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Abstract: In the present study, the incubation conditions of goat milk fermented by Lactobacillus
bulgaricus LB6 were optimized to increase the angiotensin converting enzyme (ACE, EC 3.4.15.1)
inhibitory activity by Box–Behnken design of response surface methodology. Incubation temperature,
whey powder, and calcium lactate had significant effects on ACE inhibition rate and viable counts of
LB6 during incubation. The results showed that optimal conditions of fermentation were found to be
37.05 ◦C, 0.8% (w/w) whey powder and 0.50% (w/w) calcium lactate. ACE inhibition rate increased
significantly from 71.04 ± 0.37% to 83.31 ± 0.45% and the viable counts of Lactobacillus bulgaricus
LB6 reached to 8.03 × 107 cfu·mL−1 under the optimal conditions, which approached the predicted
values 83.25% and 8.04 × 107 cfu·mL−1. The optimal fermentation conditions can be a good reference
for preparing ACE inhibitory peptides from goat milk.
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1. Introduction

Hypertension is a major risk factor for myocardial infarction, heart failure, stroke, aneurysm,
arteriiosclerosis, renal disease, and peripheral arterial disease and it may lead to chronic kidney
disease as well [1–3]. Six categories of drugs (diuretics, calcium channel blockers, angiotensin
II receptor blockers, ACE inhibitors, α-adrenergic antagonist, and β-blockers) are employed for
anti-hypertension [4]. ACE inhibitors are more widely applied due to the protection to target organ
without adverse effects on the metabolism of glycolipid.

ACE, also known as Kinase II, is a metalloproteinase containing two zinc-catalytically active
sites [5], which can affect both the renin–angiotensin system (RAS) and the kallikrein–kinin
system (KKS) simultaneously. Inactive angiotensin-I is hydrolyzed to angiotensin-II with effective
vasoconstrictor action in the RAS system under the combined action of renin and ACE, leading to
elevated blood pressure. The KKS system is an endogenous blood pressure system in which the ACE
inhibits the antihypertensive effect by inactivating the bradykinin [6–10]. The role that ACE plays in
these two systems ultimately resulted in the elevation of blood pressure.

ACE inhibitors can inhibit ACE activity. Since the side effects such as dry-cough, pruritic rash,
and taste disorders occurred when using synthetic ACE inhibitors [11,12], studies on food-derived
ACE inhibitory peptides to produce antihypertensive products without toxic side effects have shown
much necessity. ACE inhibitory peptides can be integrated with ACE tightly in the human body and it
is not easy to release them from the ACE binding area. There are competitive inhibitory effects between
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ACE inhibitory peptides with both angiotensin-I and bradykinin in the process of blood pressure
regulation [13], which can prevent the formation of angiotensin-II and inactivation of bradykinin at
the same time. Thus, ACE inhibitory peptides can be used for anti-hypertension.

The food-derived ACE inhibitory peptides, which have been reported, are mainly derived from
animal proteins, vegetable proteins, and algae. Milk protein—including casein, lactalbumin and
lactoglobulin—is a kind of source of ACE inhibitory peptides for animal protein sources [14,15].
Goat milk has an unparalleled advantage compared to other dairy. The protein, fat, minerals, vitamins,
and other nutrients of goat milk are more abundant than other milk [16–18]. Moreover, goat milk
overall protein particles are smaller, composed of short-chain fatty acids. Goat milk is closer to breast
milk than other dairy, and even has a higher level of immunoglobulin than breast milk [19]. Lactic acid
bacteria are a group of gram-positive bacteria that translate carbohydrates into lactic acid, which have
been widely used in food fermentation. Proteins are hydrolyzed into plenty of bioactive peptides
with some health care functions by lactic acid bacteria during incubation. There are 70 kinds of ACE
inhibitory peptides from goat milk in the AHTPDB [20]. Parmar et al. [21] identified and characterized
26 peptides with ACE inhibitory activity from fermented goat milk with Lactobacillus casei NK9 and
Lactobacillus fermentum LF. Sixteen peptides in fermented milk beverage made from caprine milk were
identified by Quiro’s et al. [22]. Two of these peptides, with sequences PYVRYL and LVYPFTGPIPN,
showed potent ACE inhibitory properties.

In our previous work, four strains—including L. bulgaricus, Lactobacillus rhamnosus, Lactobacillus
helveticus and Lactobacillus reuteri—were selected as starters of ACE inhibitory peptides among
28 probiotic Lactobacillus strains [23]. The effects of incubation conditions of Lactobacillus bulgaricus LB6
on the ACE inhibition rate and viable counts in fermented goat milk were performed by single factor
experiments [24]. A Plackett–Burman designed experiment was conducted subsequently. Incubation
temperature, whey powder, and calcium lactate were selected as main factors, which had positive
effects on ACE inhibition rate with a low level (30 ◦C, 0.6%, 0.4%) and a high level (37 ◦C, 0.8%, 0.5%).
According to the results of the steepest ascent experiment, 37 ◦C, 0.8% whey powder and 0.5% calcium
lactate were set as the centers of Box–Behnken design (data unpublished). The aim of this study was
to optimize the levels of the significant factors (incubation temperature, whey powder and calcium
lactate) for incubation conditions of L. bulgaricus LB6 to maximize ACE inhibitory activity as well as
viable counts during fermentation by using Box–Behnken design based on the previous study [25].

2. Results

2.1. The Experimental Design and Results of Box–Behnken

RSM (Response surface methodology) was carried out to determine the optimum concentrations
of the three significant factors for fermented goat milk, incubation temperature (A), whey powder
(B), and calcium lactate (C). The factors and levels are given in Table 1. The experimental design and
results of Box–Behnken for incubation conditions of LB6 are shown in Table 2. The ACE inhibition rate
is represented by R1 (%) and viable counts of LB6 is represented by R2 [lg(cfu·mL−1)].

Table 1. The factors level coding table of Box–Behnken for incubation conditions of LB6.

Factors
Coded Levels

−1 0 1

Temperature (◦C) 35 37 39
Whey powder (%) 0.7 0.8 0.9

Calcium lactate (%) 0.45 0.50 0.55
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Table 2. The experimental design and results of Box–Behnken for incubation conditions of LB6.

Runs A B C
R1 (%) R2 [lg(cfu·mL−1)]

Actual Value Predicted Value Residual Actual Value Predicted Value Residual

1 −1 1 0 74.08 73.81 0.27 7.7 7.67 0.031
2 0 1 −1 77.77 78.21 −0.44 7.82 7.83 −0.015
3 −1 0 1 75.45 75.23 0.22 7.71 7.72 −0.014
4 0 1 1 78.04 78.53 −0.49 7.8 7.82 −0.018
5 0 0 0 83.19 83.26 −0.07 8.05 8.04 0.013
6 0 −1 −1 78.72 78.23 0.49 7.9 7.88 0.017
7 0 −1 1 78.25 77.81 0.44 7.82 7.81 0.015
8 1 0 −1 75.56 75.78 −0.22 7.8 7.79 0.014
9 1 1 0 75.49 74.83 0.66 7.67 7.67 0.00125
10 0 0 0 82.67 83.26 −0.59 8.03 8.04 0.00667
11 1 −1 0 73.68 73.96 −0.28 7.67 7.70 −0.031
12 −1 0 −1 76.31 76.15 0.16 7.83 7.85 −0.016
13 0 0 0 83.92 83.26 0.66 8.03 8.04 0.00667
14 −1 −1 0 73.32 73.98 −0.66 7.67 7.67 0.00125
15 1 0 1 76.44 76.60 −0.16 7.83 7.81 0.016

2.2. Regression Analysis

The data were analyzed to get quadratic regression model by using Design Export based on the
data from the Box–Behnken experiment. A multiple regression equation correlating the response
function with the independent variables could be obtained as:

R1 = 83.26 + 0.25A + 0.18B − 0.022C + 0.26AB + 0.43AC + 0.19BC − 5.69A2 − 3.43B2 − 1.63C2

R2 = 8.04 + 0.0075A − 0.00875B − 0.024C − 0.0075AB + 0.038AC + 0.015BC − 0.20A2 − 0.16B2 − 0.043C2

where: R1 and R2 are corresponding expected value of ACE inhibition rate and viable counts of LB6.
A, B and C are the coded values of the independent variables, incubation temperature, whey powder,
and calcium lactate, respectively.

2.3. Variance Analysis

Analysis of variance (ANOVA) is used to determine whether the model is valid according to the
significance. ANOVA for response surface of ACE inhibition rate and viable counts of LB6 were shown
in Table 3.

Table 3. ANOVA of response variables for ACE inhibition rate and viable counts of LB6.

Source
ACE Inhibition Rate Viable Counts of LB6

DF MS F Pr > F MS F Pr > F

Model 9 17.58 31.10 0.0007 *** 0.0260 31.58 0.0007 ***
A 1 0.51 0.89 0.3880 0.0005 0.54 0.4967
B 1 0.25 0.44 0.5366 0.0006 0.73 0.4317
C 1 0.004 0.007 0.9358 0.0045 5.38 0.0680

AB 1 0.28 0.49 0.5161 0.0002 0.27 0.6265
AC 1 0.76 1.34 0.2995 0.0056 6.71 0.0488 *
BC 1 0.14 0.24 0.6435 0.0009 1.07 0.3476
A2 1 119.39 211.20 <0.0001 *** 0.1500 177.64 <0.0001 ***
B2 1 43.47 76.90 0.0003 *** 0.0930 110.41 0.0001 ***
C2 1 9.86 17.43 0.0087 ** 0.0069 8.27 0.0348 *

Residual 5 0.57 0.0008
Lack of fit 3 0.68 1.72 0.3878 0.0013 9.81 0.0939
Pure error 2 0.39 0.0001
Cor Total 14

*** p < 0.001, extremely significant; ** p < 0.01, very significant; * p < 0.05, significant. DF refers to degrees of freedom,
MS refers to mean square, F and Pr > F refer to F and p-values, respectively.
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As shown in Table 3, the probability value of ACE inhibition rate indicated a high significance
for regression equation (p = 0.0007 < 0.001) and the lack of fit was insignificant (p = 0.3878 > 0.05).
It revealed the effectiveness of regression analysis, which suggested that the regression model could
be used to fit the effect of three factors on ACE inhibition rate. The difference between adjusted
R-squared and predicted R-squared was 0.16, within the value of 0.2, which implied that the model
was highly significant. Furthermore, the value of determination coefficient (R2 = 98.24%) was calculated.
It suggested that a 98.24% response to the ACE inhibition rate was caused by changing in the
concentration of A, B, and C and their interactions.

The ANOVA showed the model for viable counts of LB6 with a p-value was less than 0.05, which
was significant in Table 3. The lack of fit (p = 0.0939 > 0.05) was insignificant. Therefore, the model
equation was corroborated to be a suitable model to describe the value of the viable counts for LB6.
The value of determination coefficient, which was 98.27%, indicated that only 1.73% of the variability
in the viable counts of LB6 could not be explained by the predicted equation of model. AB and BC
showed weak mutual interactions on the effect of viable counts for LB6, while the interaction of AC
was significant (p = 0.0488 < 0.05).

Two-dimensional contours revealed that ACE inhibition rate changed with the changes of
temperature, whey powder, and calcium lactate and their corresponding three-dimensional response
surface were generated to determine the interaction of the three variables on the corresponding
variables better (Figure 1). As shown in Figure 1, the contour plots seemed to be elliptical or nearly
circular. It implied that AB, AC, and BC had mutual interactions for the ACE inhibition rate, while they
were weak (pAB = 0.5161 > 0.05, pAC = 0.2995 > 0.05, pBC = 0.6435 > 0.05). Therefore, the effect of
one factor on ACE inhibition rate was dependent on the level of another one. The quadratic main
effects of incubation temperature, whey powder, and calcium lactate were significant (pA

2 < 0.001,
pB

2 = 0.0003 < 0.001, pC
2 = 0.0087 < 0.01), which suggested that there was not a simple linear correlation

between the variables and ACE inhibition rate.
The maximum responses values of ACE inhibition rate 83.25% and the viable counts of L. bulgaricus

LB6 8.03 × 107 cfu·mL−1 were obtained at 37.05 ◦C, 0.8% whey powder, and 0.5% calcium lactate as
predicted, respectively. The design of verification experiment was dependent on the optimization
results (A = 37.0 ◦C, B = 0.8%, C = 0.5%). The results demonstrated that the ACE inhibition rate
and viable counts of LB6 were 83.31 ± 0.45% (n = 3) and 8.03 × 107 cfu·mL−1 (n = 3) under the
optimum conditions. There was no significant difference from the predicted value, indicating suitability
of the model. The control had values of ACE inhibition rate as 71.04 ± 0.37% and viable counts
as 4.53 × 107 cfu·mL−1 at 37 ◦C without addition of whey powder and calcium lactate. The ACE
inhibition rate was improved by 12.27% using RSM optimization compared to the control. The viable
counts of LB6 was increased significantly from 4.53 × 107 cfu·mL−1 to 8.03 × 107 cfu·mL−1.
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3. Discussion

It had been reported that great quantities of optimum methods were used to release more
ACE inhibitory peptides and the approaches to enhance ACE inhibitory activity in fermented
products have recently received considerable attention. B vitamins were added to the soybean milk
fermentation medium and the ACE inhibitory activity had significant improvements compared to
control. The addition of B vitamins enhanced protein hydrolysis degree, which resulted in more
bioactive peptides being released [26]. Prebiotics have the same promotion effects as B vitamins.
A study by Yeo et al. [27] showed that the addition of prebiotics, such as inulin and pectin, enhanced
the antihypertensive effect in probiotic-fermented soymilk.

Temperature was testified to be a significant factor to fermented milk, which could owe to the
influence on the growth of L. bulgaricus and the activity of proteolytic enzyme. L. bulgaricus LB6
exhibited extremely poor growth with a weak metabolic activity when the temperature was low,
causing low values of ACE inhibition rate and viable counts of LB6. With the increase of temperature,
L. bulgaricus grew quickly and the enzyme activity increased gradually. Therefore, the activity of
LB6 and the ACE inhibition were enhanced. The activity of proteolytic enzymes was destroyed with
temperature elevation, causing the gradual decrease of ACE inhibition rate.

Whey powder has been used to improve production of ACE inhibitory peptides in a suitable
concentration. The viable counts of LB6 and ACE inhibition rate in fermented goat milk increased first
and then decreased as the concentration of whey powder increasing. However, the ACE inhibition
rate gradually lessened in the cow milk fermented by Lactobacillus casei with increasing concentrations
of whey powder [28], which may due to the structure and content of whey protein in bovine and goat
milk are different.
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Low concentrations promote ACE inhibitory activity, while high concentration suppression of
ACE inhibitory activity is also applicable to calcium lactate. It was reported that calcium dihydrogen
phosphate was added when preparing rapeseed ACE inhibitory peptides by liquid-state fermentation
conditions and the ACE inhibition rate was greatly improved [29]. The effects of ionic calcium
on L. casei and Bifidobacterium bifidum were studied by Gonzalez et al. [30]. It was found that ACE
inhibitory peptides had a higher yield with the calcium added, which might be related to the effect of
ionic calcium channel by speculation.

The ACE inhibition rate and viable counts of LB6 can be significantly increased by optimizing
incubation conditions of fermented goat milk using RSM. The ACE inhibition rate improved from
71.04 ± 0.37% to 83.31 ± 0.45% in present study, which provides a reference for improving the
production of ACE inhibitory peptides by L. bulgaricus fermentation.

The effect of fermentation conditions on the ACE inhibitory activity in milk fermented by yeast,
Kluyveromyces marxianus, was investigated by Li et al. [31] using RSM. Optimal conditions of incubation
were found to be temperature 32 ◦C, initial pH 6.5, 6% (v/v) inoculum level and rotation speed of
189 rpm. ACE inhibition rate reached 81.23 ± 2.69% under optimal conditions. It is lower than
the result of this study, which may be due to that Lactobacillus proteolytic enzyme is superior to
yeast. Pan et al. [32] found that the maximum of ACE inhibition rate was 75.46 ± 0.42% when using
Lactobacillus helveticus LB10 as starter culture to ferment milk under optimal conditions, which were
4% (v/w) inoculum, initial pH 7.5 of medium at 39.0 ◦C. Strains with high ACE inhibitory activity
were screened by Chen et al. [23] and the result indicated that ACE inhibitory activity of L. helveticus
was lower than that of L. bulgaricus under the same fermentation conditions, which was consistent
with the results of this paper.

4. Materials and Methods

4.1. Strain

L. bulgaricus LB6 was provided by the college of Food and Biological Engineering, Shaanxi
University of Science & Technology (Xi’an, China). The starter cultures were stored at −20 ◦C in
freeze-dried powder. L. bulgaricus LB6 was activated successively three times in rehydrated Man
Rogosa Sharpe broth (MRS, Hopebio, Qingdao, China) with 5% inoculum at 37 ◦C for 24 h prior use as
starter culture to ferment goat milk.

4.2. Preparation of Fermented Goat Milk

Starter culture containing L. bulgaricus LB6 was inoculated into reconstituted skim goat milk
pasteurized with 5% inoculum and fermented at 37 ◦C for 12 h.

4.3. Determination of ACE Inhibitory Activity

The whey fraction from the fermented goat milk was used to measure the ACE inhibitory activity.
Aliquots of the fermented goat milk were collected, vigorously stirred, and centrifuged at 5000× g for
15 min to obtain the corresponding whey fractions. The supernatants collected were filtered through
a Xinhua filter and used to determine their ACE inhibitory activity. ACE inhibitory activity was
measured by a spectrophotometric assay according to the method of Cushman and Cheung (1971)
with modifications. Added 80 µL of each sample to 200 µL sodium borate buffer (0.1 mol·L−1, pH 8.3)
containing NaCl (0.30 mol·L−1) and hippuryl-histidyl-leucine (HHL) (5 mmol·L−1). ACE (20 µL,
0.1 U·mL−1) was added and incubate the reaction mixture at 37 ◦C for 30 min. 250 µL 1 mol·L−1 HCl
was added to terminate the reaction. Hippuric acid formed was extracted by 1.7 mL ethyl acetate
and evaporated at 120 ◦C for 30 min. The sample was dissolved into 2 mL deionized water after
cooling at room temperature. The absorbance at 228 nm was measured in triplicate using UV-vis
spectrophotometer (Shanghai Spectrum Instruments Co., Ltd., Shanghai, China).
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4.4. Calculation of the ACE Inhibition Rate

ACE inhibition rate were determined by the following equation:

ACE inhibition rate (%) =
X1 − X2

X1 − X3
× 100%

where X1 is absorbance without the whey fraction, X2 is absorbance without ACE, and X3 is the
absorbance in the presence of both ACE and the whey fraction.

4.5. Measurement of Viable Counts

Fermented goat milk was diluted serially by saline water (0.9%, w/v, NaCl) containing 0.1 g·L−1

peptone (0.9%, w/v, NaCl) and spread on MRS agar plates. The dilution in triplicate was incubated for
48 h at 37 ◦C. Results were expressed as colony forming units per milliliter (cfu·mL−1) of fermented
milk by manual counting.

4.6. Optimization of Fermentation Conditions by RSM

RSM was employed for further optimization studies by determining the maximum response
value and evaluation of the main effects, interaction effects, and quadratic effects. RSM of 3-variable
and 3-level were used according to the previous study.

4.7. Validation of the Model

The parameters of incubation conditions were applied in further fermentation experiments based
on the results of RSM. The experimental values were compared with predictive value to verify the
effectiveness of the model.

4.8. Statistical Analysis of the Data

Design Expert software (Version 8.0.5, Stat-Ease. Inc., Minneapolis, MN, USA) was used for
the analysis of the experimental data obtained and quadratic regression equation was established to
analyze the response surface contour and surface plots.

5. Conclusions

Hypertension is a serious threat to human health and food-derived ACE inhibitory peptides can
regulate high blood pressure without side effects. In this study, incubation conditions of fermented
goat milk with L. bulgaricus LB6 were optimized by RSM to increase the production of ACE inhibitory
peptides. The results showed that the maximum ACE inhibition rate was 83.31 ± 0.45% in the
0.8% (w/w) whey powder and 0.50% (w/w) calcium lactate at 37.05 ◦C. The viable counts of L. bulgaricus
LB6 was reaching to 8.03 × 107 cfu·mL−1 under the optimal conditions. Both ACE inhibition rate and
viable counts were close to the predicted values, which indicated effectiveness of the model.
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