
 

Molecules 2015, 20, 5276-5285; doi:10.3390/molecules20045276 
 

molecules 
ISSN 1420-3049 

www.mdpi.com/journal/molecules 

Communication 

Optimization of Solid-Supported Glaser-Hay Reactions in  
the Microwave 

Jessica S. Lampkowski, Johnathan C. Maza, Sanjana Verma and Douglas D. Young * 

Department of Chemistry, College of William & Mary, P.O. Box 8795, Williamsburg, VA 23187, 

USA; E-Mails: jslampkowski@email.wm.edu (J.S.L.); jcmaza@email.wm.edu (J.C.M.); 

sverma01@email.wm.edu (S.V.) 

* Author to whom correspondence should be addressed; E-Mail: dyoung01@wm.edu;  

Tel.: +1-757-221-2539. 

Academic Editor: Fernando Albericio 

Received: 13 February 2015 / Accepted: 18 March 2015 / Published: 24 March 2015 

 

Abstract: The translation of organometallic reactions into a microwave reactor has numerous 

advantages. Herein, we describe the application of a previously developed solid-supported 

Glaser-Hay reaction to microwave conditions. Overall, an array of diynes has been prepared 

demonstrating the ability to conduct chemoselective reactions in the microwave within  

20 min compared to the 16 h thermal conditions. Moreover, non-microwave transparent 

alkynes have been found to react more quickly, preventing catalyst quenching, and 

resulting in higher yields. 
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1. Introduction 

The Glaser-Hay reaction involves the coupling of terminal alkynes to afford polyynes in good to 

excellent yields [1–4]. These polyynes are found in various applications ranging from biologically 

active natural products to optical materials [5–8]. A substantial hurdle to the widespread application of 

the Glaser-Hay reaction in synthetic organic chemistry is its lack of chemoselectivity, as the coupling 

of two unique terminal alkynes typically results in a mixture of homodimer and heterodimer products 

(Figure 1). While some chemoselective alkyne couplings have been elucidated, the simplicity of the 

Glaser-Hay reaction makes it a desirable choice in the synthesis of polyynes [9–15]. To this end, we 
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have recently reported the chemoselective Glaser-Hay reaction via the immobilization of one terminal 

alkyne [16,17]. Immobilization of the alkyne precludes its homodimerization, and dimerization of the 

soluble alkyne can be rapidly washed away. This affords a facile synthesis of the heterodimeric 

product in good yields and excellent purities.  

 

Figure 1. Chemoselectivity of the Glaser-Hay reaction. 

While the previous chemoselective reaction involving the solid support is useful, the 16 h reaction 

time is synthetically limiting when preparing large libraries of molecules. To overcome this issue, we 

set forth to investigate the potential rate enhancement that could be obtained by the utilization of 

microwave chemistry. Microwave irradiation induces molecular motion via the alignment of ions or 

dipoles with the oscillating electromagnetic field, and has been demonstrated to increase reaction 

yields and to decrease reaction times [18,19]. Because the microwaves interact directly with the 

reagents and solvent, instead of by convection, they afford efficient heating of the reactions, cleaner 

reaction conditions, and in some cases, facilitate reactions that are not achievable by conventional 

thermal heating [20,21]. By translating the previously described Glaser-Hay reaction to the microwave, 

we aim to increase its synthetic utility even further. Previous research has successfully translated  

a Glaser-Hay macrocyclization to the microwave, resulting in the standard reaction time of 48 h to be 

decreased to 1–6 h [22]. Similarly, we aim to decrease the reaction times of the reported solid-supported 

Glaser-Hay coupling from 16 h to 10–20 min.  

2. Results and Discussion 

2.1. Optimization of Microwave Conditions  

Translation of the previously developed solid-supported Glaser-Hay reaction to the microwave was 

initiated utilizing a propargyl alcohol immobilized resin and phenylacetylene as a soluble alkyne due 

to the rapid monitoring of the reaction via TLC analysis and UV detection. While other solvents 

including DCM, acetone, and toluene were briefly investigated, THF was found to be optimal under 

microwave conditions. This correlated to the previously optimized thermal conditions and was ideal 

due to the microwave transparency of THF. Microwave conditions were assessed under varying 

irradiation times in both power mode (100, 200 and 300 W) and in temperature mode with set 

temperatures. Interestingly, when attempted in power mode at any setting for 5–20 min, little diyne product 

was detected. When examining the temperature profiles, temperatures ranging from 140–180 °C were 
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observed. At these temperatures it is possible that resin degradation may be occurring, resulting in 

diminished yields. Consequently, we shifted our focus to temperature mode, which involves pre-setting 

a maximum temperature the reaction can reach, and varying the reaction times. Temperatures between 

40 °C and 100 °C were examined with irradiation times of 5–20 min (Table 1). 

Table 1. Microwave Optimization of the Glaser-Hay Reaction. 

 

Temperature (°C) Time (min) Yield (%) 

40 20 0 
60 5 26 
60 10 74 
80 5 12 
80 10 77 
80 20 77 

100 5 0 
100 10 63 

Based on these preliminary results, it appears that a minimum of 10 min of reaction time is required 

in order to yield significant product independent of temperature conditions. Prolonged reaction times 

did not increase product yield. Optimal conditions were observed when irradiating for 10 min at 80 °C, 

affording a 77% yield after resin cleavage. Increased temperatures resulted in decreased yields perhaps 

due to resin or catalyst degradation under microwave conditions. However, these conditions represent 

a significant time enhancement relative to the previously developed thermal conditions that required 16 h 

of reaction time. 

2.2. Comparison to Thermal Conditions  

With optimized conditions in hand, the direct comparison of thermal conditions to the microwave 

was assessed. Using a series of commercially available alkynes, an array of diynes was prepared and 

their yields were compared to that obtained by thermal reaction at 60 °C for 16 h. Reactions were 

performed with alkynes harboring a range of chemical functionality including aromatic rings (1, 3, and 

4), aliphatic chains (2), ethers (3), basic residues (4, 5), and alcohols (6) with the propargyl alcohol 

derivatized resin to yield a series of diynes (7–12). Interestingly, the previous conditions were not 

found to be optimal for all soluble alkynes, perhaps due to their differential absorbance of microwave 

irradiation. Thus, increasing reaction times to 20 min seemed to afford maximal results and enhanced 

yields (Table 2).  
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Table 2. Propargyl Alcohol Derivatized Resin Glaser-Hay Reactions. 

 

Alkyne Product 
% Yield 

Thermal a 

%Yield 
Microwave b 

 

95% 77% 

 
84% 67% 

 

99% 75% 

 

55% 90% 

 
40% 92% 

 
99% 90% 

a 60 °C, 16 h; b 80 °C, 20 min. 

The assembly of the diyne library demonstrated several important factors must be considered when 

using the microwave in this technology. Overall, microwave yields were good to excellent  

(67%–92%), but were highly dependent on the soluble alkyne. In the case of incomplete reaction, 

starting materials were removed via filtration through a silica plug. Alkynes with basic, coordinating 

moieties (4–5) were obtained in higher yields in the microwave relative to the thermal conditions. We 

hypothesize this is due to the rate enhancement in the microwave affording catalysis prior to catalyst 

poisoning by soluble alkyne coordination to the copper catalyst. Additionally, somewhat nonpolar 

alkynes (1–3) appear to be less reactive under microwave irradiation, resulting in lower yields than 

thermal conditions. Attempts to extend reaction times in these cases did not result in any increase of 

diyne product.  

Due to the differences in soluble alkynes, we also investigated the influence of the immobilized 

alkyne via derivitization of the trityl chloride resin with 4-ethynyl benzyl alcohol. This resin was then 

reacted with the same set of soluble alkynes employed with the propargyl alcohol resin. Using the 

previously described microwave conditions resulted in substantial amounts of unreacted alkyne on the 

resin, requiring further optimization of conditions. Ultimately, this resin was found to be highly 

R

1) CuI/TMEDA

HO

R

O

THF
Thermala or MWb

2) 2% TFA, DCM,  rt, 1 h
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adsorbing of microwave irradiation, heating much more rapidly than the propargyl alcohol resin. This 

resulted in very low microwave input into the reactions. To rectify this, the reaction was subjected to 2 min 

pulses at 120 °C for a total of 20 min (Table 3). Each pulse heats the reaction to 120 °C for a 2-min 

interval, followed by cooling to room temperature prior to resubmission to microwave irradiation.  

Table 3. Ethynyl Benzyl Alcohol Derivatized Resin Glaser-Hay Reactions.  

 

Alkyne Product 
% Yield 

Thermal a 

%Yield 
Microwave b 

 
96% 78% 

 
98% 76% 

 

73% 76% 

 

53% 86% 

 
96% 86% 

 
40% 86% 

a 60 °C, 16 h; b 120 °C, 2 min × 10 pulses. 
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The series of diynes (13–18) were obtained in good to excellent yield, ranging from 76%–86%. 

Similar to results obtained with the propargyl alcohol resin, soluble terminal alkynes with a degree of 

polarity afforded higher yields under microwave conditions than observed under thermal conditions. 

Also, the ethynyl benzyl alcohol resin demonstrated the need to optimize reaction conditions for alkynes 

of differing reactivity and microwave transparency. Interestingly, the thermal yields of the reaction 

with the catalyst coordinating alkyne 5 were higher, unlike reactions observed on the propargyl alcohol 

resin. This observation may be reflective of the decreased reactivity of the ethynyl benzyl alcohol resin 

no longer aiding the previously observed microwave enhancement in the presence of this type of 

soluble alkyne. 

3. Experimental Section 

3.1. General 

Solvents and reagents were obtained from either Sigma-Aldrich (St. Louis, MO, USA) or Fisher 

Scientific (Waltham, MA, USA) and used without further purification, unless noted. Tritylchloride 

resin, 100–200 mesh, 1% DVB crosslinking, was purchased from Advanced Chemtech. (Louisville, KY, 

USA) Microwave reactions were performed in a CEM Discover System. Reactions were conducted 

under ambient atmosphere with non-distilled solvents. NMR data was acquired on a Varian Gemini 

400 MHz. Compound purities were assessed by NMR and found to be 90% or greater for all compounds. 

3.2. Alkyne Immobilization Protocol 

Trityl chloride resin (200 mg, 0.36 mmol, 1 equiv.) and dichloromethane (5 mL) were added to  

a flame-dried vial. The resin was swelled at room temperature with gentle stirring for 15 min. The 

alkyn-ol (~1.2 equiv.) was added to reaction, followed by triethylamine (10.0 µL, 0.072 mmol,  

0.2 equiv.). The mixture was stirred at room temperature for 16 h. The resin was transferred to  

a syringe filter and washed with DCM and MeOH (5 alternating rinses with 5 mL each). The resin was 

swelled in CH2Cl2 and dried under vacuum for 45 min before further use. 

3.3. General Glaser-Hay Coupling Protocol 

Soluble alkyne (0.70 mmol, 10 equiv.) was added to a flame dried microwave vial containing the 

propargyl alcohol derivitized trityl resin (100 mg, 0.07 mmol, 1 equiv.), and tetrahydrofuran (2.0 mL). 

Copper iodide (10 mg, 0.53 mmol.) and tetramethylethylenediamine (50 µL, 0.33 mmol.) were added 

to a separate flame-dried vial then dissolved in tetrahydrofuran (2.0 mL). The catalyst mixture was 

then added to the resin in one portion and placed in the microwave reactor to run for the allotted time 

in temperature mode at a specific temperature. The completed reaction was transferred to a syringe 

filter and washed with DCM and MeOH (5 alternating rinses with 5 mL each). The product was then 

cleaved from the resin by treatment with 2% TFA (DCM, 1 mL, 1 h) and filtered into a vial. Product 

was analyzed via 1H-NMR and GCMS. 
  



Molecules 2015, 20 5282 

 

 

3.4. Analytical Data 

Compound 7: same as below: The solvent was removed in vacuo to give compound 7 as a solid  

(6 mg, 0.039 mmol, 77%). 1H-NMR (400 MHz; CDCl3): ∂ 7.49 (t, J = 5.9, 2H), 7.34–7.26 (m, 3H), 

4.45 (s, 2H), 1.94 (s, 1H); GCMS (Rt = 9.20 min) calculated for C11H8O 156.1, found 156.2.  

Compound 8: The solvent was removed in vacuo to give compound 8 as a solid (5 mg, 0.034 mmol, 

67%) 1H-NMR (400 MHz; CDCl3): ∂ 4.32 (s, 2H), 2.29 (t, J = 6.8 Hz, 3H), 1.52 (m, 2H), 1.42 (sextet, 

J = 7.2 Hz, 2H), 0.91 (t, J = 7.23 Hz, 3H); GCMS (Rt = 7.29 min) calculated for C9H12O 136.1,  

found 136.0. 

Compound 9: The solvent was removed in vacuo to give compound 9 as a solid (7 mg, 0.038 mmol, 

75%) 1H-NMR (400 MHz; CDCl3): ∂ 7.44 (d, J = 7.6 Hz, 2H), 6.85 (d, J = 7.6, 2H), 4.14 (s, 2H), 3.82 

(s, 3H); GCMS (Rt = 9.93 min) calculated for C12H10O2 186.1, found 186.2. 

Compound 10: The solvent was removed in vacuo to give compound 10 as a solid (7 mg, 0.045 mmol, 

90%). 1H-NMR (400 MHz; CDCl3): ∂ 8.01 (d, J = 7.5 Hz, 1H), 7.65 (t, J = 7.4 Hz, 1H), 7.32 (t,  

J = 7.5 Hz, 1H), 6.91 (d, J = 7.4 Hz, 1H), 4.38 (s, 2H). GCMS (Rt = 8.77 min) calculated for C10H7NO 

157.1, found 157.2. 

Compound 11: The solvent was removed in vacuo to give compound 11 as a solid (5 mg, 0.046 mmol, 

92%). Using 7 as a starting material (3.5 mg, 0.032 mmol, 91%). 1H-NMR (400 MHz; CD3OD): ∂ 5.21 

(s, 2H), 4.35 (s, 2H), 3.39 (s, 2H); GCMS (Rt = 6.01 min) calculated for C6H7NO 109.1, found 109.1. 

Compound 12: The solvent was removed in vacuo to give compound 12 as a solid (5 mg, 0.045 mmol, 

90%). 1H-NMR (400 MHz; CDCl3): ∂ 4.36 (s, 4H); GCMS (Rt = 7.88 min) calculated for C6H6O2 

110.0, found 110.1.  

Compound 13: The solvent was removed in vacuo to give compound 13 as a solid. (9 mg, 0.039 mmol, 

78%). 1H-NMR (400 MHz; CDCl3): δ 7.53 (d, J = 7.5 Hz, 4H), 7.45 (t, J = 7.5 Hz, 4H), 7.30 (m,  

J = 7.5, 5H), 4.74 (s, 2H); GCMS (Rt = 10.75 min) calculated for C17H12O2 232.1, found 232.1. 

Compound 14: The solvent was removed in vacuo to give compound 14 as a solid. (4 mg, 0.019 mmol, 

38%). 1H-NMR (400 MHz; CDCl3): δ 7.52 (d, J = 7.5 Hz, 2H), 7.31 (d, J = 7.4 Hz, 2H), 4.73 (s, 2H), 

2.32 (t, J = 7.1 Hz, 2H), 1.56 (quintet, J = 7.1 Hz, 2H), 1.42 (m, 2H), 0.95 (t, J = 7.1 Hz, 3H); GCMS 

(Rt = 9.85 min) calculated for C15H16O 212.1, found 212.2.  

Compound 15: The solvent was removed in vacuo to give compound 15 as a solid. (10 mg, 0.038 mmol, 

76%). 1H-NMR (400 MHz; CDCl3): δ 7.53 (d, J = 7.5 Hz, 2H), 7.30 (d, J = 7.5 Hz, 2H), 7.40 (d,  

J = 7.5 Hz, 2H), 6.95 (d, J = 7.5 Hz, 2H), 4.65 (s, 2H), 3.96 (s, 3H); GCMS (Rt = 13.10 min) 

calculated for C18H14O2 262.1, found 262.1.  

Compound 16: The solvent was removed in vacuo to give compound 16 as a solid. (10 mg, 0.043 mmol, 

86%). 1H-NMR (400 MHz; CDCl3): δ 7.61 (t, J = 8.6 Hz, 1H), 7.55 (t, J = 8.6 Hz, 1H), 7.53 (d,  
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J = 7.3 Hz, 2H), 7.40 (d, J = 7.4 Hz, 1H), 7.31 (d, J = 7.3 Hz, 2H), 7.25 (s, 1H), 4.65 (s, 2H); GCMS 

(Rt = 10.75 min) calculated for C6H11NO 233.1, found 233.3. 

Compound 17: The solvent was removed in vacuo to give compound 17 as a solid. (8 mg, 0.043 mmol, 

86%). 1H-NMR (400 MHz; CDCl3): δ 7.40 (d, J = 7.5 Hz, 2H), 7.33 (d, J = 7.5 Hz, 2H), 4.61 (s, 2H), 

3.28 (s, 2H). GCMS (Rt = 9.92 min) calculated for C12H11NO 185.1, found 185.2.  

Compound 18: The solvent was removed in vacuo to give compound 18 as a solid (8 mg, 0.043 mmol, 

86%). 1H-NMR (400 MHz; CDCl3): ∂ 7.49 (d, J = 8.0 Hz, 2H), 7.44 (d, J = 8.0 Hz, 2H), 4.72 (s, 2H), 

4.35 (s, 2H); GCMS (Rt = 9.94 min) calculated for C12H10O2 186.1, found 186.1. 

4. Conclusions 

In conclusion, the utilization of microwave irradiation has been found to increase the reaction rate 

of solid-supported Glaser-Hay reactions, improving their utility in the preparation of large combinatorial 

libraries via a more efficient synthesis. Moreover, the polarity of the diyne was found to be an important 

factor in reaction rate, as more polar alkynes were obtained in higher yields relative to their microwave 

transparent counterparts. Moreover, alkynes with basic, coordinating moieties were often found to 

perform better in the microwave than under thermal conditions as reduced catalyst poisoning was 

observed due to enhanced reaction rates. Overall, the microwave mediated, solid-supported Glaser-Hay 

reaction represents an efficient synthetic methodology to chemoselectively obtain a range of 

heterodimeric polyynes that can be employed in a variety of applications. 
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