Supplementary Materials: The Structure–Antimicrobial Activity Relationships of a Promising Class of the Compounds Containing the N-Arylpiperazine Scaffold ⁺

Ivan Malík, Jozef Csöllei, Josef Jampílek, Lukáš Stanzel, Iveta Zadražilová, Jan Hošek, Šárka Pospíšilová, Alois Čížek, Aidan Coffey and Jim O'Mahony

Figure S1. The relationship between the activity (in the log (1/*MIC* [M]) units) of the tested compounds **5a–l** against *M. kansasii* DSM 44162 and their electronic properties (pK_a) investigated by a linear fitting analysis model.

Figure S2. The relationship between the activity (in the log (1/MIC [M]) units) of the tested compounds **5a–1** against *M. kansasii* DSM 44162 and their electronic properties (p*K*_a) investigated by a polynomial fitting analysis model.

Figure S3. The relationship between the activity (in the log (1/*MIC* [M]) units) of the tested compounds **5a–l** against *M. kansasii* DSM 44162 and the molecular volume (*MV*) data of particular bases **5aB–lB** investigated by a linear fitting analysis model.

Figure S4. The relationship between the activity (in the log (1/*MIC* [M]) units) of the tested compounds **5a–l** against *M. kansasii* DSM 44162 and the molecular volume (*MV*) data of particular bases **5aB–lB** investigated by a polynomial fitting analysis model.

Figure S5. The relationship between the activity (in the log (1/*MIC* [M]) units) of the tested compounds **5a–1** against *M. kansasii* DSM 44162 and their lipophilicity (log P_{exp}) inspected by a linear fitting analysis model.

Figure S6. The relationship between the activity (in the log (1/*MIC* [M]) units) of the tested compounds **5a–1** against *M. kansasii* DSM 44162 and their lipophilicity (log P_{exp}) inspected by a polynomial fitting analysis model.

Figure S7. The relationship between experimentally observed pK_{as} and the log P_{exp} values of the analyzed compounds **5a–1**.

Figure S8. The relationship between the efficiency (in the log (1/MIC [M] units) of the tested 2- and 4-alkoxy substituted compounds (alkoxy = methoxy or ethoxy) against *M. kansasii* DSM 44162 and their lipophilicity (log *P*_{exp}) investigated by a polynomial fitting analysis model.

Figure S9. The relationship between the efficiency (in the log (1/MIC [M] units) of tested compounds **5a–1** against *M. marinum* CAMP 5644 and their electronic properties (pK_a) investigated by a linear fitting analysis model.

Figure S10. The relationship between the efficiency (in the log (1/*MIC* [M] units) of the tested compounds **5a–l** and their lipophilicity (log P_{exp}) investigated by a polynomial fitting analysis model.

Figure S11. The relationship between the efficiency (in the log (1/MIC [M] units) of the tested 2- and 3-alkoxy substituted compounds (alkoxy = methoxy or ethoxy) against *M. marinum* CAMP 5644 and their lipophilicity (log P_{exp}) investigated by a polynomial fitting analysis model.

Table S1. The relationships between the independent variables (p*K*_a, *MV* and log *P*_{exp}) and the dependent variable log (1/*MIC* [M]) inspected for the *Mycobacterium kansasii* DSM 44162 strain.

Equation	Equation		Statistical Parameters					
No.			R^2	F	RSS	Prob > F	n	
(1)	$\log (1/MIC [M]) = 5.970 (\pm 1.262) - 0.337 (\pm 0.201) \times pK_a$	0.375	0.141	2.80	1.73	0.125	12	
(2)	$\log (1/MIC [M]) = -1.795 (\pm 16.039) + 2.140 (\pm 5.103) \times pK_a - 0.196 (\pm 0.403) \times (pK_a)^2$	0.265	0.070	1.41	1.68	1.413	12	
(3)	$\log (1/MIC [M]) = 2.363 (\pm 3.053) - 0.004 (\pm 0.007) \times MV$	-	-0.074	0.24	2.16	0.633	12	
(4)	$\log \left(1/MIC \left[\mathrm{M} \right] \right) = -27.219 \ (\pm 82.351) + 0.148 \ (\pm 0.401) \times MV - 1.7 \times 10^{-4} \ (\pm 1.7 \times 10^{-4}) \times (MV)^2$	-	-0.176	0.18	2.13	0.842	12	
(5)	$\log (1/MIC [M]) = 2.147 (\pm 2.727) + 0.481 (\pm 0.763) \times \log P_{exp}$	-	-0.058	0.40	2.13	0.542	12	
(6)	$\log (1/MIC [M]) = -54.304 (\pm 40.414) + 32.417 (\pm 22.827) \times \log P_{exp} - 4.505 (\pm 3.219) \times (\log P_{exp})^2$	0.187	0.035	1.20	1.75	0.346	12	

Table S2. The relationships between the independent variables (pK_a , MV and log P_{exp}) and the dependent variable log (1/MIC [M]) inspected for the *Mycobacterium marinum* CAMP 5644 strain.

Equation	Enuction		Statistical Parameters					
No.	Equation	r	R^2	F	RSS	Prob > F	п	
(7)	$\log (1/MIC [M]) = 5.564 (\pm 0.557) - 0.292 (\pm 0.089) \times pK_a$	0.686	0.471	10.79	0.34	0.008	12	
(8)	$\log (1/MIC [M]) = -0.613(\pm 6.871) + 1.678 (\pm 2.186) \times pK_a - 0.156 (\pm 0.173) \times (pK_a)^2$	0.679	0.461	5.70	0.31	0.025	12	
(9)	log (1/MIC [M]) = 1.050 (±1.515) + 0.007 (±0.004) × MV	0.405	0.164	3.16	0.53	0.106	12	
(10)	$\log (1/MIC [M]) = -43.894 (\pm 38.346) + 0.225 (\pm 0.187) \times MV - 2.6 \times 10^{-4} (\pm 2.3 \times 10^{-4}) \times (MV)^{2}$	0.440	0.194	2.33	0.46	0.153	12	
(11)	$\log (1/MIC [M]) = 2.115 (\pm 1.478) + 0.455 (\pm 0.0.413) \times \log P_{exp}$	0.138	0.019	1.21	0.62	0.296	12	
(12)	$\log (1/MIC [M]) = -37.568 (\pm 20.205) + 22.905 (\pm 11.412) \times \log P_{exp} - 3.167 (\pm 1.609) \times (\log P_{exp})^2$	0.488	0.238	2.72	0.44	0.119	12	

Commonwell	MIC (µg/mL)					
Compound -	MAP^{1}	MS ²	MK ³	MM 4		
5a	250	256	64	64		
5b	1000	256	64	64		
5c	500	256	64	64		
5d	1000	64	16	64		
5e	500	256	32	32		
5f	500	256	256	128		
5g	1000	256	64	64		
5h	500	256	128	128		
5i	500	256	64	128		
5j	250	128	8	64		
5k	1000	256	128	256		
51	1000	256	256	128		
INH	250	16.05	4	64		
RIF	60	0.125	0.5	0.25		

Table S3. Antimycobacterial screening *in vitro* (*MIC* expressed in the µg/mL units) of the compounds **5a–1** compared to the isoniazid (INH) and rifampicin (RIF) standards.

¹ MAP, Mycobacterium avium subsp. paratuberculosis CIT03; ² MS, M. smegmatis ATCC 700084; ³ MK, M. kansasii DSM 44162; ⁴ MM, M. marinum CAMP 5644.

Table S4. The efficiency *in vitro* (*MIC* expressed in μ g/mL units) of the compounds **5a–1** and the reference drugs ciprofloxacin (CPX), 5-flucytosine (5-FC), ampicillin (AMP) and amphotericin B (Amph. B) against some Gram-positive and Gram-negative bacterial strains and yeasts.

Commenced			i	MIC (µg/mL	.)		
Compound -	SA 1	MRSA ²	<i>EC</i> ³	EF^{4}	CA ⁵	CP ⁶	<i>CK</i> ⁷
5a	>256	>256	>256	>256	>128	>128	>128
5b	>256	>256	>256	>256	>128	>128	>128
5c	>256	>256	>256	>256	>128	>128	>128
5d	>256	>256	>256	>256	>128	>128	>128
5e	>256	>256	>256	>256	>128	>128	>128
5f	>256	>256	>256	>256	>128	>128	>128
5g	>256	>256	>256	>256	>128	>128	>128
5h	>256	>256	>256	>256	>128	>128	>128
5i	>256	>256	>256	>256	>128	>128	>128
5j	>256	>256	>256	>256	>128	>128	>128
5k	>256	>256	>256	>256	>128	>128	>128
51	>256	>256	>256	>256	>128	>128	>128
CPX	0.25	>16	>16	>16	nd	nd	nd
5-FC	nd ⁸	nd	nd	nd	1	8	0.125
AMP	2	>16	>16	>16	nd	nd	nd
Amph. B	nd	nd	nd	nd	0.54	1.08	0.54

¹ SA, Staphylococcus aureus ATCC 29213; ² MRSA, methicillin-resistant Staphylococcus aureus 63718; ³ EC, Escherichia coli ATCC 25922; ⁴ EF, Enterococcus faecalis ATCC 29212; ⁵ CA, Candida albicans CCM 8261; ⁶ CP, Candida parapsilosis CCM 8260; ⁷ CK, Candida krusei CCM 8271; ⁸ nd, not determined, the compound was not used as the standard in the experiment.

Preparation of the Compounds 5a-l

The compounds under the study **5a–1** were synthesized according to the Scheme S1 and S2, as published in the research articles [30,65], which were listed in the References section of main text.

Those molecules were prepared by the reaction of 2-/3-/4-alkoxyphenyl isocyanates **1a**–**f** (alkoxy = methoxy or ethoxy) with (±)-oxiran-2-ylmethanol **2** in an anhydrous toluene. Given nucleophilic addition provided colorless (±)-oxiran-2-ylmethyl-2-/3-/4-alkoxyphenylcarbamates **3a**–**f** (Scheme S1). The compounds **3a**–**f** came under a nucleophilic addition by the reaction with 1-(3-trifluoromethylphenyl)piperazine **4a** and 1-(4-fluorophenyl)piperazine **4b**, respectively, to give solid or oily substances, 3-[4-(3-trifluoromethyl-/4-fluorophenyl)piperazin-1-yl]-2-hydroxypropyl -(2-/3-/4-alkoxyphenyl)carbamates **5aB–IB** (Scheme S2). The chemical structure of those intermediates was confirmed by the IR, ¹H-NMR and ¹³C-NMR spectral analyses. Synthesized bases **5aB–IB** were converted into corresponding salts **5a–l**, 1-[3-(2-/3-/4-alkoxyphenylcarbamoyl)oxy-2 -hydroxy-propyl]-4-(3-trifluoromethyl-/4-fluorophenyl)piperazin-1-ium chlorides (Scheme S2). All those synthesized colorless target substances **5a–1** were fully characterized by the ¹H NMR, ¹³C-NMR, IR and ESI-MS spectroscopy as well as by the CHN analyses. The observed results were in a full accordance with proposed structures [30,65].

The values of dissociation constant (pK_a; Table 1 in the main text) of final compounds **5a–l**, as a parameter, which described electronic and acidobasic features, and the partition coefficient readouts (log P_{exp} ; Table 2), which expressed lipohydrophilic properties estimated in the octan-1-ol/phosphate buffer (pH = 7.4) system, were published in the research papers [24,25,30], listed in the References section of the main text.

Scheme S1. The synthesis of the reaction intermediates, (\pm)-oxiran-2-ylmethyl-2-/3-/4-alk-oxyphenylcarbamates **3a**–**f**. *Reagents and conditions:* (**i**) dissolving of the intermediates in a dried toluene, the heating for 10 h at 65 °C.

4a: $R^2 = 3' \cdot CF_3$, **4b:** $R^2 = 4' \cdot F$ **5aB, 5a:** $R^1 = 2 \cdot OCH_3$, $R^2 = 3' \cdot CF_3$, **5bB, 5b:** $R^1 = 2 \cdot OC_2H_5$, $R^2 = 3' \cdot CF_3$ **5cB, 5c:** $R^1 = 3 \cdot OCH_3$, $R^2 = 3' \cdot CF_3$, **5dB, 5d:** $R^1 = 3 \cdot OC_2H_5$, $R^2 = 3' \cdot CF_3$ **5eB, 5e:** $R^1 = 4 \cdot OCH_3$, $R^2 = 3' \cdot CF_3$, **5fB, 5f:** $R^1 = 4 \cdot OC_2H_5$, $R^2 = 3' \cdot CF_3$ **5gB, 5g:** $R^1 = 2 \cdot OCH_3$, $R^2 = 4' \cdot F$, **5hB, 5h:** $R^1 = 2 \cdot OC_2H_5$, $R^2 = 4' \cdot F$ **5iB, 5i:** $R^1 = 3 \cdot OCH_3$, $R^2 = 4' \cdot F$, **5jB, 5j:** $R^1 = 3 \cdot OC_2H_5$, $R^2 = 4' \cdot F$ **5kB, 5k:** $R^1 = 4 \cdot OCH_3$, $R^2 = 4' \cdot F$, **5iB, 5j:** $R^1 = 4 \cdot OC_2H_5$, $R^2 = 4' \cdot F$

Scheme S2. The synthetic route of the final compounds, 1-[3-(2-/3-/4-alkoxyphenylcarbamoyl)oxy-2 -hydroxypropyl]-4-(3-trifluoromethyl-/4-fluorophenyl)piperazin-1-ium chlorides **5a–l**. *Reagents and conditions*: (i) the heating for 9 h, the stirring for 5 h at a room temperature; (ii) the solvents were removed *in vacuo*, crude intermediates were dissolved in chloroform, treated with water; organic fraction was collected, dried over an anhydrous magnesium sulfate and filtered; prepared bases were crystallized; (iii) an addition of saturated solution of hydrogen chloride in diethyl ether to individual solutions of the bases in chloroform, a continuous stirring for 2 h provided particular salts.