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Abstract: A comprehensive linear gradient solvent system for centrifugal partition chromatography
(CPC) was developed for the bioassay-guided isolation of natural compounds. The gradient solvent
system consisted of three different ternary biphasic solvents types: n-hexane–acetonitrile–water (10:2:8,
v/v), ethyl acetate–acetonitrile–water (10:2:8, v/v), and water-saturated n-butanol–acetonitrile–water
(10:2:8, v/v). The lower phase of the n-hexane–acetonitrile–water (10:2:8, v/v) was used as the stationary
phase, while its upper phase, as well as ethyl acetate–acetonitrile–water (10:2:8), and water-saturated
n-butanol–acetonitrile–water (10:2:8, v/v) were pumped to generate a linear gradient elution, increasing
the mobile phase polarity. We used the gradient CPC to identify antioxidant response elements (AREs),
inducing compounds from Centipeda minima, using an ARE-luciferase assay in HepG2 cells, which led
to the purification of the active molecules 3-methoxyquercetin and brevilin A. The developed CPC
solvent systems allow the separation and isolation of compounds with a wide polarity range, allowing
active molecule identification in the complex crude extract of natural products.

Keywords: centrifugal partition chromatography; comprehensive linear gradient elution;
bioactivity-guided isolation; 3-methoxyquercetin; brevilin A; Centipeda minima

1. Introduction

For centuries, medicinal plants have been valuable sources of functional ingredients, playing an
important role in health maintenance, as well as disease prevention and treatment. Natural medicinal
plant products provide unlimited opportunities for nutraceuticals, functional foods, natural health
products, and new drug leads due to the considerable chemical diversity they make available [1–3].
In order to identify bioactive compounds from natural extracts, bioassay-guided fractionation is
a common approach, performed through the following process: (i) solvent extraction from crude
materials, (ii) fractionation of the liquid–liquid extraction and bioassay, (iii) fractionation using open
column chromatography or prep-HPLC and bioassay screening of each fraction, (iv) active molecule
isolation from the active fractions, and (v) structural elucidation of the isolated molecules and the
evaluation of their bioactivity [4]. However, loss of activity or failure of the bioactive compound
isolation from crude extracts during the bioactivity-guided isolation are common problems. Generally,
the degradation or irreversible adsorption in a solid matrix during the purification process are the
main reasons for these concerns. In addition, natural products are complex mixtures containing
multiple components, and the conventional bioassay-guided fractionation strategy is time- and
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resource-intensive. Therefore, a more practical method for herbal medicine-derived active component
discovery and purification would be required [5]. In order to solve these problems, countercurrent
separation could provide an excellent alternative, such as centrifugal partition chromatography (CPC)
or high-speed counter-current chromatography (HSCCC). CPC is a type of support-free liquid–liquid
partition chromatography, with a low risk of sample denaturation, as well as total sample recovery, and
large load capacity that has been widely used for the separation of constituents with bioactivity [6–10].
Despite the above-mentioned advantages, the CPC-mediated bioactivity-guided separation has several
complementary points: (i) most solvent systems are limited to separating constituents with a narrow
polarity range, (ii) optimizing a biphasic solvent system is a time-consuming process, as the partition
coefficient of each component of the two layers should be compared in different ratios of the various
solvents using HPLC or TLC. For the CPC-mediated activity-guided separation, a gradient biphasic
solvent system that extends an extreme polarity range would be required without calculating the K
values [11–14].

Centipeda minima is a traditional medicine used for treating cancer, sinusitis, swelling, and rhinitis.
Phytochemical studies have isolated chlorogenic acid, cryptochlorogenic acid, caffeic acid, rutin,
isochlorogenic acid B, kaempferol-3-O-rutinoside, isochlorogenic acid A, isochlorogenic acid C,
3-methoxyquercetin, brevilin A, arnicolide D, and arnicolide C from C. minima [15,16]. A previous
study reported on the antioxidant effect of C. minima through the activation of the nuclear factor
erythroid 2-related factor 2 signaling pathway from [17]. Therefore, C. minima was selected as a
model sample to identify the antioxidant response element (ARE)-inducing compounds using a
comprehensive linear-gradient CPC.

This study aimed at developing a linear gradient solvent system for CPC in order to fulfill
compounds with a wide polarity range for the screening and separation of active constituents from
herbal medicines. Based on the conventional liquid–liquid extraction approach, n-hexane, ethyl acetate,
and water-saturated n-butanol were chosen as less polar solvents in ternary biphasic solvent systems.
Considering the settling time and upper/lower volume ratios, acetonitrile was used as the polarity
modifier. The developed gradient solvent system was applied for the activity-guided purification with
an ARE-luciferase reporter assay in HepG2 cells transfected with the C. minima ARE gene.

2. Results and Discussion

2.1. Gradient Biphasic Solvent System Selection

As described previously, C. minima extract (CME) consists of mixtures with a wide range of
polarities that are well-represented by the various features of natural products (Figure S3). In order
to separate these CMEs through bioassay-guiding, we developed a comprehensive linear gradient
solvent system that covered a wide polarity range, from nonpolar to extremely polar, with no K value
calculation necessity. As shown in Figure 1, the CME consisted of compounds with a wide polarity
range, a comprehensive gradient CPC operation would thus be needed to recover all the introduced
components. Since the gradient solvent systems should satisfy various polar compounds and stable
stationary phases, the aqueous phase was used as the stationary phase and the organic phase was
used as the mobile phase with increasing polarities. Then, the organic layer polarity was sequentially
increased with n-hexane, ethyl acetate, and n-butanol. In addition, as n-butanol was less polar to
achieve an appropriate partition coefficient for a very polar constituent, a ternary solvent system was
introduced in order to separate a suitable polarity for very polar constituents [18,19].

As a result, gradient ternary biphasic solvent systems were divided into three polarity
groups: nonpolar, intermediate, and polar conditions, consisting of n-hexane–X–water, ethyl
acetate–X–water, and water-saturated n-butanol–X–water, respectively. X stands for the tested
modifier solvents, which were methanol, ethanol, acetonitrile, or isopropanol in this study. The ternary
biphasic solvent systems, phase ratio, and settling time are described in Table 1. According
to the settling time and biphasic solvent ratio (Figure S1, Tables S1 and S2), acetonitrile was
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determined as a modifier solvent. Finally, a volume ratio of 10:2:8 of n-hexane–acetonitrile–water,
ethyl acetate–acetonitrile–water, and water-saturated n-butanol–acetonitrile–water were selected as
linear-gradient solvent systems. Thus, three ternary biphasic solvent systems were separately prepared,
and the lower layer of n-hexane–acetonitrile–water (10:2:8, v/v/v) was used as the stationary phase. Then,
the upper layer of n-hexane–acetonitrile–water, ethyl acetate–acetonitrile–water, and water-saturated
n-butanol–acetonitrile–water (10:2:8, v/v/v) were pumped to generate a linear gradient elution, thereby
increasing the mobile phase polarity to recover all CME compounds. In the case of isopropanol as a
modifier solvent, the initial pressure was too high for the upper mobile phase to flow out in the actual
CPC procedure.
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Figure 1. (a) Centrifugal partition chromatography (CPC) operation and chromatogram. Mobile phase
composition with linear-gradient elution and (b) CPC separation chromatogram at 280 nm and scan
mode: 254–320 nm. The details are described in Section 3.6. CPC procedure.

Table 1. Phase ratios and settling times of each ternary biphasic solvent system.

Less Polar Solvent Systems Medium Polar Solvent Systems Polar Solvent Systems

Solvent
System

Volume
Ratios
(v/v/v)

Phase
Ratios

Settling
Time

Solvent
System

Volume
Ratios
(v/v/v)

Phase
Ratios

Settling
Time

Solvent
System

Volume
Ratios
(v/v/v)

Phase
Ratios

Settling
Time

H/M/W 10:1:9 50/50 12 s EA/M/W 10:1:9 58/42 19 s B/M/W 10:1:9 50/50 26 s
10:2:8 50/50 12 s 10:2:8 58/42 20 s 10:2:8 56/44 3 m 17 s

H/E/W 10:1:9 50/50 >4 m EA/E/W 10:1:9 48/52 13 s B/E/W 10:1:9 48/52 1 m 30 s
10:2:8 49/51 50 s 10:2:8 52/48 19 s 10:2:8 57/43 >4 m

H/I/W

10:1:9 50/50 >4 m

EA/I/W

10:1:9 50/50 14 s

B/I/W

10:1:9 50/50 15 s
10:2:8 51/49 24 s 10:2:8 54/46 19 s 10:2:8 58/42 24 s
10:3:7 52/48 20 s 10:3:7 62/38 22 s 10:3:7 70/30 37 s
10:4:6 54/46 17 s 10:4:6 74/26 27 s 10:4:6 96/4 1 m 40 s

H/A/W 10:1:9 50/50 14 s EA/A/W 10:1:9 50/50 10 s B/A/W 10:1:9 50/50 36 s
10:2:8 50/50 11 s 10:2:8 56/44 11 s 10:2:8 60/40 43 s

H—n-hexane; M—methanol; W—water; E—ethanol; I—isopropanol; A—acetonitrile; EA—ethyl acetate;
B—water-saturated n-butanol.

2.2. Separation of the CPC Gradient Elution and ARE Induction Activity

CPC was operated in a linear gradient of three ternary solvent systems, as shown in
Figure 1a. The upper phase of the three ternary solvent systems was introduced sequentially as
the mobile phase. The mobile phase consisted of n-hexane–acetonitrile–water (10:2:8, v/v/v), ethyl
acetate–acetonitrile–water (10:2:8, v/v/v), and water-saturated n-butanol–acetonitrile–water (10:2:8).

As shown in Figure 1b, eighteen high-resolution fractions (A–R) were obtained, and the overall
CPC operating time was 360 min. The initial operating pressure was approximately 70 bar, then it
began to decline after 80 min, and was then maintained at 25 bar for approximately 180 min.
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According to the CPC chromatogram, eighteen fractions were collected and evaporated to dryness:
A (30–42.5 min, 173.7 mg), B (42.5–55 min, 44.8 mg), C (55–80 min, 48.6 mg), D (80–97.5 min, 76.7 mg),
E (97.5–110 min, 119.2 mg), F (110–150 min, 51.5 mg), G (150–167 min, 65.4 mg), H (167–180.5 min,
25.7 mg), I (180.5–189 min, 55.6 mg), J (189–200.5 min, 100.8 mg), K (200.5–217.5 min, 106.7 mg),
L (217.5–227 min, 75.8 mg), M (227–255.5 min, 243.9 mg), N (255.5–267 min, 116.6 mg), O (267–285.5 min,
97.2 mg), P (285.5–295.5 min, 33.8 mg), Q (295.5–320.5 min, 82.4 mg), and R (320.5–residue in rotor,
2387.5 mg). After the CPC operation, the total sum of each fraction was 3905.9 mg when 4.0 g of crude
sample was loaded. The recovery rate was 97.6% (Table 2).

Table 2. Fraction weights and calculated concentrations.

Fraction A B C D E F G H I

Weight (mg) 173.7 44.8 48.6 76.7 119.2 51.5 65.4 25.7 55.6
Weight ratio (%) 4.4 1.1 1.2 2 3.1 1.3 1.7 0.7 1.4

Calculated conc. (µg/mL) 1.33 0.34 0.37 0.59 0.92 0.4 0.5 0.2 0.43

Fraction J K L M N O P Q R

Weight (mg) 100.8 106.7 75.8 243.9 116.6 97.2 33.8 82.4 2387.5
Weight ratio (%) 2.6 2.7 1.9 6.2 3 2.5 0.9 2.1 61.1

Calculated conc. (µg/mL) 0.77 0.82 0.58 1.87 0.9 0.75 0.26 0.63 18.34

The fractions were profiled using HPLC/UV at 254 nm, and we identified major peaks associated
with the CME (fractions D, G, J, K, M, and N) as showed in Figure 2. We next evaluated the CME
for the ARE-inducing activity at a concentration of 30 µg/mL, and 18 fractions were evaluated at the
concentration applied at each assigned weight ratio (Table 2). The results showed that fraction E
exerted the highest activity, followed by fractions D, A, and G. However, the activity of fraction A is
not representative due to the following reasons: (i) it was treated at relatively high concentrations,
(ii) the fraction chromatogram profiling shows the peaks of several substances, and (iii) compared
with fraction B, the chromatogram profiling showed a similar activity that was proportional with the
concentration (treated fractions A and B with concentrations of 1.33 and 0.34, A and B activities = 7.6-
and 2.6-fold, respectively). Outside of that, fraction I–R are non-active. Overall, the fractions including
compound 1 and 2 in the HPLC chromatograms of fraction A–R were evaluated to be ARE-inducing
activity. Therefore, fractions D–E and G were further purified using preparative HPLC in order to
obtain pure 3-methoxyquercetin (1) and brevilin A (2), respectively. The chemical structures of these
compounds are shown in Figure 3. The physicochemical information of these compounds is indicated
in Section structural information of the supplementary.

The ARE induction activity of the isolated compounds from active fractions D–E and G was
assessed using a luciferase assay in HepG2 cells at serial concentrations of 0.5, 1.5, and 2.0 µM.
The results showed that 3-methoxyquercetin (1) and brevilin A (2) enhanced the ARE activity in
a dose-dependent manner (Figure 4). The 3-methoxyquercetin (1)-derived ARE-inducing activity
was prominent. Significant antioxidant and hepatoprotective activities have already been reportedly
attributed to 3-methoxyquercetin indicated by its ability to prevent liver cell death during CCl4
intoxication [20].
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3. Materials and Methods

3.1. Reagents and Materials

All solvents used for the CPC were of analytical grade and purchased from Daejung Chemical
(Gyeonggi-do, Republic of Korea). The HPLC-grade solvents were obtained from Fisher Scientific
(Pittsburgh, PA, USA). The C. minima sample was purchased from the Kyungdong Oriental Herbal
Market, Seoul, the Republic of Korea, in May 2017. A voucher specimen (HYUP-CM-001) was deposited
in the Herbarium of the College of Pharmacy, Hanyang University.

3.2. C. minima Extract Preparation

The dried C. minima was chopped to the appropriate size, extracted by reflux with methanol (three
times for 2 h each), and the extract solution was absorbed using Diaion HP-20 resin for chlorophyll
removal followed by lyophilization in order to obtain a 4.31%-yield dried extract (CME). The CME
was stored at −20 ◦C until further use. For the cell treatment, the CME was dissolved in DMSO.

3.3. Ternary Biphasic Solvent System Preparation

In order to find a gradient elution solvent system capable of separating compounds with
a wide polarity range, common solvents used for liquid–liquid extraction (n-hexane, ethyl acetate,
water-saturated n-butanol, and distilled water) were fixed, and the polarity modifier solvents (methanol,
ethanol, acetonitrile, and isopropanol) were tested. The various ternary biphasic solvent systems are
listed in Table 1.

3.4. Settling Time and Phase Ratio Measurement

The settling time, which highly correlated with the retention of the stationary phase, was expressed
as the time to form a clear layer between the two phases (1:1, v/v) when mixed. The phase ratio was
calculated as the ratio of each phase after mixing the upper phase with the lower phase.

3.5. HPLC Analysis

CME and CPC peak fractions were analyzed using a Waters Alliance 2695 HPLC system coupled
with a Waters 2996 PDA detector (Waters, Milford, MA, USA) with a Capcellpak UG120 C18 column
(4.6 × 250 mm, 5 µm, Shiseido, Tokyo, Japan). Acetonitrile (0.1% formic acid, solvent A) and water
(0.1% formic acid, solvent B) were eluted in a gradient mode: 0–20 min, 10–40% A; 20–25 min, 40–55%
A; 25–30 min, 55–95% A; and 40 min, 95% A. The flow rate was 1 mL/min, and the injection volume
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was 10 µL. The diode array detector measured the UV spectrum over a range of 200–450 nm, and the
chromatogram of the effluents was recorded at 254 nm. The system was controlled using Waters
Empower™ 2 Chromatography Software.

3.6. CPC Procedure

An SCPC-1000 (Armen instrument, St-Ave, France) apparatus and a Spot Prep II HPLC instrument
were combined to form a CPC system. The preparation of the biphasic solvent system for the linear
gradient elution mode was designed as follows: the upper and lower phase solvents were prepared
when the solvents were perfectly mixed and completely equilibrated. The 1000 mL volume of the CPC
rotor was filled with a lower layer of n-hexane–acetonitrile–water (10:2:8, v/v/v) as the stationary phase
at 50 mL/min in ascending mode at a speed of 500 rpm. Then, the rotation speed of the rotor was
accelerated to 800 rpm, and the upper layer as the mobile phase was carried into the rotor in descending
mode at a flow rate of 10 mL/min. The CPC rotor reached equilibrium at the immiscible biphasic
state (320 mL of the stationary phase out of 1000 mL rotor volume, 69 bar). The elution was carried
out in gradient mode with a mixed mobile phase of A (upper layer of n-hexane–acetonitrile–water,
10:2:8, v/v/v), B (upper layer of ethyl acetate–acetonitrile–water, 10:2:8, v/v/v), and C (upper layer of
water-saturated n-butanol–acetonitrile–water, 10:2:8, v/v/v) with a flow rate of 10 mL/min for 0–30 min
(100% A), 30–180 min (100% A–100% B), 180–300 min (100% B–100% C), and 300–480 min (100% C).
Thereafter, methanol was pumped for washing at 50 mL/min, and all the remaining samples were
recovered. The CME (4.0 g) was dissolved in 20 mL of mixed upper and lower phases and subjected to
the CPC system. The system was controlled using Armen Glider CPC V5.0b.09 Software.

3.7. Cell Culture and Viability Assay

The construction of the HepG2-ARE cells (transfected Pgl4.37 [luc2P/ARE/ Hygro] (Promega))
was performed as described previously [21]. The HepG2-ARE cells were cultured in DMEM high
glucose media (Hyclone, Logan, UT, USA) supplemented with 10% FBS (Hyclone, Logan, UT),
1% penicillin-streptomycin (Hyclone, Logan, UT, USA), and 1% hygromycin B (Invitrogen, Carlsbad,
CA, USA). The cell viability was examined using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium
bromide (MTT) assay. HepG2 cells stably transfected with pGL4.37 (HepG2-ARE cells) were seeded
at a density of 1 × 105 cells/well in 24-well plates for 24 h. After serum starvation for 12 h and upon
reaching an approximately 80% confluency, the cells were incubated with the major compounds for
24 h. The cells were treated with 50 µL MTT for 1 h. The formazan precipitate was dissolved in 1 mL
of dimethyl sulfoxide (DMSO), and the absorbance was measured at 570 nm using a microplate reader.

3.8. ARE-Inducing Activity Assay

HepG2-ARE cells were seeded at a density of 1 × 105 cells/well in 24-well plates for 24 h. The cells
were starved for 12 h when they grew to approximately 80% of confluency and exposed to crude
extract, CPC fractions, and purified compounds for an additional 24. Then, the cells were lysed using
120 µL of passive lysis buffer (Promega, Madison, WI, USA) in an ice rack and transferred into 1.5-mL
tubes. The tubes were centrifuged at 1000 rpm for 3 min. Each supernatant (30 µL) in the centrifuged
tube was reacted with 60 µL of assay substrate in a white 96-well plate. Finally, the luminescence
was measured using an EnSpire multimode plate reader (PerkinElmer, Waltham, MA, USA). DMSO
(below 0.1%) was used as a vehicle, which was the negative control. Sulforaphane was used as a
positive control.

3.9. Protein Assay

The protein was determined using the Pierce Micro BCA protein assay kit with BSA as a standard
(Pierce No. 23227; Thermo Fisher Scientific, Illinois, USA). Each standard and unknown sample lysate
(10 µL) was replicated in a 96-well microplate. The working reagent (200 µL) was added to each
well. The BCA reagents A and B were mixed in a 49:1 volume ratio. After 30 min of incubation at
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37 ◦C, the plate was cooled at room temperature and the absorbance was measured at 562 nm using
a microplate reader. The calculated value of the protein assay was used as a factor to correct for
ARE-inducing activity.

3.10. Statistical Analysis

All data are presented as the mean ± standard error (S.E.) and the difference between the control
and treatment groups was assessed using the Student’s t-test. * p < 0.05, ** p < 0.01, *** p < 0.005 were
considered statistically significant.

4. Conclusions

In this study, a comprehensive CPC gradient solvent system was developed for
bioassay-guided isolation from the CME. The upper phase of three ternary solvent
systems with n-hexane–acetonitrile–water, ethyl acetate–acetonitrile–water, and water-saturated
n-butanol–acetonitrile–water (each 10:2:8, v/v/v) eluted in a linear gradient mode, and the ARE-inducing
molecule 3-methoxyquercetin (1) and brevilin A (2) were purified from the CME. The overall results
of this study demonstrate that a linear gradient CPC with three ternary solvent systems is suitable
for screening bioactive molecules from natural products, even when the compounds have a wide
polarity range.

Supplementary Materials: The following are available online at http://www.mdpi.com/1420-3049/25/13/3077/s1,
Figure S1: Preparation of simulating solvent systems for the gradient elution, Figure S2: CME ARE-luciferase
induction activity, Figure S3: CME and marker compound HPLC chromatograms. Table S1: Volume ratio and
settling time of biphasic solvent systems, Table S2: The solvent composition in a simulating solvent system of
n-hexane–acetonitrile–water, ethyl acetate–acetonitrile–water, and water-saturated n-butanol–acetonitrile–water
(10:2:8, v/v/v).
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