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Abstract: This paper expands traditional stochastic volatility models by allowing for time-varying
skewness without imposing it. While dynamic asymmetry may capture the likely direction of future
asset returns, it comes at the risk of leading to overparameterization. Our proposed approach
mitigates this concern by leveraging sparsity-inducing priors to automatically select the skewness
parameter as dynamic, static or zero in a data-driven framework. We consider two empirical
applications. First, in a bond yield application, dynamic skewness captures interest rate cycles of
monetary easing and tightening and is partially explained by central banks’ mandates. In a currency
modeling framework, our model indicates no skewness in the carry factor after accounting for
stochastic volatility. This supports the idea of carry crashes resulting from volatility surges instead of
dynamic skewness.

Keywords: stochastic volatility; sparsity; skewness

1. Introduction

Accurate representation of asset returns is one of the key topics in finance. Based
on the theoretical results from [1,2], standard approaches to asset pricing have largely
focused on the first and second moments. Stochastic volatility (SV) models, discussed,
for example, by [3], are among the cornerstone models in modern financial econometrics.
In their simplest form, SV models represent asset returns via normal distribution with
persistent volatility and a mean that is either constant or a linear function of explanatory
variables. Such models capture the first two moments of asset returns in a simple and
elegant manner, being supported empirically and theoretically, as discussed in [4].

While we acknowledge the importance of the first two moments in asset pricing, we
also recognize the potential benefits of including skewness when modeling returns. Due to
its ability to capture the likely direction of returns, models with time-varying skewness may
be more suitable for forecasting periods with a higher concentration of same sign returns,
leading to better detection of both overperformance and underperformance periods. Ref. [5]
is one key example of the empirical benefits of adding such feature for modeling cross-
sectional stock momentum. While the momentum factor is known for delivering good
mean–variance compensation, it is also subject to a long period of negative performance.
By capturing such prolonged periods of likely negative returns via dynamic skewness,
ref. [5] improves the performance of the stock momentum factor compared to traditional
approaches that neglect skewness.

However, including dynamic skewness in traditional financial econometric models
can be costly. While allowing for asymmetry may lead to a better representation of some
financial time series, it may not be a vital feature, and its inclusion risks overparameteriza-
tion. Therefore, we wish to include dynamic skewness only when required by the data and
remove such a feature if it is not necessary.

This paper expands stochastic volatility models by allowing dynamic skewness with-
out having to impose it. We replace the traditional hypothesis of Gaussian errors with a
skew-normal distribution. Such a change preserves the usual features for the first two mo-
ments of SV models but allows for dynamic skewness. Since the inclusion of time-varying
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asymmetry may not always be necessary, we consider a sparsity-inducing scheme for its
parameters. In particular, we consider a random-walk evolution for the asymmetry. When
the standard deviation of the dynamic process is shrunk to zero, our model results in an
SV model with constant skewness. Additionally, if the level of skewness is shrunk to zero,
we recover a traditional SV model. By combining prior information with the likelihood
of the model, our proposed approach automatically chooses between dynamic, static, or
no skewness.

We consider two empirical applications. In our first application, we model Brazil and
US bonds, obtaining three main results. First, our proposed model indicates that bond
yield changes for both countries, better represented by including time-varying skewness,
resulting in out-of-sample improvements for forecasting the direction of future yields
when compared to generalized autoregressive score (GAS) models. Second, the recovered
skewness is associated with interest rate cycles of monetary easing and tightening. Third,
inflation and unemployment partially explain the recovered skewness, linking it to central
banks’ mandates. In a second application, we model the carry factor for currency returns.
Our model indicates not only the lack of dynamics, but also no skewness at all for it after
accounting for volatility. Therefore, similar to the crash mitigation via volatility scaling
proposed in [6], the carry factor also experiences reduced crashes once dynamic volatility
is considered, without requiring the inclusion of skewness.

This paper intersects and contributes to multiple areas. First, it contributes to the
stochastic volatility literature by expanding the static skewness model of [7] to the dynamic
case while also extending the sparsity-inducing scheme of [8] by allowing for dynamic
skewness to shrink towards the static case. Second, it contributes to the toolbox of methods
for recovering dynamic skewness. Ref. [9] relies on option data, while [10] uses rolling
windows. Both approaches have limitations. While theoretically sound, option-based
approaches require tradeable options with a large collection of strikes, high liquidity, and
continuous expiration dates. Such requirements are hard to meet in many applications,
especially for emerging markets such as in our Brazilian bond applications. Rolling window-
based approaches artificially introduce dynamics into skewness by changing the sample
period continually. Such changes come at the cost of outliers playing a large role in
estimation, in addition to a trade-off based on window size, which affects the precision
of the estimate and the speed at which the dynamics change. Third, it contributes to
the interest rate literature by showing that inflation and unemployment partially explain
skewness, linking it to central banks’ mandates, and expanding the traditional mean and
variance analysis of papers such as [11,12]. Fourth, it contributes to the debate of whether
the carry factor presents dynamic skewness after accounting for heteroskedasticity, as
discussed in [13,14], by claiming that skewness is unlikely to be dynamic and, in fact, is
more likely to be zero after accounting for SV effects.

The paper is organized as follows. It starts by describing traditional SV models and
moves on to our proposal with time-varying skewness in Section 2. Section 3 discusses
the sparsity-inducing framework. Section 4 shows our Hmailtonian Monte Carlo (HMC)
approach to simulate from the joint posterior. Section 5 presents the bond yield forecasting
application while Section 6 shows the carry factor application. Section 7 concludes.

2. SV Model with Time-Varying Skewness

A traditional stochastic volatility model is defined in Equations (1)–(5). Equation (1)
represents asset returns with a mean of zero and dynamic volatility of exp(ht/2). Equation (2)
indicates persistent log-volatility with level µ and persistence ϕ, having initial values given
by the stationary distribution shown in Equation (3). In its simplest form, both measure
and state equations have Gaussian errors as represented in Equations (4) and (5).

yt = exp

(
ht

2

)
εt, (1)

ht = µh + ϕh(ht−1 − µh) + σhηt, (2)
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h0 ∼ N

(
µh,

σ2
h

1 − ϕ2
h

)
, (3)

εt ∼ N(0, 1), (4)

ηt ∼ N(0, 1). (5)

In order to introduce asymmetry into the model, we replace the normal variable, εt in
Equation (4) with a skew-normal random variable, zt. We utilize the skew-normal density
representation described in [15,16] as shown in Equation (6), where ϕ(·) and Φ(·) represent
standard normal density and distribution function, respectively. λ controls the degree of
asymmetry in the distribution, as depicted in Figure 1. Specifically, for λ = 0, the skew-
normal reduces to standard normal distribution. Additionally, we can introduce location
(ξ) and scale (ω) parameters to the skew-normal, denoting X = ξ + ωz as X ∼ SN(ξ, ω, λ),
with its density presented in Equation (7). Appendix A describes the relationships between
ξ, λ, and ω in terms of mean, variance, and skewness.

If Z ∼ SN(λ), then p(z; λ) = 2ϕ(z)Φ(λz); (6)

If X ∼ SN(ξ, ω, λ), then p(x; ξ, ω, λ) = 2
1
ω

ϕ
( x − ξ

ω

)
Φ
(

λ
x − ξ

ω

)
. (7)
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Figure 1. Skew-normal densities with ξ = 0 and ω = 1 and λ equal to −2, 0, and 1 for the dashed red,
solid black and dotted blue lines, respectively. If λ < 0, the distribution is skewed to the left. If λ = 0,
SN(0) reduces to the standard Gaussian distribution. Finally, if λ > 0, the distribution is skewed to
the right.

We allow for the possibility of dynamic skewness by replacing static λ with λt, which
evolves according to a random walk starting at λ0 as represented by Equations (8) and (9).
Therefore, we modify our observation equation by enabling both volatility and skewness
to vary with time, changing the observation equation to Equation (11). While Equation (1)
implies that yt follows a symmetric distribution, Equation (11) indicates that yt comes from
a potentially skewed distribution. Therefore, our model can be viewed as an extension of
the stochastic volatility models with static skewness proposed in [7,8,17].

zt ∼ SN(λt), (8)

λt = λt−1 + σληλ,t with ηλ,t ∼ N(0, 1), (9)

λ0 = α0, (10)

yt = exp

(
ht

2

)
zt. (11)



Entropy 2024, 26, 142 4 of 16

Since εt ∼ N(0, 1), Equation (1) implies that yt follows a normal distribution with a
location of zero and a scale of exp(ht/2). By replacing εt with zt ∼ SN(λt), Equation (11)
implies that yt follows a skew-normal distribution with a location of zero, a scale of
exp(ht/2), and skewness parameter λt.

We are not the first to consider models with dynamic skewness. For instance,
refs. [18,19] introduced GAS models which induce time-varying skewness through the
score of conditional density. More recently, refs. [5,20] used GAS models to model Bitcoin
returns and manage momentum-based portfolios. However, unlike our proposal, GAS
models are suitable for including time-varying higher moments within a GARCH-like
framework, while our proposal is designed for SV models.

3. Sparsity-Inducing Approach

The inclusion of asymmetry may improve the representation of time series by cap-
turing periods with a higher concentration of returns exhibiting the same sign, as demon-
strated, for instance, in [5,16,21]. However, it may not always be necessary as it involves
estimating additional parameters. To mitigate the risk of overparametrization, our aim
is to incorporate time-varying skewness only when required by the data. One possible
approach involves estimating multiple models with different skewness specifications and
then selecting a model using the Bayes factor. Ref. [22] provides a comprehensive review
of using Bayes factors for model selection. However, recovering Bayes factors can be a
challenging problem, as highlighted in [23]. We propose a sparsity-inducing method that
conveniently performs model selection without the need to estimate multiple models and
entirely avoids the use of Bayes factors.

In the non-Bayesian literature, shrinkage is based on maximizing the likelihood of
a model subject to a penalty function with the LASSO of [24] being the most commonly
employed approach. From a Bayesian perspective, shrinkage problems can be framed as a
penalization of the log-likelihood through a log-prior. In fact, the posterior mode of a linear
model with Double Exponential prior having a location of zero and a scale of 2/ψ equals
the point estimate of the LASSO with penalty ψ, as shown in [25]. Therefore, to shrink
both σλ and λ0 towards zero, we utilize Double Exponential priors for both parameters, as
illustrated in Equations (12) and (13).

Our proposal is consistent with the concept of sparsity in dynamic models, a principle
also utilized in [26–29]. Our approach is considered sparsity-inducing in the sense that both
the random walk variance and initial state for the skewness parameter are shrunk towards
zero. Equation (9) governs the dynamics of the asymmetry parameter. When σλ approaches
zero, λt becomes static and assumes the value of its initial point, λ0. Furthermore, if the
initial point is also zero, the model reduces to the vanilla SV model. Hence, by inducing
sparsity for both σλ and λ0, we can encompass all three cases of interest.

σλ ∼ DoubleExponential(0, 1/κσλ
) with κσλ

∼ Gamma(a, b), (12)

αλ ∼ DoubleExponential(0, 1/κα) with κα ∼ Gamma(c, d). (13)

To the best of our knowledge, we are the first to introduce sparsity in the dynamic
skewness framework. The closest paper to ours is [8], which uses the spike and slab prior
of [30] to estimate the posterior probability of inclusion of static skewness.

4. Remaining Priors and Posterior Inference

Our modeling approach involves the following unknown quantities: Θ = µh, ϕh, σh, α0,
σλ, ht, λt. Our goal is to estimate the joint posterior distribution p(Θ|y), which, according
to Bayes’ rule, can be calculated as

p(Θ|y) = p(y|Θ)p(Θ)∫
p(y|Θ)p(Θ)dΘ

.
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p(y|Θ) is the likelihood component being characterized by our proposed sampling model.
We consider independent components for each member of p(Θ). p(µh) and p(ϕh) follow
Gaussian distributions, p(σ2

h ) has inverse gamma distribution while p(α0) and p(σλ) have
double exponential distribution, as discussed previously. The exact values for the prior
parameters are described in Appendices B and C.

After defining p(y|Θ) and p(Θ), we must recover p(Θ|y). However,
∫

p(y|Θ)p(Θ)dΘ
does not have an analytical solution. Moreover, due to the high dimensionality of Θ, grid-
based integration methods are computationally infeasible. Thus, we employ to Markov
Chain Monte Carlo (MCMC) methods to sample from p(Θ|y). In this paper, we use a
particular MCMC method, known as HMC, instead of the more traditional Random–Walk
Metropolis Hastings (RWMH).

Both HMC and RWMH are MCMC methods. Thus, both methods generate a proposed
value for unknown quantities Θ(i) on each Markov chain iteration i in order to approximate
p(Θ|y). We denote the sequence of Θ(i) by {Θ(i)}I

i=1. In our applications, we run our HMC
scheme for 30,000 iterations with the first 15000 being used as burn-in draws. HMC and
RWMH differ in their approach to generating Θ(i) from Θ(i−1). RWMH generates Θ(i) as a
random walk from the previously sampled Θi−1. In contrast, HMC enhances the process
by using guided proposals based on the gradient of the log posterior. This guidance helps
direct the Markov chain toward regions of higher posterior density while also sampling tail
areas properly, as discussed in [31,32]. Specifically, HMC generates proposals by solving
the following Hamiltonian equations:

dq
dt

= −∂H(Θ, q)
∂Θ

= ∇Θlogp(Θ|y),

dΘ
dt

=
∂H(Θ, q)

∂q
=

∂K(q)
∂q

= M−1q,

where H(Θ, q) represents the Hamilton function. In the context of this paper, H(Θ, q) =
−logp(Θ|y) + 1

2 qT M−1 p. Additionally, ∇Θlogp(Θ|y) is the gradient of the log posterior
density. Due to ∇Θlogp(Θ|y), ref. [31] claims that HMC generates guided proposals. We
refer readers to [31,32] for a thorough review of HMC methods.

We choose HMC over RWMH for two main reasons. First, due to its more refined
method to generate Θ(i), HMC requires several iterations less than RWMH. This difference
becomes even bigger if Θ is high-dimensional which is the case in this paper. Second, the
software Stan verison 1.2, introduced in [33], offers convenient implementation of HMC.
In our study, we utilize Stan in conjunction with R through the rStan package introduced
in [34] (The codes and data for this project are available on the first author’s GitHub page,
github.com/igorfbmartins, shortly after publication).

5. Empirical Application: Bond Yields

The bond market is one of the largest in the world being key for investors and policy-
makers. Most papers focus on the first two moments, e.g., refs. [11,12,35,36]. Our paper
focuses on the much less explored third moment. Skewness captures the likely direction
of returns allowing for an interest rate investor to improve their forecast about the sign of
future yields. Such feature is explored in the literature in at least three ways. First, ref. [5]
highlights the role of skewness in forecasting crashes in momentum portfolios. Second,
works [37,38] highlight that even monetary ’surprises,’ such as the differences between
actual policy rates announced by the Federal Open Market Committee (FOMC) and ex-
pectations from professional forecasters, can be partially predicted by the option-implied
skewness of the 10-year US bond. Third, ref. [17] demonstrates that allowing for skewness
improves value-at-risk evaluation for multiple assets.

github.com/igorfbmartins
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In our first application, we model the monthly yield changes in fixed 1-year maturity
for both American and Brazilian bonds. We sample from the joint posterior via the HMC
scheme presented in Section 3 by combining the likelihood implied by our proposed model
in Section 2 and the priors described in Appendix B. In both cases, skewness is likely to be
time-varying. It is associated with cycles of monetary easing and tightening. It is partially
explained by the central bank’s mandate and provides valuable information regarding the
future direction of yield changes.

The sample of US bonds comes from the updated dataset of [39] made available by the
Federal Reserve Board starting on July 1981 and lasting until August 2023. The sample of
Brazilian bonds is based on the DI interest rate contracts available on the Brazilian stock and
future exchange B3. The DI contracts are interpolated to form 1-year fixed maturity bonds
using the same Nelson–Siegel procedure described in [39] resulting in a sample starting in
February 2004 and ending in August 2023. Figure 2 plots both time series of monthly yield
changes. Notably, both series fluctuate around zero with volatility clusters. Both series hint
at the possibility of skewness. For example, the US series presents a persistent and negative
yield change period in early 1990 and early 2000. In the Brazilian series, the negative and
persistent yield changes are even clearer, with the period from August 2016 to March 2018
being one example.
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Figure 2. Change in yields from fixed 1-year maturity bonds from the US and Brazil. The top panel
presents monthly changes in yields from 1-year bonds from the US government starting in July 1981
and lasting up to August 2023. Similarly, the bottom panel shows monthly changes in 1-year Brazilian
bonds from February 2004 up to August 2023.
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Some might express concern that the guidance provided by central banks regarding
future rates entirely dictates yield changes. However, such concerns are unlikely to be
substantial for several reasons. First, if central bank communication were the sole determi-
nant of yields for 1-year fixed maturity bonds, yields would instantly adjust to incorporate
the information from newly announced paths and persist at that level until subsequent
announcements, in line with the efficient market hypothesis. Second, current yields not only
reflect the anticipated average future short rate over a bond’s lifespan, but also encompass
a term premium component. As demonstrated, for instance, in [40,41], this term premium
component is likely to be time-varying. Consequently, yields are expected to fluctuate over
time even after accounting for the expected future short rate. Third, while central bank
communication indeed aids in forecasting future yields, it is by no means the sole source of
information, as exemplified in [42].

We apply our proposed model to both US and Brazilian bonds with the priors pre-
sented in Appendix B. To account for the Brazilian time series being shorter than the
American, the estimation sample comes closer to the present than the American. Precisely,
we consider an estimation period which lasts up to December 2018 for the US and up to
December 2019 to the Brazilian case. Table 1 presents the posterior summaries for the
parameters of both time series. The values of ϕh indicate high persistence in the log-scale
which is reflected in Figure 3 that plots posterior summaries of {ht}. In both cases, our
approach captures the surges in volatility indicated in Figure 2. For instance, in the US
series, our model captures spikes in volatility during the early 2000s and the financial crisis
of 2008. Similarly, the Brazilian time series shows a volatility spike in 2008, which our
model also captures. Additionally, both series are likely to have a dynamic skewness as
shown by the posterior summaries of σλ with the Brazilian bonds having a bigger range
of variation for λt than bonds from the US. This evidence is supported by the posterior
summaries of {λt} in Figure 4 as well.

Figure 5 plots the posterior mean of {λt} alongside monetary easing–tightening cycles.
The green shaded areas represent periods of monetary easing characterized by interest rate
cuts implemented by the countries’ central banks. Conversely, the red shaded areas represent
periods of monetary tightening marked by interest rate hikes. Our approach identifies negative
skewness in yield changes during easing periods and large positive skewness when a central
bank is hiking interest rates. The monetary policy cycles for the US are based on the FED
effective fund rate, while for the Brazilian case, they are derived from the target rate policy
decisions of each meeting (Brazilian target policy rate is available at https://www.bcb.gov.br/
controleinflacao/historicotaxasjuros (accessed on 28 November 2023)).

Table 1. Posterior summaries of the parameters from our proposed model. µh, ϕh and σh represent
the log-scale level, persistence and standard deviation, respectively. σλ captures the dynamic of
the skewness component and α0 is the initial level of the skewness. Both series are likely to have a
dynamic skewness as shown by the posterior summaries of σλ with the Brazilian bonds having a
bigger range of skewness variation than bonds from the US.

µh ϕh σh σλ α0

US q05 2.94 0.92 0.32 0.09 −0.62
US Mean 3.88 0.96 0.42 0.17 −0.06
US q95 4.84 0.99 0.55 0.27 0.42

BR q05 2.59 0.59 0.38 0.63 −2.67
BR Mean 3.08 0.79 0.63 1.09 −0.46
BR q95 3.59 0.94 0.91 1.75 0.79

https://www.bcb.gov.br/controleinflacao/historicotaxasjuros
https://www.bcb.gov.br/controleinflacao/historicotaxasjuros
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Figure 3. Scale recovered for the US and Brazilian bonds during the estimation period which lasts up
to December 2018 for the US and up to December 2019 for the Brazilian case. Green lines represent
quantiles 0.25 and 0.75 while solid red lines represent quantiles 0.05 and 0.95. For both series, time-
varying volatility is plausible. Top panel indicates rises in yield change volatility during the early
2000s and around the global financial crisis for the US, while the bottom panel indicate peaks of
volatility for Brazilian yield changes between 2009 to 2010 with a second spike in late 2018 and
early 2019.
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Figure 4. {λt} recovered for the US and Brazilian bonds during the estimation period which lasts
up to December 2018 for the US and up to December 2019 for the Brazilian case. While λ is not the
skewness itself, it can be transformed by using the formula in Appendix A. Green lines represent
quantiles 0.25 and 0.75 while solid red lines represent quantiles 0.05 and 0.95. Time-varying skewness
is likely in both cases. We obtain stronger evidence of dynamic skewness for Brazil in the bottom
panel than for the US in the top one.
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Figure 5. {λt} recovered for the US, top panel, and Brazilian bonds, bottom panel, during the
estimation period which lasts up to December 2018 for the US and up to December 2019 for the
Brazilian case. Green shaded area indicate monetary easing periods while red ones indicate monetary
tightening. In both cases, λt seems able to capture the monetary cycles and reflect future direction
of yield change. US monetary police cycles are based on the FED effective fund rate, while for the
Brazilian case they are recovered from the target rate policy rate decision of each meeting.

If the asymmetry of yield changes is connected to interest rate cycles, then drivers of
the monetary policy should help explain skewness. We test this hypothesis by regressing
the posterior mean of {λt}, denoted λ̂, into inflation and unemployment as represented by
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Equation (14). Both variables are reasonable ex-ante since central banks have mandates of
price stability and full employment.

λ̂t ∼ N(Xβ, σ2) with X = [1, In f lationt, Unemploymentt]. (14)

Table 2 indicates that unemployment levels partially explain the asymmetry in yield
changes for both countries. The negative sign of βunemployment is reasonable since central
banks typically address high unemployment levels by implementing interest rate cuts
to encourage consumption, and, as shown in Figure 5, easing cycles are associated with
negative skewness on yield changes. Moreover, in the case of Brazil, inflation is likely
to also influence this asymmetry. The positive sign of βin f lation aligns with central banks’
tendency to counter inflation surges by raising interest rates. As illustrated in Figure 5,
this is associated with higher values of skewness. Regarding the US, although inflation
posed challenges in the late 1970s and early 1980s, for most of our estimation sample, the
American economy did not face significant inflationary pressures. Consequently, yields
did not react substantially to inflation. Therefore, the nearly zero effect of βλ is justifiable.

Table 2. Linear regression of the posterior mean of {λt} into inflation and unemployment during
the estimation sample. For both countries, unemployment partially explains the skewness in yield
changes, while the asymmetry in the Brazilian case is also partially explained by inflation.

Intercept βInflation βUnemployment

US q05 0.39 −0.01 −0.11
US mean 0.58 0.00 −0.09
US q95 0.73 0.01 −0.06

BR q05 −0.72 1.16 −0.35
BR mean 0.39 2.47 −0.23
BR q95 1.57 3.52 −0.09

We also evaluate the out-of-sample performance of our proposed model. If skewness is
informative about the likely direction of changes in bond yields, then sign(Etλ̂t+1) should
agree with sign(yt+1). We verify this claim within an increasing window framework,
where the initial window corresponds to the estimation sample. For each window, we
execute our HMC procedure and obtain sign(Etλ̂t+1). Table 3 presents our findings. For
US bonds, we observe that sign(yt+1) matches sign(Etλt+1) in 66.1% of cases, with an
average change of 20.6% when correctly forecasted and only 8.7% when incorrect. Similarly,
in the case of Brazilian bonds, sign(yt+1) aligns with sign(Et[λt+1]) in 72.7% of instances.
Moreover, the average magnitude of correctly predicted yield changes is 8.2%, while it is
only 2.4% when the prediction is incorrect. Therefore, out-of-sample analysis supports our
assertion that dynamic skewness in bond yield changes serves as a predictive variable for
future yield changes. Furthermore, we compare our results with skewness-based forecasts
using GAS models via the implementation of [43] (check https://cran.r-project.org/web/
packages/GAS/ (accessed on 28 November 2023)). While our proposal demonstrates
similar performance to those of GAS models in the US case, it outperforms GAS in the
Brazilian case. Thus, for our dataset, our proposed model not only predicts the future
direction of yield changes, but also shows improvements over GAS models.

https://cran.r-project.org/web/packages/GAS/
https://cran.r-project.org/web/packages/GAS/
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Table 3. If bond yield skewness captures the likely direction of yield changes, then we should
expected yield increases when Et[λt+1] > 0 and, otherwise, decreases. Our model provides evidence
supporting such claims. In both cases, our model correctly predicts the correct yield change direction
in at least 66.1% of times.

Proposal US (%) GAS US (%) Proposal Brazil (%) GAS Brazil (%)

Hit Ratio 66.1 64.3 72.7 54.5
Avg when right 20.6 20.7 8.2 7.8
Avg when wrong 8.7 8.8 2.4 5.2

6. Empirical Application: Carry Factor

In addition to the bond yield application detailed in Section 5, we explore application
in the currency market. According to [44], two factors—dollar factor and carry—account
for the cross-section of currency returns. Our focus is on the latter factor, which captures
interest rate differentials between countries. It involves taking long positions on countries
with high interest rate differentials relative to the US and short positions on countries
with the smallest differentials. While our emphasis is on the FX markets, ref. [45] argues
that carry-based factors can effectively explain the cross-section of various asset classes,
including commodities and equities. For this analysis, we consider and update a sample
of the carry factor described in [44] (readers can check out Lustig’s carry factor on gsb-
faculty.stanford.edu/hanno-lustig/files/2022/05/CurrencyPortfolios.xls), presented in
Figure 6, which starts on November 1983 and lasts up to May 2021.
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Figure 6. Updated version of the time series for the Carry factor introduced in [44]. Our sample lasts
from November 1983 to May 2021.

We are not the first to study the skewness of carry returns. For example, refs. [10,13]
identify a time-varying crash risk on the carry factor. This risk materializes in some
occasions leading to large negative returns to the carry factor and skewing its distribution
to the left. Conversely, ref. [14] uses out-of-the-money currency options hedging against
large crashes and shows that carry remains profitable, indicating a small role for tail risk on
currency returns. Additionally, ref. [14] presents evidence in favor of time varying volatility
for carry returns and that the largest negative return of its sample, October 2008, occurs in
a period of high volatility. Our model is well suited to evaluate such claims. Ref. [14] is
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not an isolated case. Ref. [6] provides another example of tail risk mitigation in tradeable
factors after accounting for volatility without skewness playing a major role.

We consider the prior specification shown in Appendix C and sample from the pos-
terior using the HMC scheme described in Section 4. Figure 7 plots the posterior mean

(black), interquartile range (green) and q05-q95 interval (red) for both {exp
(

ht
2

)
} and {λt}

which are shown at the top and bottom panel, respectively. The top panel corroborates
the evidence of time-varying volatility with a surge in volatility around October 2008
similarly to the description in [14]. The bottom panel indicates that it is likely that there is
no skewness at all after accounting for stochastic volatility.
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Figure 7. Skewness recovered from the carry factor. Green lines represent quantiles 0.25 and 0.75
while solid red lines represent quantiles 0.05 and 0.95. After controlling for volatility, we find no
evidence of skewness in the carry factor.

Additionally, we assess the performance of the carry factor during periods of high
volatility compared to low volatility. We say that volatility is high if it is above the average
volatility recovered for the full sample and we say it is low otherwise. Table 4 reports
the results of our analysis. The average return for the carry factor is the same in both
environments. However, crash indicators such as the return on the fifth percentile and
minimum return exhibit significant improvements. Therefore, in combination with the
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results shown in Figure 7, our results indicate that after accounting for volatility, it is
unlikely that skewness plays a large role in affecting the returns of the carry factor.

Table 4. Summary statistics of the carry factor in high- and low-volatility environments for the sample
starting in November 1983 and lasting up to December 2021. While the average return for the carry
factor in both environments is the same, crash indicators such as the return on the 5th percentile and
minimum return are severely improved.

High Vol Low Vol

Mean 0.58 0.57
Sd 3.34 1.41
Q05 −5.38 −2.07
Min −10.38 −3.21

7. Conclusions

This paper expands stochastic volatility models by allowing for time-varying skewness
without having to impose it. By considering a LASSO-type regularization for both the
standard deviation and the starting level of the skewness dynamics, our model selects
among dynamic, static, and no skewness in a data-driven approach. In our bond yield
application, we highlight the benefits of dynamic skewness by demonstrating its connection
to monetary easing/tightening cycles and central banks’ mandates. Additionally, we show
that asymmetry provides information about the likely direction of future bond yield
changes. In the second application, we shed light on the debate of carry average returns
reflecting time-varying skewness versus no skewness but time-varying volatility. Our
model indicates no skewness after accounting for stochastic volatility.

Author Contributions: Author Contributions: Conceptualization, I.M. and H.F.L.; Methodology,
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Appendix A. Moments of a Skew Normal Distribution

Following [15,46], ξ, ω and λ relate to mean, variance and skewness by the following
expressions:

If Z ∼ SN(ξ, ω, λ), then

E[Z] = ξ +
√

ωδ

√
2
π

,

Var[Z] = ω

(
1 − 2

π
δ2

)
,

γ =

√
2
π

(
4
π

− 1

)(
λ√

1 + λ2

)3(
1 − 2

π

λ2

1 + λ2

)3/2

,

where δ = λ√
1+λ2 and γ is the skewness index. We note that γ depends only on λ.

Appendix B. Priors and Additional Results for the Bond Applications

We consider the following structure for bond yield applications:

github.com/igorfbmartins
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µh ∼ N(4, 102),

ϕh ∼ N(0.95, 0.52),

σ ∼ IG(0.1, 0.1),

α0 ∼ DoubleExp(0, 1/κα),

σλ ∼ DoubleExp(0, 1/κσλ
),

κα ∼ Gamma(0.1, 0.1),

κσλ
∼ Gamma(0.1, 0.1).

This prior scheme reflects vague beliefs. µh ∼ N(4, 102) implies an expected volatility
level of exp(4/2) =≈ 7.4%; however, the large standard deviation implies a vague belief
for this parameter. ϕh with an expected value of 0.95 indicates a high persistence in
volatility which is common in the SV literature. σ following an IG reflects the restriction
of the variance being non-negative. α0 and σλ following Double exponential reflect our
sparsity-inducing approach to the random walk variance and initial state for the skewness
parameter. Gamma priors for κα and κσλ

impose non-negative values for the scale of the
double exponential.

Also, Figure A1 plots the skewness itself using green and red shades to indicate easing
and tightening periods in addition to the posterior for {λt}. While conclusions are the
same, the version with skewness may help the reader to make a better assessment of the
magnitude of skewness in each period.
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Figure A1. Skewness recovered based on the posterior median of {λt} for the US, top panel, and
Brazilian bonds, bottom panel, during the estimation period which lasts up to December 2018 for the
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US and up to December 2019 for the Brazilian case. Green shaded areas indicate monetary easing
periods while red ones indicate monetary tightening. US monetary police cycles are based on the
FED fund effective rate changes, while for the Brazilian case they are recovered from the target rate
policy rate decision of each meeting. In both countries, positive skewness is associated with tight
monetary policy periods, while negative skewness is connected to easing cycles.

Appendix C. Priors for the FX Application

We consider the following structure for the fx applications:

µh ∼ N(4, 102),

ϕh ∼ N(0.95, 0.52),

σh ∼ IG(2, 2),

α0 ∼ DoubleExp(0, 1/κα),

σλ ∼ DoubleExp(0, 1/κσλ
),

κα ∼ Gamma(0.1, 0.1),

κσλ
∼ Gamma(0.1, 0.1).

We note that our apporach for FX application reflects vague priors similarly to the bond
yield case. Again, µh ∼ N(4, 102) implies an expected volatility level of exp(4/2) =≈ 7.4%;
however, the large standard deviation implies a vague belief for this parameter. ϕh with
an expected value of 0.95 indicates a high persistence in volatility, which is common in SV
literature. σ following an IG reflects the restriction of the variance being non-negative. α0
and σλ following Double exponential reflect our sparsity-inducing approach to the random
walk variance and initial state for the skewness parameter. Gamma priors for κα and κσλ

impose non-negative values for the scale of the double exponential.
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