Supplementary Materials: Chemical Incorporation of Chain-Terminating Nucleoside Analogs as 3'-Blocking DNA Damage and Their Removal by Human ERCC1-XPF Endonuclease

Junpei Yamamoto, Chiaki Takahata, Isao Kuraoka, Kouji Hirota and Shigenori Iwai

Table S1. ESI-MS analysis of the synthesized oligonucleotides									
Entry	Sequence (5'→3')	Observed m/z	Calculated m/z^a	Yield ^b					
ACV 19-mer	TCC GTT GAA GCC TGC TTT ACV	5743.51	5742.74	62%					
ABC 19-mer	TCC GTT GAA GCC TGC TTT ABC	5804.79	5803.87	45%					
CBV 19-mer	TCC GTT GAA GCC TGC TTT CBV	5765.50	5765.79	32%					
(–)3TC 19-mer	TCC GTT GAA GCC TGC TTT (-)3TC	5747.65	5746.78	70%					

^aMass unit was calculated as [M–H]⁻ form.

^bIsolated yields.

Table S2. Cleavage of the primer-template substrates by ERCC1-XPF

Products	-OH (%)ª	ddC (%) ^a	ACV (%) ^a	ABC (%) ^a	CBV (%) ^a	(–)3TC (%) ^a
19-mer	_	36.3 ^b	32.8 ^b	11.3 ^b	12.4 ^b	42.9 ^b
18-mer	27.6 ^b	5.2	5.2	2.3	2.7	5.4
17-mer	2.3	7.5	3.2	17.7	15.3	5.4
16-mer	3.5	7.5	9.8	5.8	11.7	12.4
15-mer	1.3	1.6	1.7	1.6	2.4	1.7
14-mer	4.8	3.1	3.8	4.7	4.5	2.9
13-mer	28.6	19.7	22.9	28.7	25.0	17.1
12-mer	16.7	11.8	11.3	15.3	13.8	8.1
11-mer	1.9	1.6	1.4	1.7	2.0	1.0
10-mer	1.9	0.8	1.1	1.5	1.4	0.4
9-mer	8.8	3.6	5.2	7.2	6.4	2.0
8-mer	1.7	0.8	1.0	1.3	1.5	0.4
7-mer	1.0	0.5	0.6	0.9	0.9	0.3

^aThe band intensities of each of the products in lanes 3 in Figure 3A–F were quantified.

^bThe original primers.

Figure S1. ESI mass spectrum of ACV 19-mer with the internal standard (calcd. *m*/*z* 5361.56).

Figure S2. ESI mass spectrum of ABC 19-mer with the internal standard (calcd. *m*/*z* 5361.56).

Figure S3. ESI mass spectrum of CBV 19-mer with the internal standard (calcd. *m*/*z* 5361.56).

Figure S4. ESI mass spectrum of (–)3TC 19-mer with the internal standard (calcd. *m*/*z* 5361.56).

Figure S5. ¹H NMR spectrum of compound 5.

Figure S7. ¹H NMR spectrum of compound 7.

Figure S9. ¹H NMR spectrum of compound 8.

Figure S11. ³¹P NMR spectrum of compound 3.

Figure S13. ³¹P NMR spectrum of compound **4**. The signal at 11 ppm comes from an impurity.