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Abstract: Medical image diagnosis using deep learning has shown significant promise in clinical
medicine. However, it often encounters two major difficulties in real-world applications: (1) domain
shift, which invalidates the trained model on new datasets, and (2) class imbalance problems leading
to model biases towards majority classes. To address these challenges, this paper proposes a transfer
learning solution, named Dynamic Weighting Translation Transfer Learning (DTTL), for imbalanced
medical image classification. The approach is grounded in information and entropy theory and
comprises three modules: Cross-domain Discriminability Adaptation (CDA), Dynamic Domain
Translation (DDT), and Balanced Target Learning (BTL). CDA connects discriminative feature learning
between source and target domains using a synthetic discriminability loss and a domain-invariant
feature learning loss. The DDT unit develops a dynamic translation process for imbalanced classes
between two domains, utilizing a confidence-based selection approach to select the most useful
synthesized images to create a pseudo-labeled balanced target domain. Finally, the BTL unit performs
supervised learning on the reassembled target set to obtain the final diagnostic model. This paper
delves into maximizing the entropy of class distributions, while simultaneously minimizing the cross-
entropy between the source and target domains to reduce domain discrepancies. By incorporating
entropy concepts into our framework, our method not only significantly enhances medical image
classification in practical settings but also innovates the application of entropy and information theory
within deep learning and medical image processing realms. Extensive experiments demonstrate that
DTTL achieves the best performance compared to existing state-of-the-art methods for imbalanced
medical image classification tasks.

Keywords: imbalanced medical image classification; class distribution entropy; transfer learning;
dynamic weighting; cycle translation; confidence-based selection

1. Introduction

The application of deep learning technology has achieved considerable progress
in plenty of medical image diagnosis tasks, including diabetic retinopathy grading [1],
pathological image classification [2–4], and brain MRI images [5–7], especially in lesion
segmentation [8,9] and diagnosis [10,11]. The supervised convolutional neural network is
a widely accepted learning framework in medical situations where sufficient annotated
images are provided [12–14]. However, the prohibitive cost of professional annotations
often renders the ample expert supervision scarce in real clinical scenarios [15,16], causing
many challenges for the generalization of AI medical image diagnosis. Moreover, directly
adopting pre-trained models from another dataset often results in unreliable performance
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due to the typical domain shift between different datasets [17–19]; for example, the target
domain is in a heterogeneous data distribution away from the source on where the model
was pre-trained. In particular, the domain shifts in the medical field are usually attributed
to variations in imaging protocols, parameters settings, devices, and scanner manufactur-
ers. Consequently, that strongly motivates various attempts [20–22] on the unsupervised
domain adaptation to promote the diagnostic performance in medical image diagnosis
with an available labeled source dataset.

The goal of unsupervised domain adaptation (UDA) is to transform the medical
images into a domain-invariant feature space by leveraging a fully labeled source domain.
That makes it achievable for applying the source diagnostic model to the unlabeled target
domain. The essential point of UDA is to align the domain discrepancy among medical
datasets, derived from various imaging settings [20,23]. The representative samples are
illustrated in Figure 1. For instances, Fang et al. [20] deployed a discrepancy-based
unsupervised domain for cross-domain fMRI patterns of labeled source and unlabeled
target samples via an attention-guided graph convolutional module and a maximum mean
discrepancy constrained module; Liu et al. [23] adaptively carried out fine-grained subtype-
wise compactness with intermediate pseudo-labels to dynamically bridge the domain shift,
achieving promising results on a medical diagnosis task.

In addition to the distribution gap that conventional UDA models addressed, medical
image classification is usually confused by another two concerns. (a) The imbalanced
class distribution in medical diagnosis is more prevalent compared to nature imaging. For
example, most skin lesion patients are finally diagnosed with benign lesions, while very
few patients are identified with malignancy [24]. When data imbalance occurs, existing DA
models tend to correctly identify the major cases and misdiagnose the minor categories.
(b) Considerable discrepancies among intra-domain medical images are equally common,
such as varying appearance and shapes of tumors, and different imaging steps with tissue
sectioning and staining, which produces an inconsistent feature space with challenging
discriminability for existing medical domain adaptation (MDA) methods. To better illus-
trate the goal of this work, we create the original research task in Figure 1 of solving class
imbalance learning and transfer learning in unsupervised representation learning.

Figure 1. The research task of our unsupervised representation learning framework.

In summary, the imbalance class distribution and intra-domain inconsistency in med-
ical domain adaptation result in poor diagnostic performance on target medical images
even though its cross-domain discrepancy has been bridged properly with source data.
Obviously, the diagnosis ability of MDA mainly relied on both the cross-domain align-
ment and feature discriminability; thus, the above two obstacles must be overcome and
deserve significant attention to be drawn to solving them in the theoretical development
of medical domain adaptation. Furthermore, former MDA models still do not solve the
challenges of imbalanced class and inconsistent distributions between medical domains,
giving the domain (class) with larger data numbers greater weight in model optimiza-
tion. Such problems tend to bias model training, resulting in unsatisfied alignment and
severe misdiagnosis. That reflects high-entropy scenarios where certain conditions are
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over-represented compared to others. This imbalance and variability hinder effective do-
main adaptation and classification, necessitating approaches that specifically address these
entropy-related challenges.

To address these entropy-centric problems that are commonly neglected by previous
MDA models [20–22], this paper proposes Dynamic Weighting Translation Transfer Learn-
ing (DTTL) to align the domain shift for the imbalanced medical image classification task.
The designed dynamic transfer learning method can measure each medical image accord-
ing to their imbalance level among two domains and the proposed balanced translation
mechanism generates minority medical images by translating the related majority samples,
which extends the decision boundary among the imbalanced classes. In addition, DTTL
explores a confidence-based selection method to reserve the most valuable synthesized
medical images for further prediction model training. This approach not only addresses
the class imbalance but also incorporates principles of entropy reduction by enhancing
feature discriminability and extending decision boundaries, thereby reducing the overall
entropy in the system.

The major contributions are listed below:
(1) To address the issue of class imbalance in medical image classification, this paper

introduces a model based on Dynamic Weighted Transformation Transfer Learning (DTTL)
that aligns the cross-domain distribution differences among imbalanced classes, extends
the decision boundaries of minority sample categories, and enhances the capability of
cross-domain imbalanced class feature learning, thereby reducing entropy and enhancing
cross-domain imbalanced class feature learning.

(2) A Dynamic Domain Translation module is proposed, which links discriminative
feature learning between the source and target domains through a synthetic discriminability
loss and a domain-invariant feature learning loss, achieving cross-domain transfer learning
in medical image classification based on entropy-focused mechanisms.

(3) A Balanced Target Learning mechanism is devised, employing a confidence se-
lection method to choose the most useful synthesized images. This method develops a
dynamic translation process between the two domains for imbalanced classes to create a
pseudo-labeled balanced target domain.

2. Related Work

Medical image classification is a challenging task that has received significant attention
in recent years. However, two major problems that affect the performance of these models
are class imbalance and domain shift. This section aims to summarize related research on
these issues.

2.1. Class-Imbalanced Medical Image Classification

Class imbalance refers to the situation where the number of images in one class
significantly outweighs the others. In medical imaging, some diseases occur less frequently
than others, leading to imbalanced medical image datasets. Several approaches have
been proposed to handle this problem, including data augmentation, oversampling, and
undersampling techniques.

In detail, data augmentation methods, as a conventional solution, have utilized various
algorithms such as rotation, flipping, scaling, and cropping to address class imbalance
issues in medical image classification tasks. In addition, advanced models propose different
strategies for combining data augmentation with other techniques, such as oversampling,
undersampling, or weighted loss functions, to improve the performance of deep learning
models. For example, Huynh et al. [25] proposed an adaptively blended consistency loss
to address the class imbalance problem in semi-supervised medical image classification
tasks by adaptively mixing target class distributions, showing improvement in unweighted
average recall, making it a promising solution for improving the performance of medical
image classification. Liu et al. [26] aimed to solve imbalanced medical image datasets that
cause predictions biased towards majority classes. They proposed a semi-supervised deep
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learning method that leverages uncertainty-guided virtual adversarial training and batch
nuclear-norm optimization to improve the discriminability, diversity, and generalization of
trained models, achieving better results than state-of-the-art semi-supervised methods on
two publicly available datasets and one in-house collected dataset.

Although these existing approaches solve the class imbalance problem in medical
image classification, they also require sufficient training data in the same domain. This
limitation causes poor performance when the model is employed in different domains.

2.2. Transfer Learning-Based Medical Image Classification

Transfer learning-based medical image classification has been an active research area
in recent years and the goal is to improve the performance of deep learning models when
the distribution of the training data differs from that of the target data, which commonly
occurs due to variations in imaging protocols, scanner types, or patient populations.

Several transfer learning techniques have been proposed in medical image classifi-
cation [21,27], such as adversarial learning, domain confusion, and gradient alignment.
These methods adapt the learned features in the source domain to better generalize to
the target domain, allowing for improved accuracy and robustness of the deep learning
models. Recent studies have shown that domain adaptation can be effective in addressing
various problems in medical image classification. In particular, Diao et al. [21] designed
a histogram-based generative adversarial network methodology for domain adaptation
that outperforms standard pixel-based GAN methods in classifying chest X-rays from
various heterogeneous target domains. This is based on the hypothesis that most domain
shifts in medical images are variations of global intensity changes that can be captured
by transforming histograms along with individual pixel intensities. On the other hand,
Mahapatra et al. [27] incorporated graph neural networks and disentangled semantic and
domain invariant structural features into an unsupervised domain adaptation framework.
This approach yields better medical image classification results across distribution shifts
compared to other methods.

In addition, Ganin et al. [28] and Long et al. [29] have both contributed significantly
to the field of domain adaptation in neural networks, with the former introducing a
method for the domain-adversarial training of neural networks and the latter advancing
the field further with conditional adversarial domain adaptation techniques. Then, the
landscape of domain adaptation techniques has been enriched by a variety of innovative
approaches, such as Cycle Consistent Adversarial Domain Adaptation (CyCADA) [30],
which leverages cycle consistency for domain translation, and Beyond Sharing Weights
(BSW) [31], which explores structures beyond mere weight sharing for domain adaptation.
Additionally, methods like Maximum Classifier Discrepancy (MCD) [32], Margin Disparity
Discrepancy (MDD) [33], and FixBi [34] have focused on classifier-based discrepancies to
bridge domain gaps. Concurrently, Entropy Minimization versus Diversity Maximization
(MEDM) [35] and Contrastive Domain Adaptation with Consistency Match (CDACM) [11]
have emphasized the importance of balancing feature alignment with diversity for effective
domain adaptation.

The above analyzed transfer learning methods have addressed the negative effects of
domain shift in medical datasets. However, these methods often overlook the class imbal-
ance issue, a critical factor that can significantly reduce the applicability and effectiveness
of transfer learning in medical image datasets.

3. Method

Problem Definition. This work tends to solve the unsupervised domain adaptation
with imbalanced medical images, which often damage the diagnostic performance in clinical
applications. Mathematically, we assume ns the source medical images, S = {(xs

i , ys
i )}|

ns
i=1,

with imbalanced majority class Xs
maj (e.g., benign) and another minority one Xs

min (e.g.,
malignancy), and an unlabeled target domain is T = {xt

j}|
nt
j=1. The target domain does
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not have any annotation and its class distributions are usually imbalanced according to
practical medical scenarios.

The aim of this paper is to develop a successful deep learning diagnostic model for
the unlabeled medical domain, integrating both imbalanced labeled source images and
inconsistent unlabeled target data. The above task, nevertheless, expresses challenging
difficulties from its cross-domain discrepancy and intra-domain imbalanced classes in
medical domain. The majority of existing UDA models only bridge the cross-domain
discrepancy under balanced class distributions or weigh the transferable images equally
to transfer, resulting in unfaithful diagnosis in actual medical scenarios. Therefore, this
paper proposes a novel Dynamic Weighting Translation Transfer Learning (DTTL), which
intricately weaves the principles of entropy and information theory into its core. This
methodology is designed to adeptly tackle the hurdles associated with the practical task of
imbalanced medical domain adaptation.

DTTL stands as an illustration of the synergy between advanced machine learning
techniques and the foundational concepts of entropy and information theory. By systemati-
cally incorporating these elements, the proposed model not only aligns the distributional
characteristics of source and target domains but also seeks to correct the imbalances present
within class distributions. The emphasis on entropy reduction and the maximization of
mutual information across domains highlights our commitment to enhancing the diag-
nostic model’s efficacy. Through this entropy-informed approach, DTTL endeavors to
establish a more robust and reliable framework for medical image diagnosis, particularly
in scenarios marred by imbalanced data and domain shifts. Consequently, our work not
only contributes to the evolving landscape of medical image analysis but also aligns with
the Entropy journal’s focus on promoting the integration of entropy and information theory
in scientific research.

3.1. Overview of Our DTTL Approach

The proposed DTTL consists of three key modules, comprising the Cross-domain
Discriminability Adaptation (CDA), Dynamic Domain Translation (DDT), and Balanced
Target Learning (BTL) units, each incorporating principles of entropy and information
theory to enhance the model’s performance in imbalanced medical image classification.
To reveal the framework more concisely, we have created the original framework of our
model in Figure 2.

Figure 2. The scheme of the proposed Dynamic Weighting Translation Transfer Learning (DTTL).

First, CDA associates discriminative feature learning between source and target do-
mains, where the synthetic discriminability loss accelerates the discriminative knowledge
acquisition for the labeled source and unlabeled target data, and another domain-invariant
feature learning loss conducts the knowledge adaptation on the fully unlabeled target
domain. This approach utilizes the concept of entropy to maximize the efficiency of knowl-
edge adaptation within the fully unlabeled target domain. With aforementioned pre-trained
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CDA model, the predictions are transformed into pseudo-labels for all target medical im-
ages, which are partitioned into the majority and minority classes (Xt

maj and Xt
min). Second,

the DDT unit develops a dynamic translation process for the imbalanced classes among
source and target domains. In detail, it integrates a dynamic transformation loss, inspired
by information theory, to map source majority samples into target minority classes based
on generative adversarial network, synthesizing minority samples for target domain. This
mechanism encourages the translated medical images to be close to the class boundary;
a confidence-based selection approach explores the most useful synthesized images to
formulate a pseudo-labeled balanced target domain. This unit emphasizes the reduction
of prediction entropy, ensuring the generated samples contribute effectively to balancing
the target domain. Finally, the Balanced Target Learning module performs supervised
training on the reassembled dataset. By applying a training strategy that accounts for
entropy minimization in the learning process, this module ensures that the final diagnostic
model is robust and capable of handling imbalanced medical image classification tasks
with improved accuracy and reliability.

Leveraging these entropy- and information theory-enhanced methodologies, our DTTL
framework strives to establish a new standard for imbalanced medical image classification,
addressing both domain shift and class imbalance issues more effectively than existing
state-of-the-art methods.

3.2. Cross-Domain Discriminability Adaptation

In the framework of medical domain adaptation, the source domain with annotations
provides essential discriminative features that are crucial for addressing class imbalance
in the unlabeled target domain by enriching the target domain’s learning process with
relevant information. To achieve this goal, we firstly map source and target samples into
a domain-invariant feature space by adversarial learning, which has been successfully
involved in domain alignment, inspired by [20,23].

To extract domain-invariant feature representations, we first input source and target
medical images into a feature generator F, paired with a domain discriminator D, both of
which parameters θ f and θd are trainable in optimizing the following domain-invariant
feature learning (DFL) loss, inspired by GAN [36]:

min
θ f

max
θd

Ld f l(θ f , θd) = Exs
i ∼Ds log[D(F(xs

i ))]

+Ext
j∼Dt

log[1 − D(F(xt
j))]

(1)

The domain-shift problem can be effectively solved by this adversarial learning. More-
over, the preliminary discriminability of the feature generator is optimized by the synthetic
discriminability (SD) loss in source and target domains, Equation (2).

min
θ f

Lsd(θ f ) =−Exs
i ∼Ds ys

i log C(F(xs
i ))

− λExt
j∼Dt

C(F(xt
j)) log C(F(xt

j))
(2)

where C is a class prediction layer in source domain and λ is a balance parameter. The
above two terms in SD loss are the entropy loss of source samples and the information
maximization loss of target data. We propose that the synthetic discriminability loss can
align the classification-ability discrepancy between source and target data, and the extracted
target feature representations can be highly informative, enabling the classifier C to identify
target samples.

In an imbalanced medical image classification task, the distribution of majority and
minority classes severely interferes with the following training step. Thus, the overall
imbalance distribution should be estimated for the unlabeled target domain. Relying on the
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initially trained feature extractor F and classifier C, the pseudo-label of each target sample
xt

j can be inferred by

ŷt
j = arg max

k
C(F(xt

j)){k})|k∈(maj,min) (3)

where C(·){k} denotes the k-th element in the predicted probability vector. After that, the
majority and minority classes can be separated from target domain, represented by Xt

maj
and Xt

min, respectively, such that the target dataset is represented by T = Xt
maj

⋃
Xt

min.

3.3. Cross-Domain Minority Translation

Most medical image diagnosis tasks focus on binary imbalanced classification, such as
identification of benign (majority) and malignant (minority) tumors. Inadequate manage-
ment of imbalanced data distributions can degrade the performance of diagnostic models
for minority classes, often biasing the outcome towards excessive classification of the
majority class due to its elevated prior probability [37]. Strategies for addressing issues
of imbalance in data are primarily divided into two groups: adjusting the loss function’s
weighting to emphasize the minority class and altering the dataset through resampling to
enhance the visibility of the minority class.

This paper aligns with the second approach, offering a method to augment the target
minority class through the creation of synthetic minority instances. These instances are
derived from transformations of authentic majority class samples from the source. Given
that pseudo-labeled samples from the target majority class inevitably include inaccurately
predicted data, utilizing the variance found in actual source majority samples enables this
translation method to produce instances that enhance the efficacy of classification.

Inspired by the successful image translation framework CycleGAN [36], it introduces
the regularizing loss functions described below that allow us to achieve cross-domain and
cross-class image translation task (e.g., source majority sample → target minority samples).
We propose a Cross-domain Minority Translation GAN method to translate source majority
→ target minority and target majority → source minority like a cycle-consistency method
based on CycleGAN.

Given the imbalanced source S = Xs
maj

⋃
Xs

min and target T = Xt
maj

⋃
Xt

min, we
establish two generators, G : Xs

maj → Xt
min and G′ : Xt

maj → Xs
min, with two corresponding

discriminators, Ds and Dt, to identify the synthetic minority samples from either the source
or target domains, as illustrated in Figure 2 (right).

Direct translation loss. To harmonize the central goal of accurately representing
the minority distribution with the aim of reducing the discrepancy between the output
translated instance and the input instance, we initially present the direct translation (DT)
loss alongside the subsequent GAN losses,

LDT = Ext
j∼Xt

maj
∥G(xt

j)− xt
j∥ (4)

Minority cycle consistency loss. The intuitive objective of generators G and G′ is to
map the input samples (either the minority or majority) into the cross-domain minority
distribution. Thus, a Minority Cycle Consistency (MCC) loss is developed from the cycle-
consistency loss in CycleGAN, mathematically formulated as

LMCC = Exs
i ∼Xs

min
∥G′(G(xs

i ))− xs
i ∥1

+Ext
j∼Xt

min
∥G(G′(xt

j))− xt
j∥1

(5)
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Identity loss. This loss promotes the generators to produce mappings that closely
approximate the identity function when inputs are drawn from the target distribution,

LIDE = Exs
i ∼Xs

min
∥G′(xs

i )− xs
i ∥1

+Ext
j∼Xt

min
∥G(xt

j)− xt
j∥1

(6)

Naturally, these losses motivate the translation process to exhibit certain beneficial
characteristics: firstly, that, through reciprocal translation, we aim to restore the input
samples to their original state and, secondly, that translation is unnecessary when the data
already resides in the target domain.

Adversarial loss. Most importantly, the generators G and G′ are responsible for
transforming the majority samples into minority across source and target domains, with
adversarial learning from discriminators Dt and Ds. The generative adversarial loss is
defined by

min
Ds ,Dt

max
G,G′

LGAN = LGAN(G, Dt) + LGAN(G′, Ds)

= Ext
j∈Dt

[log Dt(xt
j)] +Exs

i ∈Xs
maj

[log(1 − Dt(G(xs
i )))]

+Exs
i ∈Ds [log Ds(xs

i )] +Ext
j∈Xt

maj
[log(1 − Ds(G′(xt

j)))]

(7)

The final cross-domain minority translation (CMT) objective is given by

LCMT = LGAN + λDTLDT + λMCCLMCC + λIDELIDE (8)

The cross-domain minority translation workflow is described in Figure 2 and we can
obtain sufficient synthetic target minority samples by

Xt
gen = G(Xs

maj) (9)

3.4. Balanced Target Learning

While it is theoretically possible to enrich the dataset with the complete set of Xt
gen, in

practice, this collection may include instances that are excessively distant from the class
boundary, either too close or too far, potentially causing harm. Specifically, the extra losses
introduced by the cross-domain minority translation module prompt the generation of
samples nearer to the target class boundary. These samples are more likely to transition into
the target majority category. To address this issue, we further proposes a sample selection
algorithm for the generated samples Xt

gen, described below.
We reuse the feature generator F and classifier C in Equation (2), to construct the

desired final predictor for the target samples. We employ C(F(·)) to evaluate the probability
that each generated target sample in Xt

gen is part of the target minority class, ranking the
samples of Xgen by this probability in a descending sequence. A threshold pmax is then
set to exclude samples with probability scores above this value, which indicates their
considerable distance from the class boundary and makes them less beneficial for training.
Subsequently, we limit the quantity of chosen samples to a specific multiple s relative to
the size of the target minority class, to precisely adjust the sample selection.

Xt
selected = sorted({x ∈ Xt

gen|C(F(x)) ≤ pmax})[: s|Xmin|] (10)

Both the threshold probability pmax and the retention sample count s, defined as a
proportion of the minority class size, are regarded as hyperparameters within our model.
The augmented and resampled dataset thus generated is represented as

T ′ = Xt
maj ∪ {Xt

min ∪ Xt
selected}min (11)
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After augmenting the imbalanced target data, we consider further training the feature
generator F and classifier C by the balanced target samples xi ∈ T ′ with corresponding
labels yi by minimizing the entropy loss defined as following,

Lent = −Exi∈T ′yi log C(F(xi)) (12)

The overall algorithm is summarized in Algorithm 1.

Algorithm 1 Training of the DTTL model.

Require: Source medical images S = {(xs
i , ys

i )}|
ns
i=1 and unlabeled target data T =

{xt
j}|

nt
j=1

1: repeat

2: Send the images x ∈ S to CDA module (Equations (1) and (2)) and predict images
into pseudo class-imbalanced labels as Xt

maj and Xt
min (Equation (3)).

3: Translate imbalanced classes between source and target domains by CMT module
(Equation (8)) and obtain sufficient synthetic target minority samples (Equation (9)).

4: Select the synthetic target samples by Equation (10) and constitute the final target
domain T ′ (Equation (11)).

5: Training the target model in the balanced target data T ′(Equation (12)).

6: until Convergence;

Ensure: The category of target medical images.

4. Experiments
4.1. Dataset

We assess how effective DTTL is when used for medical image classification on
two datasets. Each dataset has been divided into three subsets and Table 1 contains the
summarized statistical information. Below are the descriptions of the datasets:

The Radiological Society of North America (RSNA) pneumonia detection challenge
dataset [38] is divided into two stages, starting with the release of a training set containing
25,684 radiographs and a test set containing 1000 radiographs from the ChestX-ray14
dataset [39]. All radiographs are in an anonymized DICOM format, with a resolution of
1024 × 1024 pixels and an 8-bit depth. The training images were labeled by non-thoracic
radiologists affiliated with RSNA, while the test images were labeled by specialist thoracic
radiologists from the Society of Thoracic Radiology. The dataset contains 6011 cases of
pneumonia and 20,672 other cases, including normal and other diseases. The distribution
of classes is imbalanced, with a ratio of approximately 0.25:1. It is worth noting that our
proposed DTTL model is trained using this dataset as the source domain.

The RSNA pneumonia detection challenge dataset boasts a substantial collection of
25,684 radiographs, each meticulously annotated by reputable radiologists, ensuring the
precision of the data for robust analysis. As a dataset widely acknowledged in the field
of medical image analysis, utilizing it in our experiments provides a credible benchmark
against other methods, enhancing the public validation of our approach’s effectiveness.
Furthermore, the dataset exhibits an imbalance in disease categories, with a notable predom-
inance of normal cases and other diseases compared to pneumonia cases. This distribution
mirrors real-world clinical scenarios, making it an ideal testbed for evaluating our model’s
ability to learn from imbalanced data, which is critical for practical applications.

The Child X-ray dataset [40] is collected for diagnosing pneumonia in children’s
radiographic data. It comprises 5232 chest X-ray images from 5856 patients, including
3883 images showing pneumonia (2538 bacterial and 1345 viral) and 1349 normal cases. To
establish an imbalanced class scenario, we selected 300 cases of pneumonia and 1349 normal
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cases from this dataset as the target domain, aiming to perform transfer learning from the
RSNA dataset as the source.

Table 1. The class distribution of each datasets.

Label RSNA Child X-ray

Pneumonia 6011 300
Normal and others 20,672 1349

4.2. Experimental Settings

Following the standard protocols for unsupervised domain adaptation, all labeled
source medical images and unlabeled target samples are incorporated into the model train-
ing process. Following traditional settings that learn knowledge from large-scale datasets to
adapt to small sets, this paper employs RSNA as the source and the Child X-ray as the target
domain to conduct the transfer learning for the imbalanced medical image classification
task. In this experiment, the feature extractor F utilizes a backbone CNN architecture that
includes the widely used convolutional layers from ResNet50 [41], DenseNet121 [42], and
EfficientNet-B4 [37]. The cross-domain minority translation module’s GAN framework is
adapted from CycleGAN [36]. For optimization, the network weights are trained by Adam
with 5 × 10−4 and the learning rate is set as 2 × 10−4, with mini-batch size 16. We stop
training after the model convergence when the loss variation is lower than 5 × 10−4 or the
training reaches 200 epochs. The classifiers we adopted in the experiment are two-layer
network, and the domain discriminator consists of two layers with ReLU and Dropout (0.5)
in all the layers. Specifically, we utilize PyTorch to implement our method, and the parame-
ters in loss functions are λ = (Equation (2)), [λDT =, λMCC =, λIDE =] (Equation (8)). The
source code will be released in GitHub https://github.com/yucl2019/DTTL (accessed on
23 April 2024).

4.3. Compared Methods

In this experiment, we compare DTTL against seven distinct domain adaptation
techniques, including Deep Adaptation Neural Network (DANN) [28], Cycle Consistent
Adversarial Domain Adaptation (CyCADA) [30], Beyond Sharing Weights (BSW) [31],
Conditional Domain Adaptation Network (CDAN) [29], Maximum Classifier Discrepancy
(MCD) [32], Margin Disparity Discrepancy (MDD) [33], FixBi [34], Entropy Minimization
versus Diversity Maximization (MEDM) [35], and Contrastive Domain Adaptation with
Consistency Match (CDACM) [11]. The RSNA and Child X-ray datasets are utilized as the
source and target datasets, respectively, and we assess performance using three different
backbone architectures: ResNet50 [41], DenseNet121 [42], and EfficientNet-B4 [37].

4.4. Results

In the experiments, the dataset of the original Child X-ray dataset [40] was randomly
divided into a training set and a testing set, with a ratio of 0.8:0.2 for model training. Table 2
summarizes the statistical results of this method across five runs. As illustrated in the
table, the DTTL method significantly outperforms other comparative methods on the Child
X-ray dataset, which is clearly reflected from the perspective of AUC scores. Analyzing the
data in Table 2, it is evident that the DTTL method achieves the highest AUC scores across
three different backbone networks, notably with EfficientNet, DenseNet121, and ResNet50,
scoring 91.68%, 90.46%, and 89.90% respectively. These results indicate the DTTL method’s
excellent generalization ability and robustness across different network architectures.

Compared to key existing methods, DTTL demonstrates enhanced superior perfor-
mance across all evaluated backbone architectures. For instance, compared to CDACM,
DTTL improved AUC scores by 1.21%, 2.13%, and 1.82% on EfficientNet, DenseNet121,
and ResNet50, respectively. As for other methods such as DANN, CyCADA, BSW, CDAN,
MCD, MDD, FixBi, and MEDM, DTTL’s advantage is even more pronounced.

https://github.com/yucl2019/DTTL
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These outcomes demonstrate that the DTTL method, regardless of the chosen backbone
network, can effectively enhance the classification performance when processing the Child
X-ray dataset. This success can be attributed to the DTTL method’s refine optimizations in
feature extraction, representation learning, and model generalization, tailored specifically
for varied network architectures. Furthermore, the DTTL method exhibits good adaptability
to different network structures, maintaining efficient performance across diverse settings.

In summary, the DTTL method showcases significant advantages in the medical image
classification realm, particularly evident in its performance on the Child X-ray dataset, and
consistently achieves high classification accuracy across a variety of backbone architectures.

Table 2. Performance of comparison of DTTL with the peer methods on Child X-ray in terms of the
AUC score (%).

Method EfficientNet DenseNet121 ResNet50

DANN [28] 85.42 87.08 86.24
CyCADA [30] 79.76 79.09 77.22
BSW [31] 84.33 86.79 86.37
CDAN [29] 84.33 86.46 86.96
MCD [32] 83.41 85.43 86.51
MDD [33] 88.18 85.11 86.77
FixBi [34] 84.07 87.28 85.88
MEDM [35] 84.65 81.46 82.51
CDACM [11] 90.57 88.33 88.08

DTTL 91.68 90.46 89.90

To evaluate the algorithm’s robustness in scenarios where the target domain data are
limited, the second experiment of this study randomly samples 10% of the data from the
training and validation sets previously utilized in the first experiment for model training.
Table 3 presents the average statistical outcomes over five runs of this method, facilitating
the following conclusions:

Table 3. Performance of comparison of DTTL with the peer methods on Child X-ray (with 10%
training data) in terms of the AUC score (%).

Method EfficientNet DenseNet121 ResNet50

DANN [28] 75.87 73.77 73.96
CyCADA [30] 67.71 59.3 68.61
BSW [31] 74.31 54.84 69.99
CDAN [29] 76.25 74.64 75.08
MCD [32] 81.69 81.21 84.72
MDD [33] 84.80 84.23 84.01
FixBi [34] 75.92 73.65 81.14
MEDM [35] 79.86 78.70 70.76
CDACM [11] 86.89 85.04 87.35

DTTL 87.23 85.28 87.10

The performance of the DTTL method on the Child X-ray dataset, utilizing only 10%
of the training and validation data, remains impressive. Within the three backbone net-
works of EfficientNet, DenseNet121, and ResNet50, the AUC scores for DTTL were 87.23%,
85.28%, and 87.10%, respectively, outperforming other comparative methods in most cases.
Specifically, DTTL marginally outperforms CDACM on EfficientNet and DenseNet121, but



Entropy 2024, 26, 400 12 of 16

slightly lags behind ResNet50. Compared to the MDD method, DTTL demonstrates supe-
rior performance across all backbone networks, especially on EfficientNet and DenseNet121.
These results suggest that DTTL is capable of effectively learning and sustaining robust
performance even with scarce training data.

It is noteworthy that, while most methods experienced a decline in performance
when the training data was reduced to merely 10%, DTTL exhibited a relatively minor
performance drop, further evidencing the robustness of the DTTL method in scenarios
with sparse data. For instance, the performance decrease of DTTL on EfficientNet was less
pronounced compared to using the full dataset, which may be attributed to its optimized
feature extraction and domain adaptation capabilities.

These outcomes highlight the applicability and effectiveness of the DTTL method
in medical image classification tasks, particularly when available data is limited. The
robustness of the DTTL method suggests that it can still effectively capture and utilize key
information to maintain high performance, even with a limited number of training samples.

To showcase the performance of DTTL further, this section generates a Receiver
Operating Characteristic Curve (ROC), demonstrating the model’s classification ability, as
shown in Figure 3.

Figure 3. The ROC curve of DTTL model based on EfficientNet on Child X-ray dataset, (a) full data
and (b) 10% data.

4.5. Ablation Study

To further dissect the performance of the Dynamic Weighting Translation Transfer
Learning (DTTL) model proposed in this paper, this chapter conducts ablation studies
by systematically removing various components of the model, such as the Cross-domain
Discriminability Adaptation (CDA) module and the Cross-domain Minority class sample
Translation (CMT) module.

4.5.1. Validation of Cross-Domain Discriminability Adaptation

This section investigates the impact of the Cross-domain Discriminability Adaptation
(CDA) module on the efficacy of the Dynamic Weighting Translation Transfer Learning
(DTTL) framework for imbalanced medical image classification tasks. The evaluation
concentrates on datasets characterized by substantial domain shifts, such as the RSNA and
Child X-ray datasets, representing source and target domains with diverse class distribu-
tions. The crux of this study is a comparative analysis of DTTL’s performance with and
without the CDA module. The experimental results indicate that, with the incorporation
of the CDA module, DTTL achieves an AUC-ROC score of 0.9168, demonstrating strong
cross-domain class discriminability. In contrast, DTTL without the CDA module shows a
significantly lower AUC-ROC of 0.7352, as depicted in Figure 4. This substantial difference
underscores the pivotal role of the CDA module in enhancing the performance of DTTL.
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Figure 4. Validation results; -/o CDA represents DTTL removing CDA module; -/o CMT represents
DTTL removing CMT module.

In this part of the experiment, the enhancement in AUC is critical, as the CDA module
endeavors to mitigate the domain shift in imbalanced medical image classification. It
achieves this by facilitating more discriminative feature learning between the source and
target domains. The outcomes of the ablation study presented in this paper substantiate
the indispensability of the CDA module within the DTTL framework. By aligning feature
representations across domains and promoting domain-invariant feature learning, the
CDA module effectively tackles the challenge of domain shift. It aids in transferring
the discriminative knowledge from the labeled source domain to the unlabeled target
domain, thus enhancing the overall classification performance. The superiority of the
DTTL framework with the CDA module is further exemplified by its ability to leverage
the discriminative information for better generalization in the target domain, resulting in
marked improvements in diagnostic accuracy as reflected in the AUC metric.

4.5.2. Validation of Cross-Domain Minority Class Sample Translation

This section assesses the influence of the Cross-domain Minority class Translation
(CMT) module on the efficacy of Dynamic Weighting Translation Transfer Learning (DTTL)
framework. The study employs the key performance metric of Area Under the Curve–
Receiver Operating Characteristic (AUC-ROC) to measure the contribution of the CMT
module to the overall effectiveness. Comparative analysis between DTTL configurations
with and without the CMT module indicates a significant performance enhancement when
the module is integrated. Notably, the DTTL equipped with the CMT module achieves
an AUC-ROC score of 0.9168. In contrast, the AUC-ROC score diminishes to 0.8678 in the
absence of the CMT module, as depicted in Figure 4.

These findings highlight the efficacy of the CMT module in addressing the issue
of class imbalance in medical image classification. By generating synthetic data that
transforms samples of majority classes in the source domain into those of minority classes,
the CMT module rebalances the class distribution in the target domain, thereby achieving
more precise and reliable classification. Thus, the ablation studies in this part underscore
the pivotal role of the CMT module within the DTTL framework. Utilizing generative
adversarial networks and a sophisticated translation process, the CMT module creates
synthetic samples of minority classes to counteract the imbalance of class distribution.
This approach significantly reduces model bias towards majority classes and enhances
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classification performance for minority classes, attesting to the importance of the CMT
module in improving the accuracy and reliability of DTTL in classifying imbalanced medical
image datasets.

In our ablation study, the paper examines the contribution of the Cross-domain Dis-
criminability Adaptation (CDA) module and the Cross-domain Minority class Translation
(CMT) module to the overall performance of the Dynamic Weighting Translation Transfer
Learning (DTTL) framework. The results clearly demonstrate that these two modules
play a critical role in addressing the challenges of domain shift and class imbalance in
imbalanced medical image classification. By effectively aligning feature representations
and adjusting the class distribution, the CDA and CMT modules significantly enhance the
accuracy and reliability of the DTTL framework. The findings from this ablation study
underline the indispensability of these modules and provide direction for future research
in developing more robust transfer learning methods to tackle imbalanced medical image
classification challenges.

5. Conclusions

In this paper, considering the issues of domain adaptation and class imbalance in
medical image classification, a novel approach to Dynamic Weighting Translation Transfer
Learning (DTTL) is proposed. This method addresses domain shifts and balances medical
image categories across different classes through three pivotal steps, encompassing Cross-
domain Discriminability Adaptation (CDA), Dynamic Domain Translation (DDT), and
Balanced Target Learning (BTL) units. Each module incorporates entropy and information
theory principles to enhance model performance and adaptability.

Specifically, the CDA unit leverages synthetic discriminability feature learning coupled
with a domain-invariant feature learning loss. These strategies are grounded in information
theory, aiming to minimize the entropy between source and target domain features and
maximize the mutual information for effective domain adaptation. The DDT unit imple-
ments a dynamic translation process for the imbalanced classes across domains, employing
a confidence-based selection method to curate the most useful synthesized images to form
a pseudo-labeled balanced target domain, which is instrumental in reducing the overall
system entropy and enhancing the reliability of the model’s predictions. Finally, the BTL
unit undertakes supervised learning on the reassembled target set. This phase is crucial
for refining the model’s ability to classify imbalanced medical images accurately, applying
entropy minimization techniques to improve diagnostic performance.

To evaluate the efficacy of DTTL in the classification of imbalanced medical images,
modeling experiments were conducted using the RSNA and Child X-ray datasets as the
source and target domains, respectively. The evaluation results indicate that the DTTL pre-
sented in this paper outperforms existing state-of-the-art methods, providing an innovative
solution for transfer learning tasks in the classification of class-imbalanced medical images.
This success underscores the potential of incorporating entropy and information theory
concepts in developing more effective transfer learning solutions for the classification of
class-imbalanced medical images.

Our work not only introduces a novel approach to tackle domain adaptation and class
imbalance issues but also emphasizes the significance of entropy and information theory in
enhancing the robustness and accuracy of medical image classification models. We believe
that DTTL offers a promising direction for future research in transfer learning and medical
image analysis.
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