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Abstract: Protein–ligand docking plays a significant role in structure-based drug discovery. This
methodology aims to estimate the binding mode and binding free energy between the drug-targeted
protein and candidate chemical compounds, utilizing protein tertiary structure information. Re-
formulation of this docking as a quadratic unconstrained binary optimization (QUBO) problem
to obtain solutions via quantum annealing has been attempted. However, previous studies did
not consider the internal degrees of freedom of the compound that is mandatory and essential. In
this study, we formulated fragment-based protein–ligand flexible docking, considering the internal
degrees of freedom of the compound by focusing on fragments (rigid chemical substructures of
compounds) as a QUBO problem. We introduced four factors essential for fragment–based docking
in the Hamiltonian: (1) interaction energy between the target protein and each fragment, (2) clashes
between fragments, (3) covalent bonds between fragments, and (4) the constraint that each fragment
of the compound is selected for a single placement. We also implemented a proof-of-concept system
and conducted redocking for the protein–compound complex structure of Aldose reductase (a drug
target protein) using SQBM+, which is a simulated quantum annealer. The predicted binding pose
reconstructed from the best solution was near-native (RMSD = 1.26 Å), which can be further improved
(RMSD = 0.27 Å) using conventional energy minimization. The results indicate the validity of our
QUBO problem formulation.

Keywords: protein–ligand docking; flexible docking; compound fragment; combinatorial optimization;
quantum annealing; simulated quantum annealer; quadratic unconstrained binary optimization
(QUBO); SQBM+

1. Introduction

Computational methods have been widely employed in the field of drug discovery.
Structure-based drug discovery (SBDD) involves exploring potential drug candidate com-
pounds using tertiary structures of a target protein. Unlike ligand-based drug discovery,
which relies on characteristics of known active compounds, structure-based drug discovery
can find drug candidates with novel scaffolds.

Protein–ligand docking is widely used in SBDD. This calculation estimates the binding
pose between the protein and the chemical compound (as a candidate for strongly inter-
acting ligand) with their estimated binding free energy. The performance of the docking
calculation depends on (1) the effectiveness of the binding pose search algorithm and
(2) the accuracy of the scoring function used to estimate the binding free energy. Various
docking tools have been proposed over many years [1–4]. In particular, the search for
compound binding poses must consider numerous internal degrees of freedom of the
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compound as well as its translation and rotation. However, exhaustive exploration of
binding poses (including translation, rotation, and internal degree of freedom) cannot be
handled in a realistic amount of time, and various heuristic strategies are employed. For
instance, AutoDock 4, developed at the Scripps Research institute, utilizes the Lamarckian
Genetic Algorithm [5]. AutoDock Vina was developed as a successor to AutoDock and
estimates binding poses using an iterated local search optimizer that conducts local opti-
mization and compound conformation mutation repeatedly [6,7]. Additionally, Glide is a
widely used commercial tool that performs an exhaustive search while gradually excluding
unpromising binding pose candidates by several filters (such as site-point search, diameter
test, and subset test) [8,9].

Another binding pose search strategy is fragment-based docking, wherein the com-
pound is decomposed into fragments (chemical substructures which have no internal
degrees of freedom), and the binding poses of the compounds are reconstructed after
separately processing each fragment. For example, FlexX [10] utilizes an incremental con-
struction algorithm placing the first fragment in the protein pocket and extending new
fragments from it. REstretto [11] utilizes relative positions of fragments with enumerat-
ing feasible compound conformers, resulting in rapid and comprehensive exploration.
eHiTS [12] constructs a graph representing covalent bonds and clashes between a vast
number of candidate fragment placements. It subsequently performs maximum clique
finding to obtain combinations of fragment placements that form consistent compound
structures. Decomposing compounds into fragments has a significant advantage that has
fewer unique fragments owing to the commonality of fragments across compounds, leading
to a faster calculation. Zsoldos et al. [12] reported four times faster calculation with the
reuse of the intermediate results. This approach is promising given the recent exponential
growth in compound library size; for example, the number of compounds in the ZINC
database was approximately 34 million in 2012 [13] and 1.4 billion in 2020 [14].

The strategy of eHiTS involves transforming docking calculations to a combinatorial
optimization problem to find a set of fragment placements which is consistent as a com-
pound structure through maximum clique finding. While many important combinatorial
optimization problems are NP-hard and difficult to solve, efforts were recently made to
find optimal solutions for NP-hard combinatorial optimization problems rapidly using
an Ising machine after mapping the problem to an Ising model [15]. Various implemen-
tation approaches are proposed for the Ising machine, such as D-Wave Systems Inc.’s
quantum computer based on quantum annealing [16,17], NTT research Inc.’s Coherent
Ising Machine (an optical computer) [18], and implementations on classical computers
powered by graphics processing units (GPUs) and field-programmable gate arrays (FP-
GAs), such as NEC’s vector annealing, Fujitsu’s Digital Annealer [19], and Toshiba Digital
Solutions Corporation’s SQBM+, which is based on the simulated bifurcation algorithm
(SB algorithm) [20].

The quadratic unconstrained binary optimization (QUBO) problem is a kind of op-
timization problem that can be transformed to the ground state search problem on the
Ising model. Examples of combinatorial optimization problems that have been formulated
as QUBO problems include the traveling salesperson problem [17] and the polyomino
puzzle [16,21–23]. In particular, Takabatake et al. [23] have explored the generalized version
of polyomino puzzles involving the use of various sizes of two-dimensional polyomino
pieces, and three-dimensional polycubes. They also suggest its potential applications in
drug discovery.

Research on applying the Ising machine to drug discovery has begun. Sakaguchi
et al. [24] modeled a compound placement problem where all correct atom positions
in the docking pose are precisely given and only atom type assignments are unknown.
Banchi et al. [25] proposed a method for matching known interaction sites of proteins
with compound structures. They utilized a Gaussian boson sampler to sample many
initial solutions, followed by shrinking and expansion of the matching using classical
computational methods. Their approach superimposed the rigid compound structure onto
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the protein surface. Zha et al. [26] performed structure matching for computationally
estimated interaction points of proteins with compound structures. They matched the
relative distances between the rigid compound’s atomic positions and the interaction points
of the protein, followed by the superimposition of them. However, the problem setting
of Sakaguchi et al. assumed that the relative positions of the protein and compound are
already known. Banchi et al. utilized experimentally known interaction sites, requiring
sufficient knowledge for the target protein. Zha et al. did not rely on knowledge about
the target protein; however, they ignored the internal degrees of freedom of compounds,
although they are essential for docking calculation. These three methods fall far short of
realistic docking calculation used in drug discovery.

Therefore, in this study, we formulated protein–ligand flexible docking, which ade-
quately considers the internal degrees of freedom of the compound, as a QUBO problem.
First, we extracted the essence of an existing fragment-based docking strategy, which
includes the enumeration of many candidate fragment placements and the selection of a
set of placements that are consistent as the compound. In our formulation, each binary
decision variable of the QUBO corresponds to a candidate fragment placement, which is
enumerated. Subsequently, we designed a Hamiltonian of the problem with four terms
representing four factors; (1) protein–fragment binding free energy ∆G, (2) penalty for clash
between fragment placements, (3) reward for forming covalent bonds between fragment
placements, and (4) constraints to ensure that only a single placement is chosen for each
fragment. We also implemented a proof-of-concept system with the use of SQBM+, which
is a simulated quantum annealer.

2. QUBO Problem Formulation of Fragment-Based Docking
2.1. Fundamental Factors of Fragment-Based Docking Calculation

We propose formulating fragment-based protein–ligand flexible docking as a QUBO
problem. As a first step of the formulation, we extracted the fundamental factors of a
fragment-based docking. A fragment-based docking tool, eHiTS [12] conducts maximum
clique finding of fragment placement graph G = (V, E), where each vertex vi corresponds
to each fragment placement pi. Note that a clique is a subset of vertices of an undirected
graph such that every two distinct vertices in the clique are adjacent. The maximum clique
finding problem is a kind of combinatorial optimization problems and we referred to
the algorithm.

Rigid fragments f1, f2, ... are decomposed from the compound structure of interest,
and they are subsequently docked into a binding site of a target protein to obtain fragment
placements pi (vi in the graph G). Edges eij are added into the graph G if the fragment
placements pair pi, pj satisfies all the following conditions.

1. Fragment fi of pi and fragment f j of pj are different.
2. pi and pj do not clash.
3. If fi and f j are connected in the compound structure of interest, the placements pi, pj,

can be connected in the same manner as the compound.

As a clique of the graph implies a consistent fragment placement set as the compound,
this enables flexible docking with consideration of the internal degrees of freedom of
the compound.

Therefore, the fundamental factors of the fragment-based docking calculation into the
combinatorial optimization problem are the followings:

1. Decompose a compound into multiple fragments (chemical substructures with no
internal degree of freedom) and regard chemical compound structure as a set of
fragment placements.

2. Enumerate candidate fragment placements by independent fragment docking.
3. Choose a single placement for each fragment.
4. Consider clashes between fragments.
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5. For fragments that have covalent bonds with each other, consider the bond distance
between the placements.

2.2. Similarities and Differences between Polyomino Puzzle and Fragment-Based Docking

In Section 2.1, we itemized the factors that should be considered when formulating a
fragment-based docking calculation for the QUBO problem. Some of these factors have
similarities to the Hamiltonian presented by Takabatake et al. [23] in their approximation of
the protein–compound docking calculation as a generalized polyomino puzzle. Table 1 and
Figure 1 show the comparisons between the polyomino puzzle and the docking calculation
when modeled as a QUBO problem.

Figure 1. Comparing factors for QUBO problem formulation between polyomino puzzle and docking
calculation.
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Table 1. Comparison between the polyomino puzzle and the docking calculation as a QUBO problem.

Polyomino Puzzle Docking Calculation

Elements mapped to binary variables placements of polyominos on the board placements of fragments
in the protein pocket

Fitness for each element sizes of polyominos binding free energy scores
to the protein

Penalty for elements pair overlaps between polyomino placements clashes between fragment placements

Reward for elements pair length of touching borders chemical bond between
between placements fragment placements

Constraints for the number a single placement per one polyomino a single placement per one fragmentof selected elements

2.3. Elements to Be Mapped to Binary Variables

The elements of the problem that are mapped to variables are an important factor to be
determined, as they can significantly change the difficulty of a combinatorial optimization
problem. As already mentioned in Section 2.1, we assigned a single binary variable xi for
each fragment placement in 3D space.

As the number of fragment placements in 3D space is innumerable, we needed to set
some rules to limit their number. The simplest idea was to select fragment placements only
with good fitness (binding free energy between the target protein and the fragment). How-
ever, fragment placements composing actual compound structures in protein–compound
complex structures sometimes contain fragments that themselves do not have favorable
binding free energies with the target protein. Such placements serve as linkers that connect
other fragment placements which have good binding free energies [12].

2.4. Fitness for Each Variable

The fitness for the variables is the local gain by accepting the fragment placement. In
fragment-based docking, the binding free energy score of a compound is expressed as the
sum of the binding free energy scores of selected fragment placements. As the sum can be
expressed by a first-order term, the energy score of a compound is described as:

H1 = ∑
i

∆Gixi (1)

where ∆Gi is the binding free energy score between corresponding fragment placement pi
and the target protein, and xi(∈ {0, 1}) is the binary decision variable whether to accept pi
or not.

2.5. Penalty for Element Pair

Subsequently, we considered pairwise relationships between the elements. For in-
stance, the optimal solution of the polyomino puzzle [23] requires that all polyominoes
must not overlap each other. Similarly, the co-occurrence of fragment placements that clash
with each other is inconsistent as a compound structure and should be penalized for such
clashes. Therefore, we used clash(i, j) ≥ 0 to express the penalty for clashes as follows.

H2 = ∑
i,j

clash(i, j)xixj (2)

2.6. Reward for Element Pair

Unlike the clash between fragment placements discussed in Section 2.5, for the re-
construction of compound structures, the placements pi, pj of fragments fi, f j that are
covalently linked must be arranged in a positional relationship such that covalent bonding
is possible. Therefore, we used conn(i, j) ≤ 0 to express the reward for the possible covalent
bond as follows.
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H3 = ∑
i,j

conn(i, j)xixj (3)

2.7. Constraints for the Number of Selected Placements

As mentioned in the introduction, docking calculations estimate the binding pose
between a target protein Protm and a chemical compound Cmpdn in a compound library.
For example, suppose Cmpdn consists of three fragments F = {a, b, c}. To reconstruct the
compound structure, only a single placement of fragment a must be assigned. Likewise,
only a single placement for each of the fragments b and c must be assigned. This is exactly
the same as the condition “each polyomino is used once” in the polyomino puzzle; thus,
the constraint regarding the number of selections can be written as follows:

H4 =
1
2

F

∑
k

(
∑
fi=k

xi − 1

)2

+
1
2

F

∑
k

∑
fi=k

xi(1 − xi) (4)

where F is a set of fragments that compose the compound Cmpdn, and fi is a fragment of a
placement pi.

3. Materials and Methods
3.1. Method Overview

In Section 2, we described how the docking calculation should be formulated as a
QUBO problem. The Hamiltonian was practically designed for flexible docking in this
section as a proof-of-concept for this formulation as shown in (Figure 2): Step 1. enumera-
tion of fragment placements, Step 2. formulation of a Hamiltonian, Step 3. combinatorial
optimization with simulated quantum annealer, and Step 4. reconstruction of a com-
pound structure.

3.2. Pose Enumeration with Protein–Fragment Rigid Docking

As discussed in Section 2.3, the fragment placements subject to combinatorial opti-
mization must efficiently enumerate with good binding free energy scores while preserving
positional diversity. Thus, the docking region was divided into multiple 2 Å× 2 Å× 2 Å
subregions, and protein–fragment rigid docking was independently performed for each
subregion after decomposing the compound into fragments. We used REstretto [11] as a
docking tool. Several parameters are set to preserve placement diversity: local optimiza-
tion of placement is not conducted (NO_LOCAL_OPT = True), placements having negative
(good) energy scores are extracted (OUTPUT_SCORE_THRESHOLD = 0.0 kcal/mol), and each
output placement has a root mean square deviation (RMSD) of at least 1.0 Å away from
each other (POSE_RMSD = 1.0 Å). If the number of extracted placements is over 20, the
best 20 placements per fragment are output (POSES_PER_LIG = 20). The placement output
from different subregions may have similar placement (RMSD less than 1.0 Å). Only one
placement with the best free energy score is retained from such a similar group.

3.3. QUBO Formulation

The Hamiltonian H (the objective function to be minimized) is formulated as follows,
with the four terms described in Section 2:

H = AH1 + BH2 + CH3 + DH4 (5)

where coefficients A, B, C, D(≥ 0) are adjustable constants that determine the contribution
weights of each term. Since the H2 and H3 terms are both related to the pairwise relationship
with other fragment placements, their constants B and C should be of a similar scale.
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Figure 2. A workflow of the proof-of-concept implementation.

Furthermore, since the H4 term is a constraint term whose condition must be satisfied, the
weight D should be larger. In this study, the weights of each term were determined as
(A, B, C, D) = (1, 5, 5, 25) according to a prior experiment based on the aforementioned
assumptions, with the constant A = 1 fixed.

3.4. Criteria of Covalent Bonding and Collision

The functions clash(pi, pj) involved in the H2, which represents a clash, and conn(pi, pj)
involved in H3, which represents a covalent bond, are calculated based on physico-chemical
parameters: bond length, bond angle, dihedral angle of the covalent bond, and inter-
atomic distance between each atom. The interaction energies can be calculated with a force
field [27–29]. However, it is almost impossible to obtain placements pairs that have precisely
appropriate bond lengths, bond angles, and dihedral angles for conn(pi, pj), owing to the
limited resolution of fragment placements in this study. Therefore, distortion energy of
a covalent bond and inter-molecular repulsion should be calculated tolerantly for errors.
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Thus, we dare to employ binary functions for clash(pi, pj) and conn(pi, pj), representing
whether the condition is applicable or not.

1. Calculate interaction energy ENB(pi, pj) for each fragment placements pair pi, pj with-
out adding a covalent bond.

2. Calculate interaction energy EB(pi, pj) for each fragment placement pair pi, pj with
the addition of a covalent bond if the fragments fi and f j have a covalent bond.

3. Set conn(i, j) = −1 if the fragments fi and f j have a covalent bond and EB(pi, pj) ≤ thE;
otherwise, set conn(i, j) = 0. Note that thE is an energy tolerance level.

4. Set clash(i, j) = 1 if conn(i, j) = 0 and ENB(pi, pj) > thE; otherwise, set clash(i, j) = 0.

Interaction energies ENB(pi, pj) and EB(pi, pj), based on the Universal Force Field
(UFF) [27], are calculated using RDKit (version 2023.09.5). Note that EB(pi, pj) includes
distortion energy from the added covalent bond and non-bond interaction energy between
atoms within the single molecule structure composed of the two fragments and the added
covalent bond. The distortion energy originates from the bond length, bond angle, and
dihedral. To accept some distortions and clashes, the energy tolerance level thE is set to a
high value of 500 kcal/mol.

3.5. Combinatorial Optimization by SQBM+

Solutions of the QUBO problem formulated in Sections 3.2–3.4 are obtained by using
SQBM+, a simulated quantum annealer. SQBM+ outputs many local solutions, which
is suitable for docking calculation as the docking is expected to output several docked
compound poses.

SQBM+ is a quantum-inspired optimization solution based on the Simulated Bifurca-
tion Machine (SBM), which is a combinatorial optimization solver utilizing the simulated
bifurcation algorithm (SB algorithm) [20]. SQBM+ has novel exploration algorithms such as
classical adiabatic exploration and ergodic exploration, and it can handle large-scale QUBO
problems with 10 million variables. Some extensions, such as the support of polynomial
unconstrained binary optimization (PUBO) with cubic and quartic problems and enabling
continuous variables were performed with the capabilities of the SB algorithm [30]. An
example of an application is a high-speed automated trading system in finance [31]. The
detection of trading opportunities in an extended pair-trading strategy was formulated as
an optimal path-search problem in a directed graph, and solutions were obtained by the SB
algorithm. Another example of an application is the automotive computing platform in the
mobility industry [32].

We used SQBM+ for AWS (version 2.0.1) and collected and analyzed local solutions
obtained in 300 s of computation (timeout=300).

3.6. Postprocessing

The local solutions output by SQBM+ may have selected two or more placements
for one fragment fi. Therefore, only the solutions containing a single placement for each
fragment composing the compound are extracted by a postprocessing filter program from
all the obtained solutions.

3.7. Dataset Preparation

We conducted a redocking experiment to evaluate the performance of the proof-of-
concept implementation. In the redocking experiment, a compound of an experimentally
known complex structure with a drug target protein was extracted and docked to the
protein structure again. It is generally regarded as an “acceptable” redocking pose if the
RMSD between a predicted binding pose and the experimentally known binding pose is
less than RMSD = 2.5 Å [33] without the use of compound 3D structural information of
the bound state.

Here, we conducted a redocking experiment with aldose reductase (ALDR). ALDR
protein is composed of approximately 300 amino acids and is an enzyme catalyzing the
reduction of glucose to sorbitol by nicotinamide adenine dinucleotide phosphate (NADPH).
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It is thought to be associated with neuropathy in diabetes, and thus, it is a drug target
protein. An approved drug called epalrestat inhibits this protein.

First, co-crystallized 3D structure of ALDR and its known inhibitor compound was
obtained from Protein Data Bank (PDB) [34,35] (Figure 3). Subsequently, the inhibitor com-
pound was decomposed into fragments based on the compound decomposition algorithm
of Spresso [36]. The ionization states and 3D structure of all fragments were re-generated
with LigPrep (Schrödinger, Inc., New York, NY, USA). Then, the docking region for frag-
ment docking (Section 3.2) was determined as shown in Table 2. The box center was the
center of the co-crystallized compound 3D structure, and docking region was manually de-
termined to cover the entire area involving the binding site of the co-crystallized compound.

Figure 3. The complex structure of aldose reductase (ALDR) and its inhibitor. (A) A molecular
complex formed by the target protein coupled to small molecule: the cofactor NADP and inhibitor.
The protein is represented by a molecular surface with the backbone atoms traced, and the cofactor
NADP and inhibitor are shown as sticks. Proteins and small molecules are shown in colors based
on the element of the atoms: the oxygen and nitrogen atoms are colored red and blue, respectively;
the carbon atoms of the protein and cofactor are indicated in blue; and the carbon atoms of the
inhibitor are indicated in purple. (B) Structural formula of the inhibitor compound. (C) Fragments
decomposed from the inhibitor with SMILES (simplified molecular input line entry system), which is
a linear notation for describing the structural formula of compounds.

Table 2. Target protein information and parameters of fragment docking.

Target Aldose reductase (ALDR)
PDB ID 2HV5

Box center ( 16.61 Å, −7.03 Å, 14.45 Å)
Volume of the docking region 14 Å × 14 Å × 14 Å

The number of subregions 343 (= 73) subregions of 2 Å× 2 Å× 2 Å

4. Results and Discussion
4.1. Fragment Docking

Overall, 3005 candidate fragment placements were obtained by fragment docking
based on the procedure described in Section 3.2. All fragment placements are superimposed
in Figure 4. Fragment placements were spread over the entire pocket space of the ALDR
owing to the division of the binding pocket region into 343 subregions.
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Figure 4. The result of fragment docking. All candidate fragment placements and protein 3D
structures are shown in green and cyan, respectively.

Table 3 shows the number of candidate fragment placements obtained for each frag-
ment, as well as the minimum (best) and maximum (worst) values of their binding free
energy scores. Figure 5 shows the distribution of binding free energy scores of all frag-
ments. Notably, the placements with less favorable and favorable binding free energy
scores remain as candidates. By obtaining fragment placements for each subregion with
good scores, we could obtain fragment placements that can act as linkers in regions that
have little interaction with the protein, suggesting that positional diversity of placements
was preserved.

Table 3. The result of fragment docking of each fragment.

Fragment SMILES Number of Poses Binding Energy Range (kcal/mol)

FC(F)F 982 −3.592–−0.008
OC=O 884 −2.420–−0.001

Cc1nc2c(s1)cccc2 641 −4.983–−0.009
O=c1[nH]nc(c2c1cccc2)C 498 −6.288–−0.039

Figure 5. Histograms of binding free energy scores for each of the four constituent fragments.
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4.2. Local Solutions Enumerated by SQBM+

We obtained 7298 local solutions as outputs of SQBM+. After postprocessing, there
were 5414 (74.2%) effective solutions wherein the placements of all fragments were selected
once each. Figure 6 shows the scatter plot of the Hamiltonian values and the RMSD
with corresponding docked poses to the co-crystallized compound structure. A funnel-
shape was observed where the lower the Hamiltonian value (corresponding to the better
docking score with less structural inconsistency of a compound), the lower the RMSD
value, indicating that the Hamiltonian was appropriately designed.

Figure 6. The scatter plot of the Hamiltonian values and the RMSD with corresponding docked poses
to the co-crystallized compound structure. Only the top 1000 local solutions are shown.

Figure 7 shows the fragment placement set interpreted from the best solution in
terms of Hamiltonian value. All fragments were located close to each other, and it seems
consistent as a compound structure (Figure 7A). The predicted binding pose that was
reconstructed from the set of fragment placements is accurate enough since the RMSD was
1.26 Å with the co-crystallized structure (Figure 7B).

Figure 7. The fragment placement set translated from the best solution. (A) the fragment placement
set. (B) comparison between the fragment placement set and the co-crystallized structure. The
fragments and co-crystallized structure are shown as sticks, and the protein is represented by a
molecular surface with the cartoon representation. Small molecules and protein are shown in
colors based on the element of the atoms: the oxygen and nitrogen atoms are colored red and blue,
respectively; the carbon atoms of the fragments are indicated in green; the carbon atoms of the
co-crystallized structure are indicated in purple; and the carbon atoms of the protein are indicated
in blue.
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4.3. Energy Minimization of Reconstructed Compound Structure

The structure shown in Figure 7A has left structural distortion, and it is inappropriate
to refer to it as final estimation of the binding pose. Therefore, the reconstructed compound
structure was optimized in the rigid protein 3D structure using energy minimization of the
compound (which is widely applied manner to eliminate structural distortion) with Maestro
(Schrödinger, Inc., version 2020-2). First, the predicted complex structure composed of
the 3D structure of ALDR (PDB ID: 2HV5) and reconstructed compound structure was
made. “Preprocess” and “H-bond assignment” in Protein Preparation Wizard was applied,
followed by the energy minimization of compound structure in the OPLS3e force field [29]
with proteins and cofactors regarded as rigid bodies. Consequently, the RMSD between
the minimized structure and the co-crystallized structure was 0.27 Å (Figure 8), which is
almost the identical structure.

Figure 8. The compound structure after energy minimization. (A) Comparing the structure before
and after energy minimization. (B) Comparing the structure after energy minimization with the
co-crystallized structure. The fragments and small molecules are shown as sticks in colors based
on the element of the atoms: the oxygen and nitrogen atoms are colored red and blue, respectively;
the carbon atoms of the structure before energy minimization are indicated in green; the carbon
atoms of the structure after energy minimization are indicated in cyan; and the carbon atoms of the
co-crystallized structure in purple.

4.4. Toward Virtual Screening Applications

As the current implementation intends to be a proof-of-concept, the calculation remains
inefficient. To obtain the results, we spent approximately 100 CPU core min (Intel Core i7-
9700) for exhaustive fragment docking of four fragments, approximately 40 CPU core min
(Intel Core i7-9700) for calculation of interaction energies between fragment placements,
and 5 min for SQBM+, resulting in calculations of more than 2 CPU core hours in total.
The inefficiencies include the redundant pre-calculation of fragment docking because a
number of docking calculations for all subregions are conducted independent each other,
resulting in a 10–100 times larger calculation cost. Additionally, the interaction energies EB
and ENB were calculated even for far distant fragment pose pairs for which conn(i, j) = 0
and clash(i, j) = 0 obviously in the current implementation. With improvement of the
implementation, we estimate that the docking can be performed within about ten minutes.
Approximately 28 million compounds are composed of only approximately 260 thousand
fragments [36]; thus, the computational cost for the exhaustive fragment docking as the
first step in the process will become negligible in large-scale virtual screening.

Nevertheless, further accelerations are required to apply this approach to practical
virtual screening, which requires evaluating more than millions of compounds. To meet
the requirement, we are working toward proposing a novel strategy to select multiple
compounds in a single combinatorial optimization. In this case, three issues arise: (i) the
number of types of fragments is huge, (ii) therefore, it must be considered as a typical
case that any placement of a given candidate fragment is not chosen, and (iii) atoms that
constitute a covalent bond are difficult to identify beforehand. In particular, as for issue (i),
it is impractical to consider all placements of hundreds of thousands of possible fragments
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as candidates for combinatorial optimization. Therefore, we are working on a method to
represent numerous fragments with a small number of representative fragments based on
structural and functional similarity and devising a plan to estimate feasible compounds
from the optimization results of representative fragment placements.

5. Conclusions

In this study, we formulated fragment-based protein–ligand flexible docking as a
QUBO problem. We designed a Hamiltonian of the problem with four terms; (1) protein–
fragment binding free energy ∆G, (2) penalty for clash between fragment placements,
(3) reward for forming covalent bonds between fragment placements, (4) constraints to
ensure that a single placement is chosen for each fragment. It should be highlighted
that it is the first formulation to treat internal degrees of freedom of compound. The
redocking experiment with Aldose reductase (ALDR) and its inhibitor showed that the
proof-of-concept implementation could obtain accurate binding pose prediction. Energy
minimization of the predicted compound structure further improved the accuracy of the
structure compound structure.

The implementation is a proof-of-concept, and future improvement of the calcula-
tion efficiency is mandatory. For instance, distance-based determination of clash(i, j) and
conn(i, j) is a possible selection. However, the proposed strategy is expected to be more
exhaustive than the heuristic pose search methods employed by conventional docking
tools, since it performs combinatorial optimization from among thousands of candidates.
In particular, it may be expanded to docking of flexible molecules (such as peptides),
for which conventional docking tools have low prediction accuracy owing to insufficient
conformational search and docking calculations that consider the flexibility of protein
side chains.
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