account the application of the films as coverage for cultural
heritage protection.

The HNT presence leads to a slight decrease of E values of CS, PC, and CS:PC, probably,
because at this high amount (i.e., at 20 wt%), the dispersion is not favored due to HNT
polar nature. Therefore, the enhancement of system heterogeneity, due to HNT presence, is
even more pronounced for the CS:PC blend, and the latter is noticeable also for the TS and
EB trend.

In Figure 3, the UV–visible spectra of CS, PC, and CS:PC films, containing also CA
and HNT, are plotted. Additionally, using Equation (1) that is reported in the experimental
section, the values of linear attenuation coefficient (K750) of all investigated biopolymer
films are calculated and reported in Table 2. It is clearly noticeable that the CA presence
nearly does not modify the transparence in both the UV and visible ranges, highlighting a
beneficial effect on the optical performance of the biopolymer films, due to the presence of
the crosslinking agent. The latter suggests that the biopolymer films containing citric acid
are transparent and can be considered good candidates as coverages for cultural heritage
protection.
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Table 2. Calculated values of linear attenuation coefficient K750 (mm−1) for all investigated samples.

Neat CA HNT

CS 0.327 0.309 0.774
PC 0.330 0.513 4.513

CS:PC 0.395 0.396 1.288
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It is worth noting that the HNT presence has a pronounced effect on the biopolymer
film transparence. Unfortunately, the HNT at this very high amount, leads to a significant
decrease of the transparence in the visible range, suggesting the possibility that these films
could be employed where high transparence is not requested. It is noticeable that the HNT
presence decreases the transparency of CS film, and even more of PC film. The observed
transparency decrease for CS:PC (HNT blend film) is slightly higher than that of CS/HNT
film, and absolutely lower than that of PC/HNT.

In Figure 4a–c, the FTIR spectra of CS, PC, and CS:PC films, containing also CA and
HNT, are plotted, and in Table 3, according literature, the assignment of main absorption
peaks is reported. It is noticeable that the presence of CA and HNT, does not have a
significant influence on the main peak positions. However, according to literature and as
noticeable in Table 3, the different absorption bands in the FTIR spectra of CS and PC are
very similar, because of the similarity of the groups in the structure of both polysaccharides.
Indeed, the FTIR spectra of the CS:PC blend appears very similar to the spectra of neat
CS and PC, and there is overlapping of numerous absorption bands with these of neat CS
and PC.
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Therefore, no additional band, due to the CA presence, is noticed in the IR spectra, see
Figure 4d, because the CA intrinsic chemical groups are similar to that of both CS and PC
structures. As noticeable in Figure 4d, where the ATR-FTIR spectrum of neat Ca is shown,
the CA shows main absorption bands in the hydroxyl range at ca. 3560 and 3290 cm−1;
in the carbonyl range at ca. 1721 and 1710 cn−1; and other bands at ca. 1208, 1105, 779,
and 596 cm−1; and these bands are overlapped by the bands of both CS and PC intrinsic
structures and the detection by FTIR of crosslinking occurrence is not easy. For this reason,
the neat films (CS, PC, and CS:PC) and CA-containing films were immersed in double
deionized water. Neat CS, PC, and CS:PC films are totally soluble into the water after 24 h,
while the CS/CA and CA:PC/CA show a residual weight at ca. 12 wt% and ca. 8 wt%,
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respectively. For PC/CA film, after 24 h in water, no residual weight is detected, suggesting
the occurrence of physical interactions, rather than chemical crosslinking reactions.

Table 3. Assignment of main IR absorption bands of Chitosan [14] and Pectin [34].

Chitosan Pectin

ν cm−1 Attribution ν cm−1 Attribution

2927 symmetric C-H stretching 2929 symmetric-CH2 stretching
1736 >C=O stretching 1739 -O-C=O

1626 C=O of ion COO stretching of
secondary amide group (amide I) 1634 -O(−)-C=O

1530 N-H bending (residue of amide II) 1015 -C-O-C-

1395 C=N stretching (amide III band) 955 rhamnogalacturonan
(uronic acid)

1353 N-H in plan deformation 923 D-glucopyranosyl
955 piranose ring 890, 852 α-, β-glucosidic linkage
890 C-N fingerprint band 832 a-D- mannopyranose

It seems that, due to the presence of HNT at high concentration, the absorption of
the main bands of both neat matrices CS and PC, and of the CS:PC blend, appear lower,
and two small peaks at around 3700–3600 cm−1 are noticed. According to literature, in
FTIR spectra of alumino-silicates, peaks appear at around 910 cm−1 and small shoulder
at around 3700 cm−1, due to metal-oxide structures and coordinated hydroxyl groups,
respectively. The absorption band at 910 cm−1 is partially overlapped by different small
peaks in this range 950–890 cm−1 due to intrinsic structures of both polysaccharides (see
the assignment of FTIR absorption bands in Table 3).

To evaluate the durability of CS:PC blend, containing also CA and HNT, thin films
were subjected to accelerated UVB exposure. The photo-oxidative degradation in time
of CS:PC, CS:PC/CA, and CS:PC/HNT films was monitored through FTIR analysis at
regular intervals at about 8 h. According to literature, chitosan degradation mechanism
occurs mainly by depolymerization, followed by deacetylation, oxidation, and interchain
crosslinking [35], while pectin depolymerization proceeds mainly by backbone hydrolysis,
β-elimination, and decarboxylation [36].

However, according to our previous work [19], the adding of HNT to biopolymer
matrices leads to the formulation of suitable bionanofilms as coverage for cultural heritage
protection, although the film transparence is slightly penalized. As known, the HNT protect
efficiently the polymer matrices against ultraviolet exposure, because the alumino-silicates
structure can absorb UV irradiation, and polymer-based systems containing HNT have
improved photo-oxidation resistance [19,37–39]. Therefore, the HNT marked absorption
ability, especially if the HNT are added at high concentrations, could induce the decrease of
the transparence in the visible range, and this could be taken into account for some specific
film applications, where high transparency in the visible range is required.

Therefore, the CA adding results in the formulation of crosslinked biobased films with
improved oxidation resistance [40,41]. Taking into account our previous experience, in this
work, the photo-oxidation behavior of the CS:PC blend, also in the presence of CA and
HNT, is investigated monitoring the structural changes in time by infrared spectroscopy.

However, as discussed above, the CS:PC spectrum, also before UVB exposure, presents
numerous multiple peaks, and considering the complexity of degradation phenomena
of both neat CS and PC, the investigation of photo-oxidation resistance of CS:PC films
through FTIR analysis is a hard matter.

The photo-oxidative degradation of CS:PC blend can be profitably followed moni-
toring the changes in the spectra in range 1700–1480 cm−1 in time, which contains two
different peaks: first peak at around 1630 cm−1 due to the C=O presence of COO (ester)
ion stretching of secondary amide group (amide I) for CS (~1626 cm−1) and -O(-)-C=O, for
PC (~1634 cm−1), and expectedly, the peaks due to C=O stretching for both CS and PC
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appear a single peak and second peak at around 1530 cm−1 attributed to N-H bending,
according to literature [19]. In Figure 5a–c, the FTIR spectra of CS:PC, CS:PC/CA and
CS:PC/HNT, obtained at different exposure time, are plotted. Considering the complexity
of the degradation phenomena and based on our previous experience, the complex bands
in the range 1700–1480 cm−1 are deconvoluted, and additionally, in Figure 6a,b, the varia-
tion of >C=O (~1626 cm−1) and NH bending (~1533 cm−1) trends, respectively, for CS:PC,
CS:PC/CA and CS:PC/HNT films are plotted. It is worth noting that both HNT and CA
have protective actions towards the CS:PC blend, suggesting their beneficial effects on the
films durability. Interestingly, based on the trends reported in Figure 6, the HNT can protect
more efficiently, than the CA, the bio-based films against the UVB exposure. Therefore, the
HNT protection efficiently, against UVB exposure, could be understand considering the
marked absorption ability of the nanoclay inorganic nature, i.e., alumino-silicates structure,
as detected by UV-visible analysis and above commented.
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HNT films.

However, although the degradation mechanism of CS:PC is a very complex phenom-
ena, there can be supposed that the simultaneous CS depolymerization and subsequent
deacetylation and oxidation and PC depolymerization and subsequent decarboxylation,t
that lead to >C=O accumulation, see Figure 6a. Therefore, the CA and HNT slow down
the >C=O accumulation acting differently, specifically, the CA favors the formation of
crosslinked structures, while the HNT absorb efficiently the UV irradiation. By the decrease
of NH bending trends, see Figure 6b, it could be supposed a reaction occurrence between
the -NH radicals and new oxygen-containing species, both coming from simultaneous
occurrence of depolymerization and oxidations.

4. Conclusions

Chitosan, pectin, and chitosan-pectin films, also containing crosslinking and rein-
forcement agents, are successfully formulated, and their properties and performance are
accurately investigated. It seems that the presence of both citric acid and halloysite nan-
otubes have a beneficial effect on the film performance, specifically, the CA does not modify
the optical properties, while the HNT have a beneficial effect on the rigidity of the biopoly-
mer films. In addition, the adding of both CA and HNT extend the CS:PC durability,
specifically, the CA favors the formation of crosslinked structures, while the HNT absorb
efficiently the UV irradiation.

To sum up, all formulated biopolymer films can be considered suitable coverages for
cultural heritage protection.
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