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Abstract: Uncovering the mechanisms behind long-term memory is one of the most fascinating open
problems in neuroscience and artificial intelligence. Artificial associative memory networks have been
used to formalize important aspects of biological memory. Generative diffusion models are a type of
generative machine learning techniques that have shown great performance in many tasks. Similar
to associative memory systems, these networks define a dynamical system that converges to a set of
target states. In this work, we show that generative diffusion models can be interpreted as energy-
based models and that, when trained on discrete patterns, their energy function is (asymptotically)
identical to that of modern Hopfield networks. This equivalence allows us to interpret the supervised
training of diffusion models as a synaptic learning process that encodes the associative dynamics
of a modern Hopfield network in the weight structure of a deep neural network. Leveraging this
connection, we formulate a generalized framework for understanding the formation of long-term
memory, where creative generation and memory recall can be seen as parts of a unified continuum.

Keywords: generative diffusion models; associative memory networks; hopfield networks

1. Introduction

Memory is a mysterious thing. Human beings can form lifelong memories from
fleeting events and effortlessly recall them decades later as vivid multi-sensory experiences.
On the other hand, in spite of their impressive capabilities, deep learning systems tend to
require extensive training sessions to encode new information, which severely limit their
adaptivity and consequently their capacity to develop general intelligence. Nevertheless,
the field of machine learning has a long history of research on biologically plausible
memory [1–6]. Arising from the pioneering work of John Hopfield, associative memory
networks have been proposed as computational models of biological memory [1,7]. These
networks encode memories as stable fixed-points in an “energy landscape” defined on the
space of neural activations. Interestingly, this energy function can be encoded into a pattern
of synaptic connections trained using biologically plausible synaptic learning rules [2,8].
In recent years, associative memory networks have been generalized in order to greatly
scale their encoding capacity [9,10]. However, these modern Hopfield networks have a
much more tenuous connection with known forms of synaptic learning since their energy
function cannot be straightforwardly captured by learned pairwise synaptic couplings [11].
While biologically plausible implementations of modern Hopfield networks have been
proposed, they do not provide strong insights on how memories are encoded in synaptic
patterns since they require hard storage of the memorized pattern [11].

While human-like long-term memory is still outside of the capabilities of artificial
intelligence systems, great progress has been made in approximating several forms of
human creativity. Modern generative models are nowadays capable of generating beautiful
visual art and insightful written text. In fact, these generative models have attracted great
attention in neuroscience since they can provide an internal model of the world [12–14]
and form the mechanistic basis for imagination and top-down predictive perception [15].
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Interestingly, modern research in psychology and neuroscience suggests that there is no
sharp distinction between memory and spontaneous imagination [16]. In particular, the
theory of reconstructive memory suggests that most sensory aspects of our memories are
not encoded but are instead reconstructed from contextual information [16–19]. Memory-
related brain areas such as the hippocampus have been shown to respond to imagination,
future prediction and counterfactual reasoning tasks [16]. Moreover, hippocampal replays
can be seen as a form of spontaneous generation, which is considered to be vital for memory
consolidation and planning [20]. Given these deep connections, it is natural to expect that
generative models and associative memory models are two faces of the same coin.

In this paper, we will show that this is indeed the case for generative diffusion models,
a relatively new class of generative models that have achieved state-of-the-art performance
in most computer vision and audio generation tasks [21–23]. Specifically, we show that
the asymptotic low-time energy landscape of a large class of generative diffusion models
trained on discrete patterns is identical to the asymptotic low-temperature landscape of
modern Hopfield networks. Furthermore, in our experiments, we show that this equiva-
lence holds almost exactly in the standard numerical implementations.

Using these results, we offer a new theoretical conceptualization of associative memory
that can incorporate semantic, episodic, and reconstructive memory as the result of the
action of the same synaptic learning rule.

2. Preliminaries

In this section, we will review the basic theory of associative memory and diffusion
modeling. To keep the text readable to a large audience, we will focus on the intuitive
aspects and keep the level of mathematical formalism at a minimum. For example, we will
write stochastic differential equations in terms of (infinitesimal) update equations. For a
more formal treatment of these topics, we recommend the reader to refer to SDE texts such
as to Kloeden et al. [24].

2.1. Associative Memory Networks

Hopfield networks have been developed to formalize the concept of associative mem-
ory in a simplified artificial neural system [1]. We will denote the activity of the D memory
units with a vector x(t) = (x1(t), . . . , xD(t)). In the original paper, these neural activities
where assumed to be binary variables (xj(t) ∈ {−1, 1}), respectively, denoting states of rest
and states of firing. The dynamic of a Hopfield network is regulated by the update equation:

xj(t + dt) = [sign(Wx)]j, (1)

where W is a real-valued symmetric matrix of synaptic couplings (weights) with null
diagonal (Wjj = 0, ∀j). The matrix W encodes pairwise associations between the differ-
ent components of the pattern vectors. It can be show that this update rule decreases
monotonically the following energy function [1]:

uH(x) = xTWx, (2)

and that it will, therefore, converge to one of its local minima. These minima can then be
used to encode memories, which can be retrieved through the Hopfield dynamics when
initialized in an incomplete or perturbed version of the memory state. The simplest way to
encode memories in the coupling matrix is to use the Hebb’s rule of association, which in
its simplest form is:

Wj,k =
N

∑
n=1

yn,jyn,k (3)

where the set of vectors {y1, . . . , yn, . . . yN} represents N “experienced” patterns of neural
activity. A pattern is considered to be successfully stored if it is a stable fixed-point of the
discrete dynamics. If the patterns are random, it can be proven that the storage capacity of
Hopfield nets scales as D/4 log2 D [7].
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The storage capacity of Hopfield-like networks can be increased by including non-
linear mappings F(·) in its energy function [9,10,25]. The general form for the energy of a
(discrete) modern Hopfield network can be written as:

uF(x) = h

(
N

∑
n=1

F
(

xTyn

))
, (4)

where h(·) is an arbitrary differentiable and strictly monotonic function, which does not
affect the location and stability of the local minima. This expression reduces to the standard
Hopfield energy for F(x) = x2 and h(x) = x. However, it is possible to achieve much higher
theoretical capacity by using more complex functions. For example, a modern Hopfield
network with F(x) = ex can store up to 2D/2 binary patterns [10]. These associative
networks have been recently generalized to have continuous dynamics. If the activation
vector is continuous, the energy function needs to include a regularization term to enforce
stability. For example, [26] proposed the use of an energy function of the form:

uMH(x, β) = −β−1 log

(
N

∑
n=1

eβxTyn

)
+ ∥x∥2

2/2 (5)

where β is a positive-valued parameter. We omitted the terms that are additive constant in
x since they do not change the fixed-points and the resulting dynamics. In these models, the
variable x is assumed to be real-valued and the resulting energy-minimization dynamics
can be expressed either through update rule or through a system of ordinary differential
equations. Moreover, recent work [11] showed that this dynamics can be expressed in
terms of biologically plausible binary association between latent neurons, in a way that
is similar to the architecture of a restricted Boltzmann machine [27]. Unfortunately, in
these models, the numerical values of the patterns directly determine the synaptic weights
between latent and observable neurons. This implies that the patterns need to be stored
in memory instead of being converted into distributed synaptic patterns. In this sense,
modern Hopfield networks offer a model of memory recall but do not provide insight into
learning and memory storage in the brain.

2.2. Generative Diffusion Models

Consider a target distribution ϕ(y) that is only available through a training dataset
D = {y1, . . . , yN} of independently sampled data-points. Our goal is to learn the structure
of the training set in order to generate new samples from ϕ(y). To this aim, we first define
a noise-injective process that turns the training samples into random noise states. We will
then ‘invert’ this process to turn random noise into new samples. To be consistent with the
notation used in the continuous Hopfield model, we deviate from the diffusion modeling
literature by writing this process in reversed time, with the noiseless data corresponding to
a final time T. In this notation, the diffusive dynamics can be determined by the following
backward recursive Equation (corresponding to the forward process described in the
standard diffusion literature):

x(t − dt) = x(t) + σ
√

dtδ(t), (6)

where σ determines the standard deviation of the noise injected at time t and δ(t) follows
a standard normal distribution. This is known as the variance exploding equation in
the generative diffusion modeling literature [23], which corresponds to a mathematical
Brownian motion. We can sample from this process by sampling an initial state y from the
dataset and using it as the final state in the recursion defined by Equation (6). Note that any
other Itô diffusion process defined by a stochastic differential equation can equivalently
be used to define a generative diffusion model [23], we will cover the general case in
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Section 3.2. It can be shown that, if Equation (6) is initialized with the target distribution
ϕ(y), the ‘inverse’ equation is given by:

x(t + dt) = x(t) + σ2∇x log pt(x(t))dt + σ
√

dtδ(t). (7)

where pt(x) is the marginal distribution of the noise-injection process at time t. In the case
of the variance-exploding process, the marginal can be computed analytically and it can be
expressed as:

pt(x) = Ey∼ϕ(y)

[
1√

2π(T − t)σ2
e
− ∥x−y∥2

2
2(T−t)σ2

]
. (8)

This formula involves an average over the distribution of the data, which is usually
not available in a generative modeling task. However, we can approximate the drift term
of the dynamics (i.e., the so-called score ∇x log pt(x)) using a parameterized deep network
s(x(t), t; W) trained using the denoising loss [23,28,29]:

L(W) =
1
2
Ey∼D,t

[
Ex(t)|y

[
∥δ(t)− s(x(t), t; W)∥2

2

]]
(9)

where δ(t) = (x(t)− y)/(σt) is the total noise added to the pattern y up to time t, and t is
uniformly sampled over [0, T]. The score can then be recovered from the network using
the formula:

∇x log pt(x) ≈ −σ−1s(x(t), t; W) (10)

which becomes exact when the dataset is infinitely large and the loss is minimized globally.

3. The Equivalence between Diffusion Models and Modern Hopfield Networks

We can now show that, when used for storing discrete patterns, the dynamics of
generative diffusion models minimizes the energy function of continuous modern Hopfield
networks. We will start from the simpler case of variance-exploding diffusion models as
their analysis provides all the main insights and results. We will then generalize the result
to arbitrary diffusion models defined by a large class of SDEs.

3.1. Variance-Exploding Models

The first step is to formulate the deterministic dynamics of the model as the negative
gradient of an energy function: x(t + dt) = x(t) − ∇xu(x, t)dt + σ

√
dtδ(t). As noted

in [30], the energy function is:

uDM(x, t) = −σ2 log pt(x) = −σ2 logEy∼ϕ(y)

[
e
− ∥x−y∥2

2
2(T−t)σ2

]
+ c, (11)

where c does not depend on x and can, therefore, be omitted without affecting the dynamics.
In order to establish a link between the diffusion model and Hopfield networks, we can
now assume that the data source is a finite collection of N patterns that we wish to store as
memories. This led to the energy:

uDM(x, t) = −σ2 log

 1
N

N

∑
n=1

e
−∥x−yn∥2

2
2(T−t)σ2

. (12)

If we now assume that the patterns are normalized (∥y∥2
2 = 1), by expanding the

square in the exponent and omitting constant additive terms, we obtain:

uDM(x, t)/σ2 = − log

(
N

∑
n=1

e
xT yn

(T−t)σ2

)
+

∥x∥2
2

(T − t)2 . (13)
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Finally, if we define β(t)−1 = (T − t) · σ2 and we multiply both sides by β(t)−1,
we obtain:

β−1(t)uDM(x, t)/σ2 = −β(t)−1 log

(
N

∑
n=1

eβ(t)xTyn

)
+

∥x∥2
2

2
= uMH(x, β(t)), (14)

which for a fixed t is identical to the continuous Hopfield network energy in Equation (5),
and it, therefore, has the same fixed-point structure at the limit β → ∞. Note that
the scaling factor β−1(t)/σ2 does not change the fixed-points and their stability as it
is a positive constant of x. While we derived this result assumes normalized patterns,
this is not actually necessary since, for β(t) → ∞, we have that β−1(t)uDM(x, t)/σ2 ∼
− 1

2

(
xTy∗ + ∥y∗∥2

2 + ∥x∥2
2

)
, where y∗ is the pattern that maximizes the quadratic form

xTy + ∥y∥2
2. As shown by this expression, at this limit the norm y∗ only adds an irrelevant

constant shift in the energy.
The main differences between the two approaches are (1) in diffusion models, β(t)

tends toward this divergent limit as part of the denoising dynamics, while the denoising
iterations of modern Hopfield networks keep β fixed and (2) in Hopfield networks, the
energy function is minimized deterministically, whereas in diffusion models, there is an
additional stochastic term. However, these two differences ‘cancel each other out’ since
the divergence of β(t) leads to the suppression of the stochastic fluctuations and to exact
convergence on the same patterns that minimize the modern Hopfield energy for β → 0.
As shown in our experiments, there is no meaningful difference as far as β is large enough.

3.2. The General Case

We can now prove the equivalence in a much more general case where the noise
injection dynamics follows the equation:

x(t − dt) = x(t) +∇v(x)dt + σ(t)
√

dtδ(t), (15)

where v(x) is a differentiable scalar potential function and σ(t) is a continuous function of
time. This form covers most of the equations used in the diffusion modeling literature but
it excludes non-conservative dynamics and state-dependent noise models. The generative
dynamics corresponding to this more general noise-injection model is given by the equation:

x(t + dt) = x(t) +
(

σ(t)2∇x log pt(x(t))−∇v(x)
)

dt + σ(t)
√

dtδ(t). (16)

where the conditional marginal distributions of the stochastic differential equation is given
by the expression:

pt(x) = Ey∼ϕ(y)[k(x(t), t; y, T)]. (17)

In this formula, the solution kernel k(x′′, t′′; x′, t′) gives the conditional probability
density of a state x′ at t′ to be moved to x′′ at time t′′ under the noise-injecting dynamics.
Unfortunately, this solution kernel cannot be expressed analytically in the general case.
We define the function ψ(x, t; y) = log k(x, t; y, T) as the logarithm of the solution kernel,
which allows us to express the energy function of the model in the following form:

uvDM(x, t) = −σ2(t) log

(
N

∑
n=1

eψ(x,t; yn)

)
+ v(x) (18)

As we showed in the previous section, the equivalence with the Hopfield model can be
shown at the limit t → T, which corresponds to β → ∞. At this limit, the diffusion dynamics
of Equation (17) around a pattern y∗ is well-approximated by the linearized equation:

x(t − dt)− x(t) = ∇v(y∗)dt + H(y∗)(x − y∗)dt + σ(t)
√

dtδ(t), (19)
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with H(y∗) denoting the Hessian matrix of the potential at y∗, with Hij(y∗) = ∂2u(y∗)
∂xj∂xj

. Since
the equation is linear, its solution kernel is given by a Gaussian density whose mean vector
and covariance matrix depend on the potential v(x) and on σ(t). For t → T, the drift term
is negligible compared to the diffusion term as the former scales linearly while the latter
scales as a squared root. For this reason, the kernel simplifies further into the following
asymptotic expression:

ψ(x, t; y) ∼ − 1
2σ2(T)(T − t)

∥x − y∥2
2 + c. (20)

where c does not depend on x. Up to multiplicative and additive constants, this leads to
the asymptotic energy function:

uvDM(x, t) ∼ − log

 N

∑
n=1

e
− ∥x−yn∥2

2
2(T−t)σ(T)2

, (21)

which is identical to the energy function in Equation (12). Note that we neglected the
“regularization term” v(x), since it does not diverge for t → T and it is, therefore, negligible
at this limit. From this result, we can conclude that the fixed-point structure of the diffusion
model at t → T does not depend on the specific form of the SDE and it is therefore fully
characterized by the Brownian motion model analyzed in Section 3.1.

4. Encoding Memories by Denoising Neural State

To date, we considered exact diffusion models by analyzing the theoretically optimal
score function. However, in real-world applications it is often not possible to compute the
score analytically. Instead, as outlined in Section 2.2, the score function is approximated
using a denoising deep neural network s(x(t), t; W) parameterized by a large array W of
synaptic weights. Therefore, in real applications the memories are ultimately encoded in
the pattern of synaptic weights updated by SGD. Specifically, for a single data-point, the
loss function in Equation (9) results to a SGD weight updates of the form:

Wt+1 = Wt − η
∂s

∂W

(
δ(t)− s(x, t; W)

)
. (22)

where δ(t) can be interpreted as the residual between a past low-noise state y and a current
noisy-state x. In the brain, we conjecture that the residual might be obtained through
very short-term sensory memory, which can buffer recent states and then compare them
with the current activity. In psychology and neuroscience, this form of ‘buffering’ is often
referred to as iconic memory, which is estimated to last approximately 1000 ms [31–33].
Interestingly, recent studies show that the backpropagation term ∂s/∂W can also be ob-
tained through noise injection [34], which suggests that noise-injecting processes may play
a major role in learning. While the activity of the brain is ongoing and cannot be neatly
separated into forward and reversed dynamics, there is tantalizing evidence that the time-
evolution of cortical networks oscillate between feed-forward and feed-back phases [35],
which corresponds to states with different signal-to-noise ratios [36]. This phenomenon
might offer a mechanistic implementation of generative diffusion training in the brain,
possibly in relation with the hippocampus theta cycle, which is known to play a crucial
role in memory consolidation [37]. Coordination between the frontal cortex is likely to
play a central role in the consolidation of memory traces [38,39,39] and in the modulation
of the oscillatory cycles [40,41]. This suggests that a denoising training might be carried
out through frontal-hippocampal feedback process, where cycles of forward and reversed
processes are alternated in order to learn both from real and simulated experiences (re-
plays). However, these are speculative suggestions that need to be tested through detailed
biophysical theoretical modeling and experimental studies.
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5. Beyond Classical Associative Memories

In the previous section, we showed that the asymptotic energy landscape of generative
diffusion models trained on a finite set of discrete patterns matches the energy function of
modern Hopfield networks for β → ∞. This implies that, in this regime, the two models
have the same fixed-point structure and, consequently, that they have the same memory
capacity. Nevertheless, generative diffusion models are more general than associative
memory networks in two respects: (1) they provide a framework for probabilistic memory
recall and (2) they can be used to encode non-discrete memory structures of arbitrary
dimensionality. In this sense, generative diffusion model theory can be seen as a wide
generalization of the classical theory of associative memory.

5.1. Probabilistic Recall

At its core, the classical theory of associative memory is centered around the idea of
deterministic energy minimization (however, see [42] for related probabilistic methods).
On the other hand, the theory of generative diffusion modeling is based on partially
random processes. This is not a coincidence since these models have been devised for the
purpose of generation and statistical variability is central to the generative task. However,
probability theory is also central to the problem of memory retrieval, since in general there
are many possible patterns y that could have generated a given corrupted/incomplete
state x. This is particularly central when the level of corruption is high (i.e., for large values
of (T − t)), since in this regime it is often impossible to distinguish between several possible
patterns and the best hope is to cover their (posterior) probability distribution. When
initialized in one of these partially corrupted states, the stochastic generative dynamics
of diffusion models can be interpreted in this fashion, with each denoising trajectory
eventually reaching one of the possible fixed-points that are compatible with the initial
state. Probabilistic recall can be used to encode Bayesian uncertainty, with several possible
memories being simultaneously co-activated by parallel denoising processes. This form of
encoding can be used to solve information gathering, exploration and other meta-learning
problems [43] and has been suggested to be central to the functioning of the mammalian
hippocampus [44].

5.2. Higher-Dimensional Memory Structures

In the classical associative memory literature, a memory is encoded as a single (fixed-)
point in a m-dimensional space of possible neural activities. In modern mathematics, a
set of points is often interpreted as a 0-dimensional space as there are no local degrees of
freedom, meaning that it is impossible to locally perturb a point while remaining inside
its ‘space’. The energy landscape and associated vector field of this form of memories is
visualized in Figure 1a. This presents a very strict definition of memory that is incompatible
with its cognitive reality in most biological and artificial forms of intelligence. In fact, even
the sharpest human memory only encodes a minority of the details of the original neural
state, with many of these details being reconstructed during recall based on contextual
information [19]. This suggests that a more realistic description of memory should include
“internal” degrees of freedom that allow for partial encoding. In mathematical terms, this
can be done by defining a memory as a connected d-dimensional sub-space embedded in
the larger m-dimensional space of possible neural activities. A diffusion model trained on N
of these “extended memories”, each represented by a sub-space Sn has the energy function:

log

(
N

∑
n=1

∫
Sn

eβ(t)xTyn dyn

)
, (23)

where the integral is taken over the whole sub-space Sn, whose points correspond equally
valid interpretations of the same memory. An example of an energy landscape for this
form of extended localized memory is given in Figure 1b. In general, each sub-space Sn
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can potentially have a different dimensionality or even be a more complex geometrical
structure with fractional (fractal) or variable dimensionality.

−2 −1 0 1 2
−2

−1

0

1

2
a)

−2 −1 0 1 2
−2

−1

0

1

2
b)

−2 −1 0 1 2
−2

−1

0

1

2
c)

Figure 1. Visualization of different kinds of energy landscape and gradient vector fields correspond-
ing to different forms of memory (in a two-dimensional space): (a) classical point-like memory;
(b) extended localized memory; (c) non-localized (semantic) memory structure. The color denotes the
probability density of the learned distribution while the lines represent the integral trajectories of the
vector field oinduced by the score function.

6. A Theoretical Framework for Memory in Biological and Artificial Intelligent Systems

In this section, we will leverage the connection we established between associative
memory and diffusion models in order to outline a theoretical framework for biolog-
ically plausible memory. Our goal is both to provide conceptual tools to theoretical
and experimental neuroscientists and to promote developments in naturalistic machine
intelligence systems.

6.1. Semantic, Episodic, and Reconstructive Memory

In psychology and neuroscience, the semantic (or structural) memory system is
thought to learn the general structure of the sensory input, discarding the idiosyncratic
details of individual events. This can be modeled with an energy function where the sum
over patterns is replaced by an integral over a continuous density ϕ(y):

σ2 log
∫

eβ(t)xTyϕ(y)dy. (24)

In practice, the distribution ϕ(y) is often defined on a manifold or some other lower
dimensional structure, leading to dynamics similar to what is visualized in Figure 1c.
This is exactly the kind of behavior we expect from a generative model, initial perturbed
states are gradually pushed towards a point on the manifold of possible patterns. In a
sense, it can also be seen as a probabilistic generalization of the high dimensional memory
structures described in Equation (23), where the sub-space Sn is no longer localized in a
small sub-region of the space of neural states. In cognitive terms, roughly speaking, we
can say that a memory is “episodic” if its sub-space is localized, whereas a memory is
considered semantic or structural if it is part of a large, non-localized sub-space.

However, modern memory research suggests that real-life episodic memories are
thought to be largely reconstructive, meaning that most of the sensory details are re-created
during recall based on contextual information [18,45]. For example, the memory of a car
crash may evoke the memory of broken glass, although the windshield was not actually
broken during the real event. This suggests that human episodic memory has a stored
lower-dimensional “representational core” that does not fully constrains the dynamics
of the system. This can be formalized using a mixture of discrete (or localized) and
continuous distributions:

log

(
N

∑
n

eβ(t) f n(x)Tξn +
∫

e−β(t)xTyϕ(y)dy

)
, (25)
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where the function f n : RD → RW with W < D is a lower dimensional encoding of the
state and ξn ∈ RW is a stored lower-dimensional pattern that encode the “core” of the
memory. Since W < D, this energy will only constrain W degrees of freedom to converge
to the pattern, while the other degrees of freedom are left free to evolve under the dynamics
determined by the corpus of semantic memory. This leads to a form of memory recall where
some features are recovered faithfully while others are reconstructed based on learned
contextual associations.

6.2. Consolidation and Replays

All the different forms of memory outlined in the previous section can be learned
through the same synaptic update rule given in Equation (22). In this sense, our model
provides a possible unification for most of the known-form of long-term memory in humans
and other animals. During training, the only difference between learning a density ϕ(y)
or a discrete set of patterns is that in the former case each pattern y is (almost surely)
sampled only once while in the latter case each pattern is re-sampled with finite probability
throughout training. In generative machine learning, re-sampling is often performed in
practice to maximize data efficiency, although it can lead to overfitting since the generative
model could memorize the patterns themselves instead of extrapolating the underlying
density ϕ(y).

In biological systems, each data point can only be experienced once and this would
likely not result in the formation of localized episodic memories, since their encoding
requires some form of re-sampling. However, it is well known that the formation of
episodic memories in humans requires an extensive phase of consolidation that depends on
the activity of the hippocampus. Under our theoretical framework, a possible explanation
is that new simulated experiences are generated in the hippocampal network and are then
used for synaptic training. In fact, it is well known that these forms of replays can be
observed in the hippocampus both during sleep and wakefulness and that their disruption
compromises memory consolidation [46]. Training on these self-generated samples can
result in a positive feedback, with each reply increasing the probability of the same event
being re-sampled in the future. Through this process, a single event can be ‘bootstrapped’
into a self-reinforcing process of activity that can eventually form a localized episodic
memory. Furthermore, this would result in the formation of a low-dimensional episodic
“core”, as described in the previous sub-section, if only a sub-set of features are re-sampled
faithfully, with the other being generated from structural memory.

7. Experiments

Figure 2 visualizes the qualitative behavior of both learned and exact score models
compared with modern Hopfield iterations. We consider a five-dimensional associative
memory problem with four randomly sampled binary patterns. For the forward diffusion
dynamics, we used a variance-preserving model as they are numerically more stable and
more widely used [23]. We considered both exact score models and trained diffusion
models parameterized by three layer perceptrons s(x, t; W) with 750 hidden units in each
hidden layer and ReLu activation functions in both hidden layers. The time variable t was
embedded by appending the value θt = e−t/2 to the activations of each layer, including
the input, hidden, and output layers. This means that each weight matrix acted on a
n + 1-dimensional feature space, where n is the number of activations. We used the training
approach described in [23] but with a simpler constant noise schedule (σ = 1). The noise-
injection model is given by the equation:

x(t − dt) = (1 − αdt)x(t) + σ
√

dtδ(t), (26)
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where α = 0.5 and δ(t) ∼ N (0, I). Accordingly, the network was trained using the denoiser
autoencoder loss:

L(W) = Eθt∼U (0.6,1),δ∼N (0,I)

[
∑
n

∥∥∥∥δ − s
(

θtyn +
√

1 − θ2
t δ, t; W

)∥∥∥∥2

2

]
. (27)

Using this loss, the network is trained to recover the added noise from noise-corrupted
patterns. The loss was optimized using Adam with fixed batches including all patterns to
be memorized. The networks were trained for 5000 iterations. Diffusion trajectories were
integrated using a simple Euler approach for the deterministic ODE samples (see [23]):

x(t + dt) = x(t) +
1
2

(
αx(t)− s(x(t), t; Wtrained)√

1 − e−2αt

)
dt, (28)

while we used a Euler–Maruyama method for the SDE sampler:

x(t + dt) = αx(t)− s(x(t), t; Wtrained)√
1 − e−2αt

dt + σ
√

dtδ(t). (29)

Both samplers used 300 time steps discretized linearly from tstar = 10−3 to a t corre-
sponding to the noise level. The modern Hopfield iterations were implemented as specified
in [26], with β = 5 and 4 updates. Consistent with our analysis, all algorithms approxi-
mately converge to the same target points. In line with previous work, the modern Hopfield
iteration converges after a single iteration, whereas the the diffusion trajectories converge
smoothly to the target. However, note that, in this setting, diffusion denoising can also be
performed in one step simply by re-scaling the score.

0.0 0.2 0.4 0.6 0.8 1.0

−2

−1

0

1

2

a)

Deterministic diffusion (exact)

Modern Hopfield updates

Stochastic diffusion (exact)

0.0 0.2 0.4 0.6 0.8 1.0

−2

−1

0

1

2

b)

Exact deterministic diffusion (exact)

Deterministic diffusion (learned)

Figure 2. Qualitative analysis of the (marginal) denoising trajectories of a binary associative memory
problem with four patterns in a five-dimensional space. (a) Comparison between denoising trajecto-
ries of diffusion models and modern Hopfield updates. The diffusion curves are integrated using
the Euler method with 2000 steps. The trajectories are overlaid to four modern Hopfield updates.
(b) Comparison between exact and learned deterministic denoising trajectories. The colors are used
to identify individual trajectories.

As a first quantitative analysis, we evaluated the Pearson correlation coefficient be-
tween the output of modern Hopfield iteration and (a) a diffusion model, (b) a classical
Hopfield network, and (c) the ground truth pattern. For a given dimensionality d, n binary
patterns y were randomly generated, and subsequently, corrupted with noise using the
formula ỹ = θy +

√
1 − θ2ϵ, where ϵ is a standard Gaussian noise vector. We used a noise

level of θ = 0.68. We kept the dimensionality equal to 10 and we evaluated the correlation
for 10, 20, and 30 stored patterns. The simulation was repeated 100 times in order to reliably
compute the correlations. In order to avoid to have to re-train a neural model hundreds of
times, for the diffusion models we used the exact score formula (see Appendix A). For the
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modern Hopfield model, we used 150 updates in order to maximize performance. The final
output of all methods was binarized using the sign function. Table 1 shows the estimated
Pearson correlations between methods. As expected from our analysis, the correlation
between the modern Hopfield iterations and the diffusion model is extremely close to one.

Table 1. Pearson correlation between output of modern Hopfield network and other models (plus
ground truth pattern) in both denoising and completion experiments.

Denoising Task Number of
Patterns Diffusion Model Classic Hopfield True Patterns

10 0.995 0.732 0.893
20 0.991 0.704 0.822
30 0.991 0.715 0.81

Completion task

10 0.996 0.741 0.897
20 0.991 0.707 0.838
30 0.989 0.700 0.795

Average Pearson correlations between the output of (exact) diffusion models, modern Hopfield networks and
classical Hopfield networks in denoising and completion tasks performed on random binary patterns.

We also performed the same experiments in a completion task, where the patterns
were partially zero-masked instead of being corrupted by white noise. The binary masks
were sampled randomly from a Bernoulli distribution with p = 0.5. Again, the output
of the exact diffusion models correlates almost perfectly with the output of the modern
Hopfield iterations.

Next, we estimated the error and capacity of the models. The corrupted patterns
were fed to the algorithms and the results were compared with the original pattern using
the Hamming error. The patterns were considered to be correctly recovered if the error
was smaller than 3%. Figure 3a shows the error of an exact diffusion model for different
numbers of patterns as function of the dimensionality. For a given noise level and threshold,
the capacity was defined as the maximum number of patterns that can on average be
recovered. Figure 3b shows the estimated capacity of the exact diffusion model (blue),
modern Hopfield network (green), classical Hopfield network (red), and trained diffusion
model (black dots). The details of the experiments are given in Appendix A.
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Figure 3. (a) Median error of exact diffusion model as function of the dimensionality. (b) Capacity
of diffusion models and Hopfield networks in log scale. The shaded area denotes the estimated
95% intervals.
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8. Discussion

In this paper, we demonstrated that a popular class of modern Hopfield networks
with exponential non-linearities is mathematically equivalent to a large class of continuous
diffusion models at the limit of β → ∞. In our experiments, we showed that this equivalence
holds almost exactly for a finite β value and for the more stable variance-preserving models,
both with exact and trained score. The equivalence depends on the fact that the diffusion
models are trained on a finite number of discrete patterns, and in fact the diffusion models
can generalize the modern Hopfield energy function to a setting where both episodic
memory and semantic memory (i.e., generative manifolds) are jointly encoded by the
dynamics of the same network. From the point of view of theoretical neuroscience, this
may be used to model the different forms of long-term memory as a result of the same
learning mechanism, in a single distributed neural system.

While generative diffusion models offer an attractive paradigm for modeling memory,
imagery, and even perception in the brain, more work needs to be done in order for its
components to be implemented in a biologically plausible way. In particular, it is unlikely
that biological neural networks implement pure noise-injection dynamics. However, the
mathematics of generative diffusion models can be written in term of any stochastic
differential Equation [23], which can be used to implement more plausible transformation
such as, for example, the feedforward perceptual feature as implemented in the hierarchy of
sensory cortical areas [47]. More fundamentally, it is unclear how the reverse and forward
dynamics can be simultaneously implemented in the brain networks. However, there
is tantalizing evidence that this could correspond to the theta rhythm driving periodic
cholinergic modulations [37].

The denoising loss given by Equation (9) is somewhat similar to the self-prediction
errors used in predictive coding models [48–50]. This opens the door for potentially fruitful
connections with existing predictive models of memory [51,52]. Particularly interesting is
the recent use of generative predictive coding models for associative memory storage [53],
which is also based on a generative model and has some similarities with the approach
discussed here.

The main biological issue with episodic memory as conceptualized in this paper is that
it seems to require the re-sampling of the same events, while in the real world, each event
can only happen once. This can be potentially implemented with some form of bootstrap
re-sampling, which might correspond to the replays observed in the hippocampus [20].
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Appendix A. Details of the Experiments

Binary patterns were generated independently by applying the sign function to stan-
dard Gaussian vectors. To test recovery, we corrupted the patterns using the formula
ỹ = θy +

√
1 − θ2δ, where δ is a standard Gaussian vector. In all the experiments, we used

θ = 0.68.
We compared the storage and recovery performance of several models. Modern

Hopfield networks were implemented with the iterative update given in [26]. We set β to
be equal to 5 and we applied 150 iterations to each noisy pattern.

For reasons of stability, we used variance-preserving diffusion models defined by the
following noise-injection SDE:

dxt = −γxt + γdWt, (A1)
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where Wt is a standard Wiener process. This is slighly different from the variance-exploding
models discussed in the main text, but it delivers nearly identical results. The diffusion
models were used as denoiser by applying the deterministic ODE dynamics given in [23]:

dxt

dt
=

1
2

(
xt + σ2∇x log pt(x(t))

)
, (A2)

which exactly reproduces the marginal densities of the stochastic dynamics. We integrated
the dynamics using 300 steps of Euler integration. The initial time was set to match the
match level using the following formula: tstart = −γ−12 log(θ), with γ = 0.8. This formula
implies the use of a constant noise scheduling with variance equal to γ.

In an exact-score-based diffusion model, we used the exact formula for the score given
the marginal density:

∇ log pt(x) = (x − Yht(x))/(1 − θ2
t ), (A3)

where Y is a matrix having the patterns yj as columns. The weight vector ht is obtained
using the softmax function:

ht,j(x) = softmax
(

. . . ,−
∥∥∥x − yk

∥∥∥2

2
/(2(1 − θ2

t ), . . .
)

j
, (A4)

which depends on the correlation between the state x and each of the patterns. This is very
similar to the softmax formula given in the update of modern Hopfield networks, which is
unsurprising given the equivalence of their energy functions.

Learned generative diffusion models used a three layers fully connected architecture
with reLu non-linearities, d input and output units and 80d hidden units in each layer. The
time index was embedded by converting it to θt = exp(−0.5γt) and then by concatenating
this value to each layer. They were trained using the optimizer Adam with base rate 0.001
and fixed batches containing all the generated patterns.

For the Hopfield and exact models, the capacity was estimated by evaluating the
average reconstruction error in a grid of dimensionalities and number of patterns. Given
each combination, the error was computed using 140 randomly sampled patterns. The
capacity was then estimated by finding the maximum number of patterns such that, for a
given dimensionality, the average Hamming error did not exceed a threshold value of 3%.
Error intervals were obtained by bootstrap re-sampling of the error. In order to increase
the snd, we smoother both the mean capacity and the bounds by convolving them with a
Gaussian kernel with σ = 1.5.

This estimation method would have been too expensive for evaluating the capacity of
learned models, since the network needs to be fully re-trained for any given set of patterns.

Instead, for a given dimensionality d, we trained the network with nd patterns, where
nd is the estimated capacity of the exact score model plus 4. After training, we evaluated
the error on 30 batches of unseen noise corrupted versions of the training patterns. If the
error was below threshold, we returned nd as the estimated capacity, otherwise, we reduced
nd by one and repeated the treaning until the error was below threshold. This procedure
was repeated 8 times for d equal to 10, 12, 14, and 16.
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